Main Article Content

Filter media enhanced electrokinetic remediated crude oil contaminated soil: investigation of its engineering properties and its suitability for road construction


K. Adebayo
G. Moses
J. Sani Engbonye
B. Haruna Ibrahim
F. Balarabe

Abstract

Research have shown how electrokinetic remediation (EKR) technology attempts to tackle the challenge of soil contamination by crude oil. However, the suitability of the resulting remediated soils for use in road construction have not been well reported. This work investigates the engineering properties of filter media enhanced electrokinetic remediated crude oil contaminated soil (COCS) with a view to ascertain its suitability for use in road construction by comparing the performance of charcoal and active carbon as filter materials. COCS collected at a depth of 1m from the Nigerian Pipeline and Storage Company, Kaduna was remediated by using graphite electrodes to pass 1V DC/cm across EKR setups enhanced by incorporating a 1cm thick charcoal and active carbon separately as filter materials across the setups. Average removal efficiencies of 81.4% and 84.6% were obtained against the 78,600 mg/kg oil content of the COCS from charcoal and active carbon filter media enhancements respectively. This showed that active carbon, with higher removal efficiency, is a better filter medium for COCS than charcoal. The compaction and California bearing ratio (CBR) properties of the COCS also improved with the filter media enhanced EKR. However, the CBR values for the filter media enhanced EKR soils only meet the 20% minimum requirements for Type 2 sub-base course materials specified for light trafficked Nigeria roads. As such, charcoal or active carbon filter media enhanced EKR technology can be adopted for remediating COCS for light trafficked Nigeria road construction in areas not subjected to flooding.


Journal Identifiers


eISSN: 2467-8821
print ISSN: 0331-8443