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ABSTRACT

Solid or hollow rectangular and circular cross-
section members are most extensively used in
medium and smail size steel structures. Such cross-
secfions are non-warping cross-section. They are
extensively used because of their strength and the
ease to assemble. The governing differential
equations and the corresponding stiffness equations
Jor such members are derived — The load-
displacement and stability characteristics of such
members are investigated. The struciure
deformations are also indicated. Such knowledge
will be very helpful for engineers who are involved
in the construction of such structures.

INTRODUCTION

Most stecl structures constructed in developing
countries are small or medium size buitdings or
frames. Most members in such constructions have
hollow or solid cross-section rectangular or circular
cross-seclions.  Following Lhe linearized finile
displacement theory and the finite element
technique, the governing differential equations and
the slifTness equations have been derived, Two
classes of structures with non-warping cross-sections
are identified. The first class of members with non-
warping crqss-sections are members of frames which
act as beams or beam-columns, the internal bending
moment and internal shear force are the important
internal actions. The second class of non-warping
cross-seclion members are members of trusses;
whcere the only internal action in such members is
Lthe internal axial force. With proper transformation
and updaling procedures the load-displacement
curves of structures containing such members have
been plotted.

THEQORETICAL FORMULATION

Non-Warping Beam-Columns

Solid or hollow rectangular and circular cross-
section members are common examples of members
with non-warping cross-scctions. The displacement
field w, v, and w of an arbitrary point on the cross-
section may be given as

u=u_-v(y.cosgd)- wi(z.cosg + y.sing) (la)
v=v,(y- y,X1-cosg) - (z-z,)sing (lb)
w=w - {(y-y,)sing - (z—z,)1-cos¢) (lc)
The following virtual work principle will be used for
Lhe required derivalions;
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The non-vanishing strain componenis are;
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For a thin-wailed non-warping bcam, the normal
siress 0; at the reference state is expressed in terms
of the stress resultants for axial force and bending
momenls, as follows;
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Substituting the relevant values, which are given in
the preceding expressions, into the virtual work
equation given in Eq.(2}, the following is oblained:
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Through variational treatment of Eq.(5), one obtains
the following governing differential {equilibrinm)

equalions;
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EAu! =0 (6a)
EI v - NVt (-2, N+ MI )" = 0 (6b)
Ef, wl" - N°w!+(y,N° - M3)§" =0 (6¢)

GIp" + (2N - MEW!— (¥ N° - MO)w!

6d
+(?'1)V°+,8}M; +-ﬂ:ﬂ:‘{:»"=0 ( )
The associated boundary conditions being
u, =y, ormFEAu_ Fu (7a).
-E v N,
vov, orn, " LE, (76)
+Hz, N - MOy
-v)'=-vy or [—Elnv;’— :f]= d, (7c)
- EIw" N°*w, '
W= Wy Dr": 1_(_y No+ Moy, = fﬂ (Td)
R r
-wi=-wy orn[-EL o+ Mig]= D, (7o)

GJg'+ z NV, — y N°w]

N+ M7+ B MO = Dy 7o

'=‘k an[
where, n,=-latx=0andn,=1lalx=1L

The above differential equations are important from
a theoretical point of view only. For practical
application, a relevant stiffness equation must be
developed. For this purpose, the forces and
displacements musi be expressed in a discreie
format. Thus;

F={r1 F 7Y (82)
d=UT T woTy (®8b)
in which, the components of Lthe force vector are;
F={F.F,Y (92)
B+ (5080, )
£=(R0bD) 09
N (A )
and, those of the displacement vector are,

U= (u,.m,) (102)

r
V={v,~ Viova.¥) (100)
W = (- wy ) (100)
T
o, ={.4,) (104

At this stage, the following interpolation functions,
which are the well imown Hermite interpolating
polynomial, are introduced;
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Nl=l-[£J (lla)
w,= (2] (11b)
Nl](i—}z[f—} (119
M
k4
T

The gbove interpolating polynomials may be
arranged as follows;

4= (N, N,) (12a)
B={N,.N, N, N (12b)

Using the above interpolating polynomials, the
displacement components at an arbitrary cross-
seclion in the region (0<x<L) can be writlen in terms
of the displacements af the ends of the element, in
the following approximate form,;

u = AU (13a)
v,= B’V (13b)
w,= BTW (130
4= B0, (13d)

The displacements in the above equation Eqs. (13)
are introduced into the virtual work equation of Eq.
(5), giving finally the following stiffness equalion;

E| (&, Symm U

Ao o n v a9
r| o K Ko Ko,

where

.= (A, (153)
w-()e () sty
- (Fe{ D (159)
£o= ("7 (P, asq
r.[[%’l K %f;'?]t.] (15¢)
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K, - (%]Ka*[[i"]".”[ﬁf]f,*[ﬁiz]ﬂ.}f. (15f)

in which,

1 0-1606 6
K=l.io10 (162)
1 LT 0
K=110-1-1 (18

The other block matrices are as given in Ref, [10]
General Stiffness for Truss Members

In Lruss structures, it is generally assumed that loads
are applied at the joints. Members are joined
together using friclionless pins. Therefore, all
members of such trusses are two-force members, and
they arc cither in tension or compression. The
whole member is taken as one ¢lement, and no
bending moments arise anywhere in the truss,

Consider now a truss element of length L and a
cross-sectional area of 4. The stress in an element
at an arbitrary reference state is,

o2 = ‘:; (172)
The Green’s strain-displacement relations for the
axially loaded truss ember is given by;

1
£ = U+ E[(v’)2 + (w)?] (1)
The virinal work equation to be used here is;

&

N ]6{1 ™2 ' 2}
(Lo o a9
+ B dwldv - FTéd =0

Substituling the relevant terms info Eq. (18), and
through variational treatment, one obtains the
governing (cquilibrium) equations as follows;

EAu" = 0
Nv' =0 (190
N°w'=0

with the corresponding boundary conditions being;
u=u, o nFA/=F,
(20a)

u=u, or nNV=F,
(20b)
u=u, of aN'w=F,

(20c)

Next, to develop the incremenial stiffness, one needs
to redefine the force and displacement veclor as in
the following. First, regarding the force vector,

F={FrFIETY en
in which,
o ()
r
Fy=<Fwa) (22a<)

= (F;J,Fy)r

Sccond, regarding the displacement vector;

d={UT v wTy 23)
in which

U = {u.m,) (24a)
v={nv,) (240)
o (240)

Making use of linear interpolating functlions, the
incremenial stiffness equation for the Lruss clement
can be derived from Eq. (18) in the form

F, L Symm || U

Fl=|0 K, % (25)

rllo o Kk, |l

in which,

K, = (%]K. {26a)

% {2k, (26b)
N.

K- (3 )x o
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NUMERICAL EXAMPLES
Plane Structures
Cantilever Beam

In the first example, the in-plane finite displacement
behavior of a circular cantilever beam which is
subjected an axial force at the free end is
investigated. An initial disturbing moment is used.
The horizontal displacement ‘4’ and the vertical
displacement ‘w’ are plotled against the applied
load, and are shown in Fig.1. The computed results
are compared with the analytical solutions obtained
from the elliptic integration approach, showing
excellent agreement, as shown in the same figure.

3.9

Load fP/P,) .

’ 1.0
Normmal [N} = 0001LP

Mumber of incremnental slope = 150
Mumber of zlemenls = §

The deformed shape of the cantilever beam for level
3 is shown on the right-hand side of Fig. 1. The
deformations have been exaggerated and it is to be
noted that the applied load is still horizontal up 1o
the end of the loading history.

Portal Frame One

In the second examptle, the displacement behavior of
a fixed base porlal frame is investigalted. The
members have hollow square cross-section, and a
small horizontal disturbing force is applied. The
load-displacement curve is shown in Fig. 2. Again,
at the right-hand side in the figure, the deformed
shape of the frame at level 3 is shown. It is observed
that the frame buckles unsymmelrically,

= CORF Icoant sy
ar Iy
Preacnd Reculn
Aalylical Results by Elliptic Interpolation {Ref, 2j
.1 51 .4 bu o0 L 1.2
Displacement st the Free End fuZ, wiL}

Load fF/F,]
r ’
[ e

- Number of elements = 10

E=5x 10 vin*
15.8
t B=117i

1=3101in"

1=120in

Figure 1 Plane load-displacement behavior of cantilever beam
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Figure 2 Plane load-displacement behavior of a fixed portal frame (unsymmetrical mode})
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Portal Frame Two

The same portal frame as (he one used in the
preceding example is treated herein, the only
difference now being that the disturbing actions
being symmelrically placed couples at the loaded
nodes. The resulling load-displacement curves are
shown in Fig, 3. The deformed shape of this portal
frame at level 2 is shown at the right-hand end of the
figure. It is secn that this portal frame buckles
symmelrically.

MNumber af elemenis {for one half of the sructoe] = 8

Symmetrically Loaded Circular Arch

Circular and parabolic arches are usually used in
bridges, building roofs, and other structures. Thus,
the load-displaceinent behaviors of such structures is
of great importance for structural design. In the
present case, a circular arch subjected to a downward
vertical load at the apex is investigated. The load-
displacement diagram for this case is shown in
Fig4. On the right-hand side of the figure, the
deformed shape of the structure at level 3 is shown.
It is clear that this arch buckles symmetrically. No
honizontal or ‘w” displacements occurs.

u‘)d {P“Ipa‘] ’
f£.0am1 L ¥ F.o89 L P
L1y .
"-. - m
E =3 x 10" [win?
R=11T7m
1=310.1 in*
TR 1=120in LowricuaATION
ar [
A .
a1 s 1.8 1.5
Displacerhem st the Top Lefl Comer fud, /L]
Figure 3 Plane load-displacement behavior of a fixed portal frame (symmetric mode)
- Number of elementa [for onc half of the stracture] = £
Load (PP 4 Angle = 120 degrees
L RE=100

e
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Figure 4 Plane load-displacement behavior of a fixed circular arch (symmetric mode)
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Unsymmetrically Loaded Circular Arch

In this final cxample for planar structures, the arch
that was treated in the preceding example is used,
except being unsymmetrically loaded in the present
case. In this case, both the ‘u’ and ‘w
displacements occur, as it can be observed from the
load-displacement diagram, shown in Fig 5. At the
right-hand side of the load-displacement diagram,
the deformed shape of (he arch for position 2 is
shown. It is clearly seen that the arch buckles

unsymmetrically.

Spatial Structures: A Twelve Member
Hexagonal Structure

The twelve member hexagonal structure under a
vertical load applied at the crest is considered next.

[ T L
T+«13.2
LICN N |
L= w2
R=gan
Sabtarded Bugle = LI0 Pepraae
Banber of flomange = 18

§ amp cobizoad spavan of dlosasiany sma be ndeptad 1

Displacerment fu/l, wil

Fignre 5 Plane load-displacemnent behavior
of a fixed circular arch (unsymmetric modc)
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All members are of uniform square cross-seclion
which does not warp. All supports of the structure
are hinges. The crest of the structure, which is
subjected to a vertical load, deflects veriically only.
The structure could be studied using two
idealizations; the first one using (he assumpiion
where all joints between members uses perfectly
smooth pins, and the second one using the
assumption which statcs that all joints between
members are rigid joints. If the first assumption is
used, (he structure becomcs a truss, and the only
internal action in all the members is the axial force.
With (he second assumption, the structure is
becomes a frame, and the important internal actions
are bending moment, shear force, and axial force.
The load-displacement diagram shown in Fig. 6
shows results following the two assumptions raised.
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Solution for frame 1dealization.

......... Solution for truss Idealization

Figure 6 Spatial load-displacement behavior of a
hexagonal frame with hinged supports
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SUMMARY AND CONCLUSIONS

In medium or small size steel structures, the type of
members used have rectangular or circular holiow
cross-sections, which are non-warping.  Such
members are light and strong. The members are not
in danger of lateral-torsional instability, which is a
common deficiency in larger hot-rolled I-section
members.  Solid rectangular or circular cross-
sections members, which are heavier, are used only
when stronger members are required. The assembly
of the hollow rectangular and circular cross-section
members is relatively easy.

The load-displacement behavior of such members is
investigated using the linearized finite displacement
approach also emnploying the finite element method.
The method employs an efficient transformation and
updaling strategy. Numerical results were produced
for a number of planar structures and a spatial
structure. It has been found possible to investigate
the non-linear finite displacement with sufficient
accuracy, by the direct solulion of the tangent
stiffness equation belped by an accurate updating
procedure, thus making it unnecessary to perform
iterations. Imposing relalively small increments, the
accumulalion of error can be reduced to an
acceptable level. Neither iteration nor convergences
checks are required for the present scheme. Under
these circumstances, it can be concluded that the
present scheme is quite suilable for practical use.
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