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ABSTRACT 

Solid or hollow reclan~lar and circular cross­
section members are most extensively used in 
medium and small size steel structures. Such cross­
sections are non-warping cross-section. They are 
extensively used because of their strength and the 
ease to assemble. The governing differential 
equations and the corresponding stiffness equations 
for such members are derived. The load­
displacement and stability characteristics of such 
members are investigated. The structure 
deformations are also indicated. Such knowledge 
will be very helpful for engineers who are involved 
in the construe/ion of such structures. 

INTRODUCTION 

Most steel structures constructed in developing 
countries are small or medium size buildings or 
frames. Most members in such constructions have 
hollow or solid cross-section rectangular or circular 
cross-sections. Following the linearized finite 
displacement theory and the finite element 
technique, the governing differential equations and 
the stiffness equations have been derived. Two 
classes of structures with non-warping cross-sections 
are identified. The first class of members with non­
warping crass-sections are members of frames which 
act as beams or beam-columns, the internal bending 
moment and internal shear force are the·important 
internal actions. The second class of non-warping 
cross-section members are members of trusses; 
where the only internal action in such members is 
the internal axial force. With proper transformation 
and updating procedures the load-displacement 
curves of structures containing such members have 
been plotted. 

THEORETICAL :t'ORMULATION 

Non-Warping Beam-Columns 
Solid or hollow rectangular and circular cross­
section members are common examples of members 
with non-warping cross-sections. The displacement 
field u, v, and w of an arbitraiy point on the cross­
sectlon may .be given as . 

u = uc - v;(y.cos;)- w~(z.cos; + y.sin;) (la) 

v = v .. (y- y,)(1- cos(6)- (z- z,,) sin; (lb) 

w = w, - (y- Y.).sin; - (z-·z.)(1- cos;) (le) 

The following virtual work principle will be used for 
the required derivations; 

J..<qif.oef + qij·0eJ)dV 

-f L (p;°.ou;NL + P;.ouf)dx (2) 

-(Fij .ou!f + Fik.ou~] .. = o 
lc=u 

The non-vanishing strain components are; 

e"" = u; - v~(y- z;)- w;'(z+ y;) 

+ ~[(v~)2 (w;)2 ]+ (z,,v;- y,,w~)'1 (3a) 

+ [(y- Y.)2 + (z- z .. )2]Ci')2 

1 
e. = 20 ;• (3b) 

For a tfiin-waued non-warping beam, the normal 
stress a_: at the reference state is expressed in terms 
of the stress resUltants for axial force and bending 
moments, as follows; 

u:r =(:
0

)+(~;}+( ~} (4) 

Substituting the relevant values, which are given in 
the preceding expressions, into the virtual work 
equation given in Eq.(2), the following is obtained: 

t! :·.+ ( ~)y+ ( ~i)zf 6[z.V:';- y.w~~ 
l 

+ 2{<V.)2 + (w;)2
} + (z.v;- y1w;); 1 

if (y- y,)2 + (z- z.)2 }Cf)2 

+ E(u; = y.v;•- z. w;?.6(u;- y. v;'- z. w;? 
+G9f.6(8f'}}dV- Fr&l= 0 

(5) 

Through variational treatment ofEq.(5), one obtains 
the following governing differential (equilibrium) 
equations; 
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E4u~=0 

EI v<•> _ N•v"+ (-z N• + M•);" = 0 
J'Y I I I I 

EI u· w!4
> - N°. w;' + (y,,N° -M;);" = 0 

GJ;" +(z,N°-M;)v','-(y,N°-M;)w;' 

+(r1N° + jJ M 0 +·R tf• \,,,, • 0 • , 1 ~. , ,, 

The associated boundacy conditions being 

uc = y <k or n,,EAu~,,. 

v=v orn =F 
. [-EI wv',,"+ N•v; ] 

I • " +(ZIN° - M;);' ,. 

-v"= -v' or[-EI v"-M•;]= d~ 
I A "' z ,_ 

[
-EI.W:'+ N°W, ] 

w1 = w• orn,, +(-yft•+ M;">I' "'f.t 

- w; = -w'. orn,,[-EI .. W:+ M;;]= D. 

(6a) 

(6b) 

(6c) 

(6d) 

(7a)~. 

(7b) 

(7c) 

(7d) 

(7e) 

• , , , JI 7 
[
GJ;' + z N°v' - y N°w' 

; = ;. or n,. +(r; N° + /J,M; + /J.M;);'] = Dn: ( f) 

where, n,,= -1atx=0 andn,, = 1 atx = L. 

1be above differential equations are important from 
a theoretical point of view only. For practical 
application, a relevant stiffness equation must be 
developed. For this purpose, the forces and 
displacements must be expressed in a discrete 
fonnat Thus; 

( r r r ...r}r F = F. .F, .F. ,1., (Sa) 

d = (ur .vr .wr ,ID rt (8b) 

in which, the components of the force vector are; 

F.. = (F •. F,,r (9a) 

F, • (F11.v11.F11.D,S (~) 

T.z(Cn.~r 
and. those of the displacement vector are. 

u= {ud.u<Jt 

v= {v.,-v.,;v.,.v.r 
w= (·~.-w,. .• _.-....._r 

(9c) 

(9d) 

(IOa) 

(l<I>) 

(lOc) 

(lOd) 

At this stage. the following interpolation functions, 
which are the well known Hermite interpolating 
polynomial. are introduced; 
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N, = 1-(~ (Ila) 

N,=(~ (llb) 

N, • 1- ~ ~:) t ~ ~) (llc) 

N,=-x+~~)-(~) (lld) 

N,= ,~:)- ~~) (lle) 

N • ( x•)-( ~) 
' L L1 

(llf) 

The above interpolating polynomials may be 
arranged as follows; 

A= (N1,N1}
1 (12a) 

B = {N,.N4 ,N,.N,t (l2b) 

Using the above interpolating polynomials, the 
displacement oomponents at an arbitrary cross­
section in the region (O<x<L) can be written in terms 
of tlie displacements at the ends of the element, in 
the following approximate form; 

u. = Aru (13a) 

v = BTV 
JI 

(l3b) 

w,= BrW (i3c) 

; = BT'1> s (13d) 

1be displacements in the above equation Eqs. (13) 
are introduced into the virtual work equation ofEq. 
(5). giving finally the following stiffn~ equation; 

;-Jf,] 
where 

~=(~)r. 

r..=(~)~·(:)x, 
r..=(~)~·(1::)~ 
x .. = ( ~z')i;+( i)x, 
K.. = -{( >rf )r.. ( f ).,} 

(14) 

(lSa) 

(lSb) 

(lSc) 

(lSd) 

(15e) 
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(15f) 

in which, 

[
l 0-10] 

K. = -1 0 l 0 (16a) 

[
-lLI O] 

~= . l 0 -1 -L 
(16b) 

The other block matrices are as given in Ref. (10) 

General Stiffness for Truss Members 

In truss structures. it is generally assumed that loads 
are applied at the joints. Members are joined 
together using frictionless pins. Therefore, all 
members of such trusses are two-force members, and 
they are either in tension or compression. The 
whole member is taken as one element, and no 
bending moments arise anywhere in the truss. 

Consider now a truss element of length L and a 
cross-sectional area of A . . The stress in an element 
at an arl>itrary reference state is, 

No 
<To=­

"" A 
(17a) 

The Green's strain-displacement relations for the 
axially loaded truss ember is given by; 

l 
&,,,, = u' + 2((v')2 + (w')2] (17b) 

The virtual work equation to be used here is; 

Jf :· ]s{ ~[(v')2 + (w'}
2

} 

+ Eu' 6u'ldV - Fr 6d = 0 

. (18) 

Substituting the relevant terms into Eq. (18), and 
through variational treatment, one obtains the 
governing (equilibrium) equations as follows; 

EA.u" = 0 
N°v" = 0 
N°w" = 0 

(19a<) 

with the corresponding boundaly conditions being; 

u = uk or n,.EAu' = F"" 
(20a) 

U U Or n1tN°v' = F .... = k ,.. 

(20b) 

(20c) 

Next, to develop the incremental stiffness, one needs 
to redefine the force and displacement vector as in 
the following. First, regarding the force vector; 

( 
T T T)T F= F,, ,FY .F, (21) 

in which, 

F:= (F111 ,Fx/r 
FY= (F".F" r (22a-c) 

F, = (F.i,F11r 

Second, regarding the displacement vector; 

d = (ur ,vr ,wr)r (23) 

in which 

u = (u,,u1r (24a) 

v= {v,,v1r (24b) 

W= (w,,wJ (24c) 

Making use of linear interpolating functions, the 
incremental stiffness equation for the truss element 
can be derived from Eq. (18) in the fonn 

!F,.l [Ki. F,.=0 Ku 
F: 0 0 • 

in which, 

K11 = ( ~)K. 
K,.-( :-)K. 
Knz ( ~

0

)K. 

:=ll~l (25) 

(26a) 

(26b) 

(2<>c) 
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NUMERICAL EXA l\IPLES The deformed shape of the cantilever beam for level 
3 is shown on the right-hand side of Fig. 1. The 

Plane Structures deformations have been exaggerated and it is to be 
noted that the applied load is still horizontal up to 

Cantilever Beam the end of the loading history. 

In the first example, the in-plane finite displacement 
behavior of a circular cantilever beam which is 
subjected an axial force at the free end is 
investigated. An initial distuibing moment is used. 
The horizontal displacement 'u' and the vertical 
displacement 'w' are plotted against the applied 
load, and are shown in Fig. I. The computed results 
are compared with the analytical solutions obtained 
from the elliptic integration approach, showing 
excellent agreement, as shown in the same figure. 

J •• 

2.1 

I • , ;> 'I ... 
• 

re l ., 
~ "' 

Normal [NJ = 0.00II.P 
Numbc:r of incremental slope= 150 
Number of elements s 8 

-- Presait Results 

Portal Frame One 

In the second example, the displacement behavior of 
a fixed base portal frame is investigated. The 
members have hollow square cross-section, and a 
small horizontal distuibing force is applied. The 
load-displacement curve is shown in Fig. 2. Again, 
at the right-hand side in the figure, the deformed 
shape of the fram~ at level 3 is shown. It is observed 
that the frame buckles unsymmetrically. 

- Analytical Results by Elliptic Interpolation [Rei. 2j 

••• I.I 1.J 
Displac=mtat the free End{~ 

Loed{PIP.,] 
Figure 1 Plane load-diSDlacement behavior of cantilever beam 

IS.J . 

..... 

S.I 

Numba al elCIDCllls s 10 
E 2 Sxl<l4Ib{ur 
R• 11.7in' 
1=310.lia.4 

lz120in 

•. I ----:T:-----:r:------.-----.-----1. a I. J I. C l."I - Ditplac • d ll 11181.cft Coma" (11.f. ,.t.} ... . ... 
Figure 2 Plane load-displacement behavior of a fixed portal frame (uosymmetrical mode} 
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Portal Frame Two 

The same portal frame as the one used in the 
pfCCeding example is treated herein. the only 
difference Aow being that the disturbing actions 
being symmetrically placed couples at the loaded 
nodes. The resulting load-displacement cwves are 
shown in Fig. 3. The defonned shape of this portal 
frame at level 2 is shown at the right-hand end of the 
figure. It is seen that this portal frame buckles 
symmetrically. 

Number of elemenu [foe one haJC oflhe Slr\leture] • 8 

"..oad(PIP.) , , 

Symmetrically Loaded Circular Arch 

Circular and parabolic arches are usually used in 
bridges, building roofs, and other structures. Thus, 
the load-displacement behaviors of such structures is 
of great importance for structural design. In the 
present case, a circular arch subjected to a downward 
vertical load at the apex is investigated. The load­
displacement diagram for . this case is shown in 
Fig.4. On the right-hand side of the figure, the 
defonned shape of the structure at level 3 is shown. 
It is clear that this arch buckles symmetrically. No 
horizontal or 'u' displacements occurs. 

II.I ....... Mr··· 
11.1 

•••• 

l 

E • 3 x JO' l.blin2 

R • ll.7in' 
1• 310.J in4 

1• 120in 

···--------------------.-----------------------------------------------••• '·' l.I l.I 

Figure 3 Plane load.'.displacement behavior of a fixed portal frame (symmetric mode) 

-
1.-1 (PIP.] j 

11.1 

U . I 

Number aC elaoails [for one half of the stnaclure] • a 
~=120dqp'ea 

R•IOO 
E • 10" 
I • 1.0 
L=l.O 
A=O.l 

II.I 

5.1 

j__ 
< -~/;)-

' ·' '":"----------..----------..-----------------------------------_. I . I I . 2 ... • •• • •• I . I 

Figure 4 Plane load-displacement behavior of a fixed circular arch (symmetric mode) 

Journal of EAEA, Vol 16, 1999 



6 Dellelegn Teshome 

.... ' 

.... 
II.I 

.... 

Unsymmetrically Loaded Circular Arch 

In this final example for planar structures, the arch 
that was treated in the preceding example is used, 
except being unsymmetrically loaded in the present 
case. In this case, both the 'u' and 'w' 
djsplacements occur, as it can be observed from the 
load-<lisplacement diagram, shown in Fig 5. At the 
right-band side of the load-displacement diag{aJll, 
the deformed shape of the arch for position 2 is 
shown: It is clearly seen that the arch buckles 
unsymmetrically. 

Spatial Structures: A Twelve Member 
Hexagonal Structure 

The twelve member hexagonal structure under a 
vertical load appHed at the crest is considered next. 

I• 11' 

I • 1.1 ...... 
l ..... ..... ......... ..... . . , •....... ...... .. ........ . .. 

, 
~ <·!. /~ ~ 
l • - " ... , ........................................ ' 

.......!:.!.~------:-r:--------.--------.---------.-------1. 1 • •• :: • •• • •• • •• 

Figure S Plane load-displacement behavior 
of a fixed circular arch (unsymmetric mode) 
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AU members are of uniform square cross-section 
whlch does not warp. All supports of the structure 
are hlnges. The crest of the structure, whlch is 
subjected to a vertical load, deflects vertically only. 
The structure could be studied using two 
idealizations; the first one using the assumption 
where all joints between members uses perfectly 
smooth pins, and the second one using the 
assumption whlch states that all joints between 
members are rigid joints. If the first assumption is 
used, the structure becomes a truss, and the only 
internal action in all the members is the axial force. 
With the second assumption, the structure is 
becomes a frame, and the important internal actions 
are bending moment, shear force, and axial force. 
The load-displacement diagram shown in Fig. 6 
shows results following the two assumptions raised. 

..... 

..... 

.. .. 

... 

-. . 

-· 

...... .. ., ......... , ........... ,, ............. ' .. .. ....... ., . .,~ ..... ""' .... 
er..u.e.Nwt ...... , ., ............. "'" 

... \ ... 
f. -·· ••• \ 

~:::·;::; \ JJ 
\ .. ·....._. 

. .. 
.... IC:. lll'f'\-fl'tt• . 

• ...... N ... '9IPID 

Solution for fiame fdealization. 

Solution for truss Idealization 

Figure 6 Spatial load-displacement behavior of a 
hexagonal frame with hinied supports 
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SUMMARY AND CONCLUSIONS 

In medium or small size steel structures. the type of 
members used have rectangular or circular hollow 
cross-sections, which are non-warping. Such 
members are light and strong. The members are not 
in danger of lateral-torsional instability, which is a 
common deficiency in larger hot-rolled I-section 
members. Solid rectangular or circular cross­
sections members, which are heavier, are used only 
when stronger members are required. The assembly 
of~ hollow rectangular and circular cross-section 
members is relatively easy. 

The load-displacement behavior of such members is 
investigated using the linearii.ed finite displacement 
approach also employing the finite element method. 
The method employs an efficient transformation and 
updating strategy. Nwnerical results were produced 
for a number of planar structures and a spatial 
structure. It has bcCn found possible to investigate 
the. non-linear finite displacement with sufficient 
accuracy, by the direct solution of the tangent 
stift'ncss equation helped by an accurate updating 
procedure, thus making it unnecessary to perfonn 
iterations. Imposing relatively small increments, the 
accumulation of error can be reduced to an 
acceptable level. Neither iteration nor convergences 
cbecb are required for the present scheme. Under 
these circumstances. it can be concluded that the 
prr:scnt scheme is quite suitable for practical use. 
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