Main Article Content
Development of syrup and “malt-like” drink from Raphia hookeri sap
Abstract
Natural microflora fermentation causes changes in freshly tapped palm sap and therefore makes its storage, transport, and large scale use difficult. This study was aimed at developing stable and value added products, including syrup and non-alcoholic “malt-like” drink from the sap of palms. The sap of Raphia hookeri collected from “evening-to-morning”(1700 Hrs-0700 Hrs) and “morning-to-afternoon” (0700 Hrs-1600 Hrs), respectively, were used in the preparation of syrup. The respective syrups were in turn used in combination with varying proportions of water, sugar, and caramel for the formulation of six(6) palm “malt-like” drinks from which the best (from sensory evaluation) was carbonated and named Palm Malt. The prepared Palm Malt was compared to commercially popular malt drinks on the market. A nine point hedonic scale (1=like extremely – 9=dislike extremely) was used by a panel of 56 to evaluate the colour, taste, flavour and after-taste, as well as overall consumer acceptability of the product. Proximate and physicochemical analyses were also carried out on the sap, syrup and Palm Malt using standard procedures. Descriptive statistics (percentages, mean and standard deviation) were derived and data were also subjected to regression analysis to determine relations between parameters. Analysis of variance (ANOVA) was used to determine variations in properties. Results of the proximate analyses showed that the moisture and protein content of the sap samples ranged from 92.96-94.21% and 0.14-0.17% respectively, with an average ash content of 1.53%. That for the syrup ranged from 13.45-15.60% and 0.14-0.17%, respectively, with ash content of 1.70%. Potassium, the principal cation in body cells, was the most abundant mineral in the saps. Physicochemical results: pH and total sugars of the saps were found to be 3.94-4.05, and 6.53-7.57%, respectively; whereas that for the syrups was found to be 3.96-4.13 and 76.70-82.03% respectively. The pH, total soluble solids, total solids and titratable acidity of the developed Palm Malt were found to be 4.94, 14.50%, 15.86%, 0.55%, respectively. The developed Palm Malt was found to be equally acceptable to consumers, in comparison to commercially popular types of malt drinks (P>0.05). This shows that there is potential for economic utilization of palm sap. If exploited, this would contribute to increased income for farmers and industrialists in the regions of Ghana/Africa where palms grow.
Keywords: Raphia hookeri, sap, syrup, malt-like drink
Keywords: Raphia hookeri, sap, syrup, malt-like drink