Main Article Content

A proposed framework for face - iris recognition system using enhanced mayfly algorithm


A. I. Oladimeji
A. W. Asaju-Gbolagade
K. A. Gbolagade

Abstract

Fused biometrics systems have proven to solve some problems associated with unimodal systems but also face challenges in various aspects of their implementation such as difficulty in design, user acceptance is quite low, and the performance tradeoff. This framework tends to address some of these implementation challenges by using an enhanced mayfly algorithm, a modification of the existing mayfly algorithm that was recently proposed, as feature selection. Mayfly algorithm combines advantages of particle swarm optimization, genetic algorithm, and firefly algorithm, simulated in different experiments using varied benchmark function on conventional mayfly algorithm all tested to be capable of optimization, but despite its capabilities, some limitations such as slow convergent or premature convergent rate and possible imbalance between exploration and exploitation still remain unresolved, which necessitated enhancement for better performance. This framework will enhance the existing mayfly algorithm by expanding the search space which limited the ability of the conventional mayfly algorithm to be used to solve high-dimensional problem spaces such as feature selection and modify the selection procedure to model the attraction process as a deterministic process, that will be used for the feature selection procedure on fused face –iris recognition system. This will increase the capabilities of the mayfly algorithm and in turn, increase the recognition accuracy, and reduced the false acceptance rate, false rejection rate, and time complexity of the fused face–iris recognition system.


Journal Identifiers


eISSN: 2467-8821
print ISSN: 0331-8443