
 

 

  

ABSTRACT 

MULTI-OBJECTIVE OPTIMIZATION OF TRAIN SPEED 
PROFILES ON THE AYAT-MEGENAGNA LINE 

  
Tamirat Gebremariam and Mengesha Mamo 

 In this paper, a new approach has been developed 
for train speed profile optimization, discrete space 
based modeling followed by the determination of an 
optimal set of riding modes using multi-objective 
optimization techniques. The optimization problem 
is formulated by making energy and time as the 
components of the two element objective vector 
function. A point mass model of the operation of 
trains is developed by considering all the important 
force components acting on the train. The distance 
to travel between stations is discretized into 20 
equal length elements where a two stage solution 
procedure has been applied to get to the final re-
sults. The first stage of the solution procedure is the 
application of a Non dominated Sorting Genetic Al-
gorithm II (NSGA II) based optimization technique 
taking vector of riding modes as the decision varia-
ble. Using the developed algorithms for the calcula-
tion of cost functions, a Pareto-optimal set of riding 
modes are determined. The second stage of the solu-
tion process smoothes out the results found in the 
previous stage without bringing about considerable 
change in the values of the cost functions. Various 
speed profiles are generated as optimal for the case 
of Ayat to Megenagna line of Addis Ababa Light 
Rail Transit (AALRT). The speed profiles that are 
generated as the fastest can bring about up to 30% 
reduction in headway over the plan. Furthermore, 
by choosing the slowest trajectories over the fastest 
ones, it is possible to save up to 38.18% of energy, 
while 23.98% of reduction in riding time can be 
achieved by preferring the fastest profiles over the 
slowest ones. 
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INTRODUCTION 

The speed profile of a train is the speed versus dis-
tance or speed versus time curve that it undertakes 
while riding between stations. 

There is usually a tradeoff between riding time and 
energy consumption of a train [1]. Since it is diffi-
cult to minimize both of these objectives at the same 
time, it has been important to come up with driving 
strategies that can be used to improve both of these 
antagonistic parameters. 

The main objective of this research is to model train 
operation using point mass approach and distance dis-
cretization to determine multiple optimal trajectories 
for each section from Ayat to Megenagna. The scope of 
this research is limited to the case where a single train 
runs between stations.  

The speed profile optimization problem considers a lot 
of constraints. These include maximum acceleration 
rate, maximum braking rate, maximum jerk, track 
alignment, speed restrictions, loading, train resistance, 
inter-station distance, headway, and signaling. 

LITERATURE REVIEW 

It has been shown that the optimal trajectory consists of 
only four types of riding modes [2]. These are motoring 
(acceleration), cruising, coasting and braking. Ko et al. 
[3] used dynamic programming in the optimization of 
train speed profiles. Wong and Ho [4] worked on the 
optimization of train running trajectory by the determi-
nation of multiple coasting points on an inter-station 
run. Analytical methods of solving the optimization 
problems were not accurate while genetic algorithm 
based techniques were not fast enough. R´emy Chevrier 
[1] used evolutionary algorithm to optimize the prob-
lem formulated using two objectives, energy and time. 
The distance to ride between consecutive stations is 
partitioned into sub-sections. The evolutionary algo-
rithm is used to calculate three speed values within the 
discrete sections.  

TRAIN KINEMATICS MODEL 

The force components that act on the train include 
weight of the train, Tractive Effort (TE), train re-
sistance, brake effort and adhesion [5, 6]. Let P be the 
maximum power developed by a motor in watts, n the 
total number of electric motors, η the transmission effi-
ciency, M effective mass in kg, v speed of train in m/s, 
µ the adhesion coefficient, W the mass of the train in 
tons, then [4, 7, 8, 9 and 14]: 
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(1) 

 

(2) 

(3) 

The most common train resistance calculation equa-
tion is formulated by the Canadian National Railway 
and is expressed as [10]: 

 

(4) 

 (5) 

Where rr is the rolling re-
sistance of the vehicle in lb/ton, n is number of ax-
les, W is the total weight of train in tons, V is the 
velocity in mph, A is the cross-sectional area of the 
train in square feet, while C=2.0 is the usual value 
for modern lightweight Passenger Equipment. It was 
found out that the resistance due to horizontal curva-
ture was 0.8 lb/ton per track curvature (in degrees). 
The resistance due to vertical track gradient is given 
in equation 6 while Equation 7 shows the equation 
for the resistance component associated with hori-
zontal track curvature. The vertical gradient angle is 
represented by θ. The total resistance as shown in 
equation 8 is the sum of all resistive components. 
Equation 9 represents the brake effort needed to be 
applied to bring the train to a stop [11]. 
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(7) 
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OPTIMIZATION PROCESS 

a) Problem Formulation 
  The distance to travel is discretized into 20 elements. 
  Let 

 
 (10) 

 
  

(11) 
Figure 1.Distance 

discretization with 20 elements 

Here, j represents the discrete distance element; i rep-
resents iteration points within a discrete distance ele-
ment; while Nj is the maximum number of iterations 
within a discrete distance element. Let the total num-
ber of iterations in the last discrete element N20=k, the 
optimization problem formulation can be expressed as: 

                                      

(12) 

Subject to: 

Speed restrictions 

    (13) 

Bounda- ry conditions  

   (14) 
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Non zero intermediate speed 
   

(16) 

Mini-
mum 
aver-

age acceleration 

                                                                     

(17) 
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Minimum average deceleration 

  
  (18) 

 

Jerk limit 

 
(19) 

 

Where, 

(20) 

 
   

(21) 

   

(22) 

b) Algorithms for the Speed Regimes 

The motoring phase requires the application of maxi-
mum TE; while the Coasting and Braking phases have 
no need for the application of TE [1, 10]. Cruising phase 
requires the application of some amount of TE to make 
the train move at constant speed. If the train resistance is 
positive, the TE should be equal to the resistance. Other-
wise, if the resistance is negative, the applied TE must be 
zero and braking force should be applied to compensate 
for the resistance value. 

The following algorithms are used for the determination 
of cost for each type of driving regime in a discrete dis-
tance element. The output from each is used in the deter-
mination of the total cost using the flowchart in Figure 2. 
The tractive effort (T), Resistance (R) and Brake force 
(B) are calculated by using equations 1, 8 and 9, respec-
tively. 

Algorithm 1: Motor 

Input: s0: initial position of train, v0: initial speed, t0: 
initial time, e0: initial energy, L: section length, M: mass 
of train, T: tractive effort, R: resistance  

Output: Delta_e: energy expense, Delta_t: time trav-
elled  
 
 
 

 

 

 

 

 

  

  

   

   

   

   

   

   

Algorithm 2: Brake 

Input: s0: initial position of train, v0: initial speed, t0: 
initial time, e0: initial energy, L: section length, M: 
mass of train, T: tractive effort, R: resistance  

Output: Delta_e: energy expense, Delta_t: time 
travelled  
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Algorithm 3: Cruise 

Input: s0: initial position of train, v0: initial speed, t0: 
initial time, e0: initial energy, L: section length, M: 
mass of train, T: tractive effort, R: resistance  

Output: Delta_e: energy expense, Delta_t: time trav-
elled  

 

 

 

  

 

 

 

 

 

 

 

 

Algorithm 4: Coast 

Input: s0: initial position of train, v0: initial speed, t0: 
initial time, e0: initial energy, L: section length, M: 
mass of train, T: tractive effort, R: resistance  

Output: Delta_e: energy expense, Delta_t: time trav-
elled  
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Figure 2. Flowchart of Speed profile construction and cost calculation 

c)     Vector of Riding Modes as the Decision 
Variable 

The decision variable is made to be a vector of rid-
ing modes. Each riding mode is represented by an 
integer value ranging from 1 to 4, representing mo-
toring, cruising, coasting and braking, respectively. 
Since a 20 section discrete space is used, the deci-
sion vector is a 20 element vector.  

It is seen that this method of optimization of train speed 
profile is faster to converge as compared to the case 
where a vector of speed values is taken as the decision 
variable. 

 It is assumed that the starting mode of every journey 
should be motoring, while the final mode should be 
braking, to ensure that the train stops at the next station. 
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Non dominated Sorting Genetic Algorithm II 
(NSGA II) is used to arrive at well distributed set 
of riding modes as Pareto-optimal solutions. Con-
straints are handled implicitly within the calcula-
tion of costs and by using the smoothing proce-
dure. 

The algorithm is defined by the flowchart in Fig­
ure 3.  A random population is initially generated. 
The population is sorted using the so- called fast-
non-dominated-sort. To this purpose, for each vec-
tor of riding modes i, an integer value holding the 
number of solutions that dominate i is created 
(domination count) and a set with the individuals 
dominated by the individual i is calculated. With 
those parameters, each individual is assigned a 
rank representing the front to which it belongs. 
The Pareto front has rank 0. Those individuals 
dominated only by individuals from the Pareto 
front have rank 1. The best solutions have always 
rank 0 with this approach, so elitism is naturally 
fitted within the sort. 

The diversity of the population is preserved by a 
parameter less crowded-comparison approach. The 
density of individuals surrounding a particular in-
dividual i is calculated as the perimeter of the hy-
percube formed by taking the nearest individuals 
to i as the hypercube's vertices. This quantity is 
called the crowding distance. An individual is con-
sidered to be better than another if and only if it 
has a lower rank or, having the same rank, if it has 
a higher crowding distance. 

The best N (population) chromosomes are picked 
from the current population and put into a mating 
pool where tournament selection, cross over and 
mating is done. The mating pool and current popu-
lation is combined. The resulting set is sorted, and 
the best N chromosomes make it into the new pop-
ulation. This procedure is repeated until a maxi-
mum number of generations have been reached 
[12]. 

d)    Smoothing of Speed Profiles 

The output of the optimization process is generally 
a speed profile that can have multiple switching 
points that are difficult to use in reality. Therefore, 
some techniques are used to make some changes 
on the trajectories so that applicable profiles can 
be generated without considerable variation on the 
cost metrics. 

The coasting phase is usually a very small positive 
or negative acceleration. Hence, coasting regimes 
with small acceleration values can be approximat-
ed by a cruising regime. The cruising regime can 
be approximated by continuous acceleration and 
coasting regimes. Finally, shifting of riding modes 
can be applied without resulting in considerable 
deviation in cost values.  

Tamirat Gebremariam 

RESULTS 

Some of the most important information about the Light 
Rail Vehicles (LRV) was collected. There are 3 cars per 
train with two power bogies. There are two axles per bo-
gie which contain two electric motors. Power per electric 

motor is 130 KW. 

Total laden mass of train is estimated to be 63.02 ton 
while mass per axle is 10.05 ton. The maximum speed of 
the train on a level track is 70 kph while level crossing 
speed limit is 50 kph. 

The maximum jerk value is 1m/s3. The maximum average 
acceleration value is limited to be 0.5 m/s2 for 0<v<40 
kph, 1 m/s2 for 0<=v<=70 m/s2 while the minimum aver-
age deceleration is limited to be 1m/s2. Average dwelling 
time is 30 sec. 

The maximum tractive effort of the train is calculated with 
respect to the speed of the train using equation 1. 

Figure 3. Flowchart of Non-dominated Sorting Genetic    
Algorithm II 
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Table 1 
shows the location of railway stations on the line. 
The track geometry from Ayat station to Megen-
agna station is made up of various gradients and 
curves. These geometric values, together with the 
speed and other train parameters are used in the 
calculation of train resistance as per equations 4-
8.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig-
ure 
4: 

a) Speed profilea) Most energy efficient EW1-
EW2 movement.b) Fastest EW1-EW2 move-

ment. 

CONCLUSIONS 
 

The fastest riding times for the stations from EW1 
to EW 9 are respectively, 108, 100, 79, 84, 81, 96, 
105, and 75 seconds. Whereas the riding times for 
the sections from EW 9 to EW 1 are found to be 
71, 99, 92, 114, 84, 70, 95 and 118 seconds, re-
spectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig-
ure 
5. 

a) EW4-EW3 movement (the fastest of all)  b) EW4
-EW3 movement (the most energy-saving) 

 

Therefore, the mean fastest riding time between sta-
tions is 92 seconds. Considering a dwelling time of 
30 seconds, total average riding time=122 seconds. 
By taking the operation of 41 trains on both lines in 
both directions, we will have a total of 21*4=84 sec-
tions. Therefore, headway between trains by using 
the fastest operation will be (84/41)*122 =250 se-
conds. This means that there is an improvement over 
the planned headway of 6 minutes. Percentage head-
way reduction = 30%. 
 

Section Location 1 (m) Location 2(m) Level Crossing Range 
EW1-EW2 21050 22300 21940-21960 
EW2-EW3 19940 21050 20067-20216 
EW3-EW4 19080 19940              - 
EW4-EW5 18220 19080 18990-19010 
EW5-EW6 17500 18220              - 
EW6-EW7 16520 17500 17142-17287 
EW7-EW8 15440 16520 15790-15810 
EW8-EW9 14600 15440              - 

Table 1. Track information of the Ayat-Megenagna railway line 
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Furthermore, by choosing the fastest trajectories 
over the slowest ones, it is possible to save up to 
38.18% of energy, while 23.98% of reduction in 
riding time can be achieved by preferring the fast-
est profiles over the slowest ones. 

RECOMMENDATIONS 

The optimization techniques used in this paper can 
be applied for the optimal operation of trains on 
AALRT. In that case it can be possible to improve 
the capacity of the line as well as minimize the 
total energy consumption by the operation of 
trains. 

The algorithms developed in this paper can also be 
used in other types of railway systems such as 
metro and Heavy Rail Transit (HRT). Further re-
search can also be done to investigate the applica-
bility of such techniques in Automatic Train Con-
trol (ATC) systems. 

The speed profiles so generated by the optimiza-
tion process can be used in the calculation of pow-
er supply demand and the specification of electri-
cal equipment. 
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