Main Article Content
Pressure behaviour of a horizontal well sandwiched between two parallel sealing faults
Abstract
Generally, reservoir fluid flow is governed by diffusivity equation and solution to this equation helps to investigate pressure behaviour under certain reservoir and wellbore boundary conditions. In this paper however, the analytical solution method of Green and Source function is deployed to determine the performance of a horizontal well located between two parallel sealing faults, assuming simple rectangular reservoir geometry. Also, the dimensionless pressure and derivative approach is applied for all computations as it prevents the problem of unit conversions, reduces longer expressions and it helps to handle numerical values. The pressure expression derived from this work reveals that a maximum of two flow periods occur for the stated reservoir model. It was found out that an inverse relationship exists between dimensionless pressure and dimensionless length while pressure increased with thickness. Also high vertical permeability shortens the effect of the early radial flow period experienced by the horizontal well, thereby increasing productivity index. Finally, it was discovered that increased perforation length reduces the production potential of the horizontal well.
Keywords: Dimensionless pressure, pressure derivatives, heterogeneity, pressure performance, reservoir and wellbore characterization.