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                                  Abstract 

The objective of this study is to model a 

control chart pattern recognition method for 

multivariate auto-correlated processes. The 

model development process uses a multi-layer 

feed forward Artificial Neural Network (ANN) 

architecture governed by back-propagation 

learning rule to identify and classify a set of 

sub-classes of abnormal patterns. Network 

training was conducted using simulated 

Control Chart Patterns (CCP) with Monte-

Carlo simulation technique. A total of 3500 

CCP examples (500 CCPs for each type of 

pattern) were generated and all CCPs data are 

normalized (standardized) before being 

employed as input to the neural network for 

better performance of the network. With this 

the study proposes a model for control chart 

pattern recognition of multivariate auto-

correlated statistical process control to identify 

and classify seven types of typical control 

charts patterns: i.e. normal, downward shift, 

upward shift, decreasing trend, increasing 

trend, cyclic, and systematic patterns.  The 

proposed framework is effective in control 

chart pattern recognition of multivariate auto-

correlated processes with 94.9% recognition 

accuracy. Furthermore, the Control Chart 

Pattern Recognition (CCPR) model is 

validated by the data which is obtained from 

in-control process of a factory producing 

Alcohol and Liquor which demonstrates the 

accuracy of the CCPR. Pattern recognition for 

multivariate processes is common in the 

literature. But, this study proposed a new 

model for multivariate auto-correlated 

processes.  
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                        Introduction  

Control charts developed by Shewhart (1924) 

have been widely used in the quality control of 

manufacturing processes. They are still one of 

the most important tools of statistical process 

control. They are also useful in determining 

whether a process is behaving as intended or if 

there are some unnatural causes of variation. A 

process is out of control, if a point falls outside 

the control limits, or a series of points exhibit 

an abnormal pattern. These abnormal patterns 

provide important information regarding 

opportunities for process improvement. The 

presence of abnormal patterns indicates that a 

process is affected by assignable causes, and 

corrective actions should be taken (El-Midany 

et al., 2009). Therefore; identifying or 

analyzing abnormal patterns and diagnose the 

causes of out of control conditions are an 

important aspect of statistical process control. 

However, most of the studies in the pattern 

recognition of control charts emphasized on 

the pattern recognition of a single process 

variables or individual process variables (Chen 

& Zhou, 2009; Guh & Hsieh, 1999). 

In many quality control settings, the 

manufacturing process may have two or more 

quality characteristics or quality variables to 

be controlled and monitored. The 

conventional practice in monitoring and 

controlling process variables has been to 

maintain a separate chart for each quality 

characteristic.  
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Individual process variable monitoring would 

result in some false out-of-control alarms 

when the characteristics are highly correlated, 

especially when one variable is dependent on 

the other and the correlations between 

variables result in degrading the statistical 

performance of the charts (Montgomery, 

2009). 

Multivariate Statistical Process Control 

(MSPC) is a set of techniques to deal with 

correlated variables. Commonly used 

techniques are Hotelling‟s T
2
 chart, 

Multivariate Exponential Weighted Moving 

Average (EWMA) and Multivariate 

Cumulative Sum (MCUSUM) charts 

(Montogomery, 2009). Among these 

methods, Hotelling‟s T
2
 chart is extensively 

applied in practice. However, dealing with 

multivariate data under the influence of auto-

correlation requires additional considerations 

or modifications in designing the control 

schemes so as to ensure the control schemes 

are valid and robust; otherwise false alarm 

rate in the controlling process will appear 

(Hwarng & Wang, 2010). In the 

implementation of MSPC, control chart 

pattern recognition is the most important step 

in the process.  

Different rules and methods have been 

developed to detect abnormal control chart 

patterns –runs test, zone test, geometric 

moving average test, and recently artificial 

neural network. The first three rules or tests 

indicate the presences of unnatural pattern in 

the process, but do not explicitly show the 

type of patterns (Hachicha & Ghorbel, 2012). 

Recent development in the field is the 

application of artificial neural network which 

has a capability to learn control chart patterns 

from a noisy data and recall during the real 

application of pattern recognition processes. 

Therefore, various artificial intelligence 

approaches have been applied into SPC. 

Neural networks (NNs) have an excellent 

noise tolerance in real time, requiring no 

hypothesis on statistical distribution of 

monitored measurements (Yu & Xi, 2009).  

In a normally distributed univariate process 

data control chart pattern recognition using 

artificial neural network has been widely 

applied (Guh & Hsieh, 1999; Cox, 2005; 

Zobel, 2004; Addeh et al., 2011; Wang et al., 

2008; Hwarng & Wang, 2010; and Salehi et 

al., 2012).  In spite of its utility, research in 

the field of control chart pattern recognition 

of multivariate processes is limited. Wang 

and Chen (2002) proposed a neural fuzzy 

model for detecting mean shifts and 

classifying their magnitude in multivariate 

process. Salehi et al, (2011) proposed a 

hybrid learning-based model for on-line 

analysis of out-of-control signals in 

multivariate manufacturing processes. 

Zorriassatine, (2003) has developed a model 

for identification of abnormalities caused by 

mean shifts in bivariate process. El-Midany et 

al., (2010) proposed a framework to 

recognize a set of sub- classes of multivariate 

abnormal pattern (only for the pattern types 

of shift and trend), identify the responsible 

variables and classify the abnormal pattern 

parameters.  

Their model used T
2
 statistics (values) of the 

process variables as an input to their model 

structure of ANNs to recognize selected sub-

classes of multivariate abnormal patterns in 

the process data. A survey on control chart 

pattern recognition by Hachicha & Ghorbel 

(2012), however, shows that there is no 

research made on multivariate auto-correlated 

process for detecting the types of abnormal 

patterns and pinpointing the variable or group 

of variables source that cause the out-of-

control signal in more realistic processes. The 

purpose of this paper is to develop a control 

chart pattern recognizer model using an 

Artificial Neural Network for manufacturing 

industries with multivariate auto-correlated 

processes.  

Research Methodology  

In order to achieve the objective of this 

research, first, a control chart pattern 

recognition model using an artificial neural 

network was designed; second, the seven 

patterns were defined and the network has 

been trained and tested with simulated data; 

and third, the control pattern recognition 

model has been validated by taking a real data 

from a processing industry.  A software 

package MATLAB

 R2013a was used for 

designing and training the neural network, and 

also for generating MATLAB code of CCPR 
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procedure and running the application to 

evaluate process data. Monte-Carlo simulation 

technique was used for generation of example 

control chart patterns, and for training and 

testing the neural network.  

During the pattern generation, a programming 

code was coded on python programming file, 

and „Enthought Canopy
‟

 was used to run the 

program file. In addition, the pattern 

generation was supported by a „Spread sheet‟.  

Minitab 17


 was used to standardize the 

simulated training data set and real process 

data which helps the neural network for better 

training performance, and also statistics like 

distribution estimation and auto-correlation 

coefficient determination of the collected 

process data has been done through Minitab.  

Furthermore, Qualstat


 software is applied 

for plotting multivariate T
2
 control chart of 

the process data to ensure that the process is 

in control, which is used for comparison 

during the validation process of the result of 

the proposed CCPR model against the in-

control process data. 

Artificial Neural Network Modeling

The neural networks proposed for this research 

are multilayer feed forward networks governed 

by back-propagation learning algorithm. It 

consists of three layers comprising input, 

hidden, and output layers. The number of input 

and output nodes was designated by the total 

number of inputs required to successfully 

represent a specified pattern and the number of 

pattern classes to be identified 

respectively.The input layer comprises 30 

neurons which are used to put in 30 data (one 

control chart pattern example),  these are taken 

from T
2 

values of 30 consecutive observations 

(i.e. window size) in a control chart to the 

network. The seven (7) neurons in the output 

layer yield the type of the input pattern vector. 

The hidden layer consists of 35 neurons.  

Although the more hidden neurons provide the 

better learning results, previous studies show 

that increasing hidden neurons could not 

improve the learning results, but will increase 

the total learning time. In this research, the 

hidden neuron was determined through trial 

and error; therefore, once the number of 

hidden neurons exceeds 35, it is not helpful for 

learning results. The input layer, hidden layer, 

and output layers are fully connected, and the 

connection weights are determined through the 

learning process. The network architecture 

adopted in this study is demonstrated in Figure 

1. Additional parameters and features of the 

neural network design are summarized below: 

Let                            be an  arbitrary  

input  sample  vector,                            
be  the  actual output  vector,      
                      be  the  desired  output  

vector,                                     

be  the  connection  weight  values  between  

the input  and  hidden  layers,                

                    be  the  values between  

the  hidden  layer  and  the  output  layer,  

                    be  the output  threshold  

of  each  neuron  in  the  hidden  layer. 

 

Activation or transfer function:  Sigmoid 

transfer function is employed for both hidden 

and output layers. This function is frequently 

used in neural network applications primarily 

due to its function features, its continuous 

derivatives, and its insensitivity to noise 

(Hwarng and Hubele, 1993 and Perry et al., 

2001).  

 

This function is mathematically expressed as: 

       
 

      
         , where α is 

the learning rate (α=0.01) 
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Error function: The mean square error 

(MSE) is used. 

 

Initial connection weight and Learning 

rate: Initial connections weights are set in the 

range [-1, 1]. The learning rate α is the most 

important parameter. It scales the magnitude 

of weight adjustments and, thus can 

dramatically affect the rate of learning. In this 

study it is set at 0.01. 

 

Training algorithm: When training large 

networks, and when training pattern 

recognition networks, scaled conjugated 

gradient learning algorithm is preferred since 

memory requirements are relatively small, and 

yet much faster than standard gradient descent 

algorithms. As an illustration of how the 

training works, consider the simplest 

optimization algorithm gradient descent. It 

updates the network weights and biases in the 

direction in which the performance function 

decreases most rapidly, the negative of the 

gradient. One iteration of this algorithm can be 

written as:    
        

  α    , when output 

is increased from the target value and    
    

    
  α     when the output is decreased 

from the target value; otherwise    
        

  . 

Where,    
    is the new adjusted weight,     

  

is the old weight,       is the input value, and  

    is the learning rate. This equation is 

iterated until the network converges. 

 

Learning termination conditions:  
The training of the Backward Propagation 

Network (BPN) is terminated when they reach 

a predetermined learning number or if the 

error does not improve in consecutive 6 

epochs. In this study, the maximum learning 

number of BPN is set to be 1000. 

Pattern Generation 

In the real application of the result of this 

study the T
2 

value obtained from the process 

data will be used as an input to the network in 

order to identify and/or classify abnormal 

patterns in the process. Therefore, the data 

generated has a univariate data value in which 

different data noises that can exhibit various 

abnormal patterns is introduced in order to 

imitate the real time patterns of process data. 

This simulation of various types of control 

chart patterns is useful for training the neural 

network so that the neural network can detect 

and/or classify patterns during the real time 

application of the neural network.   

In generating such complex and large data, 

Monte-Carlo simulation technique is an 

efficient method. Pattern generation in several 

previous works of neural network approaches 

to control chart pattern recognition tasks has 

been successfully accomplished by the process 

mean and two noise components (eq. (1)). 

 

                                      (5) 

Where,      is the observation at time t,     

represent a known process mean of the data 

series when the process is in control,      is a 

random normal noise or variation (it is taken 

as being a random number in the range 

between -3 and 3, and    is a special 

disturbance due to some assignable cause.  

The following expressions were used to 

generate data sets for the special disturbance 

due to some assignable causes of the different 

patterns of a control chart. Together with the 

normal pattern, this study addresses seven 

types of control chart patterns including 

normal, upward shift, downward shift, 

increasing trend, decreasing trend, cycle, and 

systematic pattern.  

All the detail consideration for the generation 

of    of all the abnormal control chart patterns 

are expressed below: Notably, a normal 

pattern is one in which only common cause 

variations (background noise) are present in 

the control chart so that the process is 

considered to be in control. 

Normal pattern   

    ; 

Upward Shift Pattern 

      eq.                                         

(6) 

Where,   represents parameter to determine 

the position of shifting; 

  {
                
               

 is a shift      

magnitude  

(1.0 ≤   ≤3.0).  
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Down ward Shift Pattern 

      the same as the upward shift, 

however the shift magnitude has negative 

value. 

  {
                
               

 is a shift 

magnitude  

(-3.0 ≤   ≤-1.0). 

 

Table1 : Parameters of Generated Process Data 

 

Increasing trend pattern 

                                                   (7) 

Where,   represents trend slope taken 

as being in the range and   is time of 

observation. 

Decreasing trend pattern  

       
Here in decreasing trend,     the trend slope 

has negative value (–0.30 ≤   ≤–0.10).  

Cyclic pattern 

         
   

 
                                   

(8) 

Where, k represents cycle amplitude taken as 

being in the range (1.0 ≤  ≤3.0);  

 is the cycle period in this research it is fixed 

at     ; and  is the time of observation. 

 

 Systematic pattern:   

          eq.                           (9) 

Where,  is the magnitude of the systematic 

pattern it is taken as being (1.0 ≤   ≤3.0), 

determining the fluctuations above or below 

the process mean and  is the time of 

observation.  

 

To simulate the control chart patterns using 

Monte-Carlo simulation technique, first, 

control chart pattern generation program were 

coded on python program. Enthought 

Canopy Software was used to run the python 

code. The data generated by the python 

program was used for training and the 

performance of the neural network could not 

be improved above 85% of successful 

classification of the testing sets. Therefore, in 

order to improve the network performance 

additional new data were generated using 

Microsoft Excel

 (Spread Sheet).  

 

A special cause disturbance for both upward 

and downward shift has been introduced at the 

middle of the recognition window. The 

summary of pattern parameters used for data 

generation is described in Table 1. 

 

 

Network Training 
Once the network has been designed, the 

network is trained (by optimizing the error 

function). This process determines the best set 

of weights and biases for training data set. In 

the training process of the network module, a 

total number of 3500 control chart training 

examples were used. Each types of pattern 

consists of an equal number of training 

examples, 500 control chart pattern examples 

for each type of abnormal patterns including a 

normal pattern. All the generated data are 

standardized (scaled) for better performance of 

the network training. During the training of the 

ANN CPR model the following methodology 

was implemented. 

1) Data generated using Monte-Carlo 

simulation technique. 2) The generated data 

will be standardized for better performance of 

the neural network.3) Divide samples into 

training set (70%), validation set (15%) & 

testing set (15%) in random fashion. 4) 

Conduct the training on the designed ANN. 5) 

Validate the training using validation data sets, 

If the intended training goal is not met, go the 

next step, or else go back to train by adjusting 

the connection weights (an epoch). 6) During 

the training when the network performance 

Types of 

Control 

Chart 

Pattern 

Parameters Descriptions of 

patterns 

Qu

anti

ty 

gen

erat

ed 

Normal  In control process data 

μ=0 & σ=1 
500 

Downwa

rd shift 

    (-3.0  

≤   ≤ -1.0) 

Shift magnitude from 

process mean 
500 

Upward 

shift 

   (1.0 

≤   ≤ 3.0) 

Shift magnitude from 

process mean 
500 

Decreasi

ng trend 

   (–0.30 

≤   ≤ –

0.10) 

Slope  

500 

Increasi

ng trend 

   (0.10 ≤ 

  ≤0.30) 

Slope  
500 

Cyclic    (1.0 

≤  ≤3.0), 

     

Amplitude, Period 

500 

Systema

tic 

   (1.0 ≤ 

  ≤3.0) 

Magnitude of process 

fluctuation 
500 
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goal is met, test the trained network using 

testing data set. If the result is acceptable, 

finalize the training and trained ANN is ready 

for use; otherwise go back to modify the 

network or increase and/or change the training 

data set. In this training, the output calculation, 

back-propagation and updates of weight is 

conducted. The initial connection weights, the 

learning rate, and momentum factor of the 

back-propagation network are set to the 

MATLAB‟s standard configuration of the 

training rules. All the training examples were 

presented to the neural network in a random 

fashion. The desired outputs for the network 

are defined by the following categories as 

shown in Table 2. Table 3 summarizes the 

classification results of the proposed control 

chart pattern recognition model on the testing 

example set using a confusion matrix that 

shows the distribution of the misclassification. 

Here, a type I error occurs when a normal 

testing control chart pattern example is 

wrongly predicted (classified) as an abnormal 

control chart pattern by the proposed control 

chart pattern recognition model. A type II 

error occurs when an anormal testing control 

chart pattern example is wbrongly classified as 

a normal control chart pattern by the proposed 

model. For instance, for the normal pattern, 

the type I error of the proposed model was 

10.4%, while the type II errors were 2.7%, 

2.7%, 0.0%, 0.0%, 0.0%, and 0.0% for pattern 

types of downward shift, upward shift, 

decreasing trend, increasing trend, cycle, and 

systematic respectively. Most of the 

misclassification was observed to happen in 

the recognition of downward shift, upward 

shift, and increasing and decreasing trend 

patterns. With the presence of downward shift 

patterns, most of the misclassified patterns are 

classified as decreasing trend and less 

frequently as a normal pattern. In the presence 

of upward shift patterns, most 

misclassifications were classified as increasing 

trends and less frequently as normal patterns. 

In increasing trend patterns all of 

misclassifications were upward shift patterns, 

whereas in decreasing trend all 

misclassifications were a downward shift 

pattern. The misclassification between shift 

and trend patterns indicates that patterns with 

small shift magnitudes resemble with trend 

patterns and vice versa. Both cyclic and 

systematic patterns were not misclassified. 

The overall testing result (94.1%) indicates 

that the training was successful and the neural 

network performance is accurate. 

Model validation 

 Multivariate statistical process control using 

residual hotelling T
2
 control chart is integrated 

with the proposed control chart pattern 

recognition model to make the process 

monitoring and controlling activity effective. 

Data will be taken from the online 

manufacturing process and T
2 

control chart 

plotted. If the process is in-control go to the 

next process monitoring. If the process is out 

of control the T
2 

values of the observed data 

standardized and input to CCPR model to 

determine an abnormal pattern. If there is an 

abnormal pattern, with good process 

knowledge the assignable cause will be 

diagnosed and online action will be taken to 

the manufacturing process. If the result from 

the CCPR is normal pattern, the process is out 

of control because of an outlier/s. Therefore, 

the possible assignable causes will be 

diagnosed with good process knowledge; 

otherwise further action for diagnosing the 

assignable cause will be conducted by using 

MYT decomposition method or principal 

component analysis. Validation of the control 

chart pattern recognition model based on data 

collected form a company processing Alcohol 

and Liquor products. Characteristics which are 

serially dependent determine the successful 

outputs of the manufacturing process. The 

production process of alcoholic liquor involves 

several sequenced processes starting from 

molasses several process variables and quality 

syrup preparation up to liquor packaging and 

distributing. Previous studies conducted in 

process monitoring and controlling indicates 

that there are 20 critical process variables and 

quality characteristics in the production 

process (Lemma, 2014). These process 

variables and quality characteristics are 

described in Table 4. These process variables 

(multivariate auto-correlated process 

variables) are serially dependent and exhibit 

correlation either strongly or moderately 

among each other. For the purpose of this 

research, 93 sample data were collected from 

each type of process variables and quality 

characteristics as seen in Table 5. These data 

were processed and presented to the control 

chart pattern recognizer model to identify the 
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types of patterns exhibited from this collected 

data. At the early stage of the process 

monitoring and controlling, the collected auto-

correlated data treated for removal of auto-

correlation using time series predicting model 

and then using this predicted data T
2
 control 

chart is developed. 
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Table 2: Representation of Output Categories 

Control chart pattern 

type Outputs category 

1 2 3 4 5 6 7 

Normal 1 0 0 0 0 0 0 

Downward shift 0 1 0 0 0 0 0 

Upward shift 0 0 1 0 0 0 0 

Decreasing trend 0 0 0 1 0 0 0 

Increasing trend 0 0 0 0 1 0 0 

Cyclic 0 0 0 0 0 1 0 

Systematic 0 0 0 0 0 0 1 
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Table 3: Matrix Showing the Classification of the Testing 

  Predicted pattern 
 Types of 

patterns 

Normal 
 

Downward 

shift 

Upward 

shift 

Decreasing 

trend 

Increasing 

Trend 
Cyclic Systematic 

T
ru

e 
P

at
te

rn
s 

Normal 
89.6% 5.97% 2.98% 0 1.49% 0 0 

Downward 

shift 
2.7% 90.5% 0 6.76% 0 0 0 

Upward shift 
2.7% 0 91.9% 0 5.4% 0 0 

Decreasing 

trend 
0 6.4% 0 93.6% 0 0 0 

Increasing 

Trend 
0 0 7.14% 0 92.86% 0 0 

Cyclic 0 0 0 0 0 100% 0 

Systematic 0 0 0 0 0 0 100% 

 

Table 4: Critical Process Variables and Quality Characteristics 

Process/stage Variable Variables 

Representation 

1.Fermentation 

process 

Fermented wine Brix FWB 

Fermented wine temperature FWT 

Fermented wine GL FWGL 

2. Distillation 

process 

Fermented wine feed rate FWFR 

Rectification column temperature RCLT 

Pre-heater column temperature PHCLT 

Fusel oil column temperature FOCLT 

Filter column temperature FCLT 

Rectification condenser temperature RCNT 

Fusel oil condenser temperature FOCNT 

Acidity condenser temperature ACNT 

Distillation condenser temperature DCNT 

Filter condenser temperature FCNT 

Rectification column reflux rate RCLR 

Fusel oil column reflux rate FOCLR 

Filter column reflux rate FCLR 

3. Pure alcohol 

product 

Pure alcohol extraction rate PAE 

Pure alcohol grade PAG 

Permenganent time PT 

4.Liquor product Liquor Grade LG 
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                              Table 5: Collected Data for 20 Critical Variables of NALF 

 

Table 6: T
2
 Values of the Collected Process Data 

 Observation No. 
T

2 
Values 

(data1) 

Observation 

No. 

T
2 
Values 

(data2) 

Observation 

No. 

T
2 
Values 

(data3) 

C
o

n
tr

o
l 

c
h

a
rt

  
P

a
tt

er
n

 R
e
co

g
n

it
io

n
 W

in
d

o
w

 

1 20.81035 31 12.81919 55 21.30466 

2 21.80719 32 11.43592 56 25.91325 

3 26.90726 33 12.42666 57 28.7044 

4 19.40346 34 12.49176 58 22.19562 

5 16.33248 35 10.13335 59 13.31291 

6 16.36439 36 9.989161 60 7.240752 

7 37.21674 37 14.63964 61 11.52447 

8 33.8086 38 15.45348 62 20.90234 

9 32.18515 39 15.52241 63 7.983093 

10 15.16282 40 23.63752 64 22.81666 

11 22.83228 41 18.64971 65 27.13319 

12 17.99016 42 17.27818 66 12.43383 

13 22.50832 43 26.66137 67 14.50844 

14 21.21474 44 28.48098 68 18.51175 

15 31.52029 45 18.72264 69 11.88646 

16 29.44914 46 23.96568 70 12.32784 

17 37.62803 47 13.50697 71 16.71864 

18 26.15612 48 16.74802 72 12.77594 

19 20.0743 49 20.04498 73 20.10003 

20 12.48489 50 17.62342 74 22.74139 

21 25.66959 51 14.25 75 26.10231 

22 18.47132 52 23.67614 76 14.4545 

23 19.55558 53 18.94915 77 17.72669 

24 34.93054 54 15.65261 78 9.51546 

25 25.52647 55 21.30466 79 26.9718 

26 18.4959 56 25.91325 80 10.80547 

27 26.8129 57 28.7044 81 20.8425 

28 12.57247 58 22.19562 82 9.103688 

29 18.4959 59 13.31291 83 15.74605 

30 26.8129 60 7.240752 84 11.73663 

 

From this data, the T
2 

values are used as an 

input to the neural network model developed, 

to identify and classify the control chart 

patterns exhibited by the collected process 

data. The T
2
 values of the collected process 

data are listed in Table 6. To apply the 

Obsv 

No. 

FWB FWT FWGL FWFR . . . FCLR PAE PAG PT LG 

1 7.3 31.8 6.0 3200.0 . . . 300.0 237.4 96.4 2.5 39.6 

2 7.3 30.5 5.5 3200.0 . . . 300.0 237.4 96.4 2.5 39.9 

3 7.3 31.5 7.0 3200.0 . . . 280.0 240.0 96.4 2.5 39.8 

4 7.7 31.0 6.8 3200.0 . . . 370.0 233.2 96.4 2.5 40.2 

. . . . . . . . . . . . . 

. . . . . . . . . . . . . 

. . . . . . . . . . . . . 

90 8.9 32.5 7.5 3200.0 . . . 420.0 230.0 96.5 2.0 40.2 

91 8.2 31.0 7.5 3200.0 . . . 440.0 220.0 96.5 2.0 39.8 

92 9.1 33.5 7.5 3200.0 . . . 440.0 220.0 96.5 2.0 39.9 

93 8.2 33.0 7.5 3200.0 . . . 440.0 230.0 95.0 2.0 40.4 
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proposed model, the T
2
 values of the collected 

data are calculated (Table 2.), that is obtained 

from hotelling‟s T
2
 control chart of a 

controlled process was taken and standardized 

to values (μ=0, σ=1), and presented to the 

neural network control chart pattern 

recognizer. The trained network starts to 

recognize the type of pattern exhibited by the 

data presented based on the window size of 30 

consecutive observations and the output of the 

recognition is presented as follows:  

The size of recognition window (window 

length) can significantly affect the 

performance of the control chart pattern 

recognizer (Lin et al., 2011 and Guh & Shiue, 

2008). The window length is defined as the 

number of sample points to be considered at a 

time in detecting an unnatural pattern. Since 

the number of network inputs affects the size 

of the network, emphasis should be given to 

the selection and representation of the data in 

the training set. For quick computation in 

process control, lesser window size is 

efficient; however, as previous studies 

indicated, too small window size detects 

control charts quickly that means it has a 

shorter Average Run Length (ARL). This 

situation might generate higher Type I error 

due to insufficient information to represent the 

features of data. On the other hand, if the 

window size is too large, it might generate 

higher Type II error and may consume 

significant computation time. In this study, a 

window size of 30 were selected through trial 

and error in order to obtain good 

generalization performance of the neural 

network. The T
2
 control chart which shows the 

in control process generated by Qualstat 

software application was presented in Figure 

5. As it is seen in the control chart, all the data 

points are distributed below the upper control 

limit of the process which shows the process 

being in control.

 

 

 

 

 Figure 5 : T
2
 Control Chart for Observations 
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As any window of data is applied to the trained 

network, one of the predefined pattern classes 

(normal, downward shift, upward shift, 

decreasing trend, increasing trend, cyclic, and 

systematic pattern) is determined.  In this aspect 

when the given observation of the above 

window sizes of the standardized T
2 

values for 

observation No. 1-30 (data1), 31-60 (data2), and 

55-84 (data 3) are applied in a separate window 

to the proposed CCPR, the following output 

were identified: The control chart pattern 

recognition model classifies all the three control 

chart patterns presented from the in control 

process as a normal pattern. Therefore, this 

result shows that the control chart pattern 

recognition model performs very accurately by 

generating the same results with the predefined 

state of the process. 

                        CONCLUSIONS 
 

The training result shows that, the neural 

network has a very good performance in 

recognition of control chart patterns with overall 

recognition accuracy of 94.9%. In the network 

testing results, it was observed that most of the 

misclassification to happen in the recognition of 

downward shift, upward shift, and increasing 

and decreasing trend patterns. With the presence 

of downward shift patterns, most of the 

misclassified patterns are classified as 

decreasing trend and less frequently as a normal 

pattern. In the presence of upward shift patterns, 

most misclassifications were classified as 

increasing trends and less frequently as normal 

patterns. In increasing trend patterns all of 

misclassifications were upward shift patterns, 

whereas in decreasing trend all 

misclassifications were a downward shift 

pattern. The misclassification between shift and 

trend patterns indicates that patterns with small 

shift magnitudes resembles with trend patterns 

and vice versa. It is also found that both cyclic 

and systematic patterns were not misclassified 

(recognized with 100% accuracy).  From the 

presented testing data though there are both type 

I type II errors, the overall testing result (94.1%) 

indicates that the training was successful and the 

neural network performance is accurate. The 

proposed methodology was evaluated using the 

controlled process data from a company process 

and accurate results were obtained as the control 

chart pattern recognition model signals an output 

of a normal control chart pattern. This result 

shows that the integration of control chart 

pattern recognition model and multivariate 

statistical process control technique can give a 

better performance of process monitoring and 

controlling activity.Hence, the proposed model 

can be adapted to various process settings of 

manufacturing industries. In the adoption of the 

model proposed by this study to reduce the 

misclassification rate among different classes of 

control chart patterns, one should increase the 

number of training examples with those patterns 

that exhibit higher confusion rate in this study. 

In the application and effective use of this 

model, manufacturing industries should also 

determine the possible association of assignable 

causes with specific control chart pattern 

exhibited by their process.Further research shall 

be done on the magnitude of special cause 

disturbance like shift magnitude, trend slope, 

cycle amplitude and period, and process 

fluctuation magnitude that are important activity 

in control chart pattern recognition, the task of 

estimation of this parameter magnitudes were 

not included in this study. This study considers 

seven types of control chart patterns. Hence, 

future study shall also address the situations 

when multiple (mixed) abnormal patterns exist 

concurrently in multivariate process control 

charts. 
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