
Journal of EEA, Vol. 26, 2009

AN EFFICIENT MODIFIED ELLIPTIC CURVE DIGITAL SIGNATURE
ALGORITHM

Tilahun Kiros

Department of Computer Science and Engineering
Mekelle Institute of Technology

 and

 Kumudha Raimond

Department of Electrical and Computer Engineering
Addis Ababa University

ABSTRACT

Many digital signatures which are based on
Elliptic Curves Cryptography (ECC) have been
proposed. Among these digital signatures, the
Elliptic Curve Digital Signature Algorithm
(ECDSA) is the widely standardized one. However,
the verification process of ECDSA is slower than
the signature generation process. Hence, the main
objective of this work is to study ECDSA in order
to improve its execution time. The method of the
improvement is focused on the mathematical
relationships of the algorithm in a manner that its
verification process can be efficient. As a result,
without affecting the underlying mathematical
problem – the Elliptic Curve Discrete Logarithmic
Problem (ECDLP) - a related efficient scheme is
developed. The signature verification algorithm of
the modified scheme is found to be faster than the
verification process of ECDSA by 45%.

Keywords: Digital signature, ECDSA algorithm, Elliptic
curve cryptography, Scalar multiplication, Signature
generation, Signature verification.

INTRODUCTION

With the advent of information technology,
ensuring network and data communication security
has become a crucial issue. Though the information
technology provides us with various versatile tools
for data manipulation and data storage, it is not
without different facets of security attack. Thus, it
is crucial to have tools that can insure the integrity
of data, the confidentiality of data, and authenticity
of any form of data communication.

To meet the requirements of network and data
communication security, the cryptography science
plays a great role. A variety of researches and
applications of cryptography are developed in
parallel with the advancement of the IT facilities.

As a result, algorithms and techniques have been
introduced to offer a better security mechanism.
Algorithms like Rivest-Shamir-Adleman (RSA) [1,
6, 8], Digital Signature Algorithm (DSA)[1, 15],
Diffie-Hellman (DH) [1, 7], and Elliptic Curve
Cryptography (ECC) based schemes [4, 10] - like
the ECDSA - are a few of the known cryptographic
systems that are being employed in various
applications. However, among these known
cryptographic systems, ECC is emerging as an
attractive and better alternative to the public-key
cryptosystems [11, 12, 13, 14, 17, 18, 23]. ECC
offers equivalent security with smaller key sizes
resulting in faster computations.

The use of elliptic curves in modern public key
cryptography was independently introduced by
Neal Kobltiz and Victor Miller in 1985 [2, 3, 4].
Since then, a lot of researches have been conducted
in order to challenge its security strength and find
out efficient ways of implementing ECC based
cryptosystems. ECC has got increasing attention by
the research community, as it offers equivalent
security but shorter key size when it is compared
with previously known systems like RSA and
Discrete Logarithm (DL) – based cryptosystems.
Though the confidence level of ECC is not equal to
RSA as RSA has been around for above thirty
years, it is widely believed that 160-bit ECC offers
equivalent security of 1024-bit RSA.

In general, ECC has better per-bit security, and
hence, suitable in constrained environments like
smart cards and hand-held devices. ECC has less
storage, power, and bandwidth requirements, and
improved performance [20].

The rest of the paper is organized as follows:
section 2 presents related works of elliptic curve
digital signature. Preliminaries on ECC and
ECDSA are presented in section 3. The proposed
modified scheme is described in section 4.

Tilahun Kiros and Kumudha Raimond

Journal of EEA, Vol. 26, 2009

66

Section 5 presents alternative form of the proposed
scheme. Performance comparison of elliptic curve
digital signature and the proposed modified scheme
is presented in section 6, while section 7 concludes
the paper.

RELATED WORKS

Leading mathematicians and scientists have done a
lot to ensure the robustness and correctness of
many of the cryptographic schemes [9]. However,
in [17], it is discussed that none of the
mathematical problems – like the Integer
Factorization Problem (IFP), the Discrete
Logarithm Problem (DLP), and the Elliptic Curve
Discrete Logarithm Problem (ECDLP) – are
proven to be intractable. This article [17]
underlines that it is based on our belief of their
intractability that we rely on these algorithms, as no
efficient algorithms are found to solve them. This
article, [17], also assures that no sub-exponential
algorithm is found to solve ECDLP.

Rosner discusses the implementation of GF1 (2m)
based curves on a reconfigurable hardware [11]. It
is shown that for GF (2168), one point doubling
operation takes 273 clock cycles. The work in [11]
provides with some fundamental concepts for
hardware implementation. The suitability of ECC
based schemes for constrained devices and
embedded systems is explained in [18]. Based on
the per-bit security of ECC, this paper clarifies the
advantage of ECC to achieve longer running
battery operated devices with less heat, faster
applications that consume less memory, and
scaleable cryptographic applications. Moreover, the
key-size comparison of ECC with RSA and DH
based systems is given in [18]. In general, the
advantage and performance comparison of ECC
with RSA and DH schemes is provided in [12, 13,
14, 17, 18].

In [16], implementation of ECDSA on Advanced
RISC Machines (ARM) processors for a curve on
GF (2m) is done. It is concluded that by using
certain machine and curve specific techniques, the
ECDSA signature can be made faster and
optimized [16]. Similar work is done in [21] for a
curve on GF (p). ARM processor implementation
of curve p-224 is discussed in [21]. According to
[21], it is concluded that 129.28ms was taken to
perform point multiplication over the curve p-224
for C-based implementation. And the time was less
for assembly language based implementation.

1 Finite fields with pn, for p a prime integer and n a
positive integer are known as Galois Fields or GF.

Don B. Johnson, [12], has given an explanation of
ECC suitability on high-security environment
based on the underlying difficulty of ECDLP. It is
explained that ECDLP is more difficult to solve
than IFP and DLP [12] as currently known efficient
algorithms to solve ECDLP are full exponential,
whereas to solve IFP and DLP there are sub
exponential algorithms. The article shown in [13],
and the works discussed in [14] strengthened this
idea. Moreover, in [13, 14], the suitability of ECC
on smart cards is evidently explained, as ECC is
more compact than RSA. Pietilainen [14] has
compared ECC and RSA based on security,
efficiency and space requirement by implementing
both of them.

In [22], the authors provide basic alternatives to
resolve the implementation issues of ECC on
constrained devices like cellular phones. They
indicated that curves over GF (2m) are convenient
for hardware implementation; whereas curves on
GF (p) are suitable for software implementation.
Finally, in [22], optimization of ECC based
schemes is recommended as it is accepted as the
next generation public-key cryptosystem.

Many of the works that aimed at improving
performance of ECC based schemes either
concentrated on improving the underlying
mathematical operations, or concentrated on
implementation of specific curves on a specific
hardware platform. Little is done in designing
different digital signature algorithms which may
have a better performance than the existing ones.

In this work, after a thorough study of ECC based
cryptosystems, areas of performance improvements
of ECDSA has been examined. In ECDSA, the
most expensive operation is the scalar
multiplication or elliptic curve point multiplication.
Another expensive operation is the modular
inversion operation. Optimized techniques of scalar
multiplication are given in [4, 16, 24]. Here, an
attempt has been made to develop ECDSA related
scheme in such a way that the number of elliptic
curve point multiplications can be reduced during
signature verification process.

PRELIMINARIES

Elliptic Curve Cryptography

Elliptic curves for cryptography are defined over
finite algebraic structures such as finite fields.
Let’s assume prime fields Fp of characteristics

3>p [2, 4]. Such a curve is the set of geometric

An Efficient Modified Elliptic Curve Digital Signature Algorithm

Journal of EEA, Vol. 26, 2009

67

solutions),(yxP = to an equation of the following
form

)(mod: 32 pbaxxyE ++= (1)

Where a and b are constants in Fp (p > 3) satisfying
4 a3 + 27 b2)(mod0 p . To have the points on
E to form a group, an extra point denoted by О∞ is
included. This extra point is called the point at
infinity and can be formulated as

 О∞),(∞= x (2)

The point at infinity is the identity element for the
group law formulated as

pFyxyxpE ∈== ,|),({ that solves (1)} {∪ О∞}

(3)

This set of points form a group under a group
operation which is conventionally written
additively using the notation “+” [2]. The group
forms an abelian group, [5], over which ECC is
based and all operations are performed.

Suppose the point P is in E(Fp), and suppose P has
a prime order n, then, the cyclic additive subgroup
of E(Fp) generated by P is

 }.)1(,...,3,2,,{ PnPPPOP −= ∞

 (4)

The prime p, the equation of the elliptic curve E,
and the point P and its order n, are the public
domain parameters. Furthermore, a randomly
selected integer d from the interval [1, n-1] forms a
private key. Multiplying P by the private key d,
which is called scalar multiplication, will generate
the corresponding public key Q, i.e. Q = dP. The
pair (Q, d) forms the ECC public-private key pair
with Q is the public key and d is the private key.

The Elliptic Curve Digital Signature Algorithm
(ECDSA)

ECDSA is the elliptic curve analogue of DSA
[4, 16, 19]. It was accepted by many standard
organizations around 2000. Below, the ECDSA
signature generation and the ECDSA signature
verification algorithms are given. The algorithms
are available in [4].

In ECC, there are a set of domain parameters
denoted by).,,,,,(hnPbaqD = q represents the
field order of the prime field Fq. The parameters

qFba ∈, are coefficients of the elliptic curve

equation E. The parameter)(qFEP∈ is the base
point. The parameter n is the order of the point P. P
is the generator of the cyclic sub group P
(Eq. (4)). The parameter h is known as cofactor. It
is found as

n
FEorderh q))((

= , Where order (E(Fq))

is the number of elements in E(Fq).

Given the public-private key pair (Q, d), and
domain parameters, the ECDSA signature
generation and verification can be formulated as
shown in Algorithms (1) and (2), respectively. A
hash function, H shown in line 4 of Algorithm (1),
accepts a variable size message M as input and
produces a fixed-size output, referred to as a hash
code H(M) or a message digest [2]. Hash functions
are used for data integrity in conjunction with
digital signature schemes, where a message is
typically hashed first, and then the hash value as
the representative of the message is signed in place
of the original message. The receiver authenticates
the message by applying the hash function on the
message and re-computes the hash value.

Algorithm (1) ECDSA signature generation

Given parameters q, a ,b, P, n and private key d,
to sign a message m, A does the following

1. Select k]1,1[−∈ n .

2. Compute kP =),(11 yx .
3. Compute r = nx mod1 . If r=0 then go to step

1.
4. Compute)(mHe = .
5. Compute ndreks mod)(1 += − . If s=0 go to

step 1.
6. Return(r, s).

Algorithm (2) ECDSA signature verification

To verify A’s signature (r, s) on m, B uses
parameters q, a, b, P, n, h, public key Q, message
m and signature (r, s).

1. Verify that r and s are integers in the interval
[1, n- 1]. If any verification fails then return
(“Reject the signature”).

2. Compute e=H(m).
3. Compute w= s-1 mod n.
4. Compute u1 = ew mod n and u2 = rw mod n.
5. Compute X = u1 P + u2Q.
a. If X =

∞O then return (“Reject the signature”);
6. Take the x-coordinate of X as x1 and compute

v = x1 mod n.
7. If v = r then return (“Accept the signature”);

Else return (“Reject the signature”).

Tilahun Kiros and Kumudha Raimond

Journal of EEA, Vol. 26, 2009

68

Below a proof is given to show how the signature
verification of ECDSA works. If a signature (r, s)
on a message m was generated by A, then
necessarily the following will be true as a result of
Algorithm (1), step number 5:

))(mod(1 ndreks +≡ − (5)

From Eq. (5), by the principles of modular
arithmetic, we will obtain that

)(mod)(111 nrdsesdresk −−− +≡+≡ (6)

However, in algorithm (2), step number 3,

)(mod1 ns − is represented by the parameter w as
).(mod1 nsw −≡ Substituting)(mod1 ns − in Eq.(6)

by w , we will get

)(mod nwrdwek +≡ (7)

But, in Algorithm (2), step number 4,)(mod nwe

is represented by 1u and)(mod nwr is

represented by .2u Thus, based on equation (7),

)(mod21 nduuk += (8)

From the verification algorithm, we can see that

 QuPuX 21 += (9)

However, the public key Q = dP, where d is a
private key in the interval }1,1[−n and P is the
generator of the cyclic sub group P (Eq. (4)).
Therefore, substituting Q in Eq. (9) by dP and
using Eq. (8), we will obtain,

 kPPduudPuPuX =+=+=)(2121 (10)

This proves that v = r. Because, kPX = indicates
that the x-coordinate of kP, 1x , in Algorithm (1)
step numbers 2 and 3, and the x-coordinate of X,

1x , in Algorithm (2) step number 6, are equal in
essence.

The ECDSA algorithm is involving modular
inversion and the elliptic curve point multiplication
operations (scalar multiplication) in the process of
signature generation and signature verification.
Both the modular inversion operation and scalar
multiplication operation can have impact on the
performance of the algorithm. In fact, the most
time consuming operation in ECDSA is the elliptic

curve scalar multiplication operation. This work
focuses on a possible way of minimizing the scalar
multiplication operations.

PROPOSED SCHEME

Scalar multiplication dominates the execution time
of ECC based schemes [4, 10]. In ECDSA, there
are scalar multiplications in the signature
generation and signature verification processes. In
step 2 of algorithm (1) (ECDSA signature
generation), the base point P is multiplied by the
scalar or integer value k. Furthermore, in step 5 of
algorithm (2) (ECDSA signature verification), the
base point P is multiplied by an integer value u1
and the public key Q is multiplied by an integer
value u2. As there are two scalar multiplications in
the ECDSA verification algorithm, execution of the
signature verification process needs a longer time
than the signature generation process. So, attention
is given to the verification process to examine if a
scheme can be developed to minimize the
execution time needed for signature verification of
ECDSA.

Observing algorithms (1), and (2), there is an
important relationship between the signature
generation and the signature verification. The
elliptic curve point kP = (x1, y1) computed in the
signature generation algorithm must be equal to the
elliptic curve point X = (x1, y1) computed during
signature verification. Thus, if these points are
equal, one can declare that the signature is valid
and the signature is indeed generated by the owner
of the public key Q. Therefore, finding any
mathematical relationship without impairing the
underlying ECDLP problem so that the points kP =
(x1, y1) and X = (x1, y1) can be equal, leads us to a
new scheme. Based on this notion, an attempt is
made to search for such mathematical relationships
and, accordingly, the following scheme is
proposed.

Let the signature s is generated as

)(mod ndkes ++= (11)

Where e is the hash value H(m) of a given message
m, k the per message secret, and d the private key.
Hence, k can be computed as

)(mod ndesk −−= (12)

As the elliptic curve point X = (x1, y1) must be
equal to the elliptic curve point kP = (x1, y1) (see
algorithms (1), and (2)), in the verification process,

An Efficient Modified Elliptic Curve Digital Signature Algorithm

Journal of EEA, Vol. 26, 2009

69

the point X = (x1, y1) can be calculated based on
the following steps.

1. Compute e = H(m).

2. Compute).(mod nesu −= (i.e. u = k + d
(mod n)).

3. Compute X = uP – Q.

To make it further clarified and to show that
verification process holds, the following proof is
given.

Proof:

If the signature (r, s) is indeed generated by the
private key d holder using Eq. (11), then Eq. (12)
holds true. In the verification process X must be
computed as

kPPddk
Pdu

dPuP
QuPX

=−+=
−=
−=
−=

)(
)(

And this proves that X = kP, from which it can be
concluded that v = r is as intended. The signature
generation and signature verification algorithms are
formulated as shown in algorithms (3) and (4),
respectively.

Algorithm (3) Proposed scheme signature generation

Given domain parameters q, a ,b, P, n and private key
d, to sign a message m, A does the following

1. Select k]1,1[−∈ n .

2. Compute kP =),(11 yx .

3. Compute r = nx mod1 . If r = 0 then go to step 1.
4. Compute)(mHe = .
5. Compute)(mod ndkes ++= . If s = 0 or

es = then go to step 1.
6. Return(r, s).

Algorithm (4) Proposed scheme signature verification

1. To verify A’s signature (r, s) on m, B uses domain

parameters q, a, b, P, n, h, public key Q, message
m and signature (r, s).

2. Verify that r and s are integers in the interval [1, n-
1]. If any verification fails then return (“Reject the
signature”).

3. Compute e = H(m).
4. Compute))(mod(nesu −= . If 0=u return

(“Reject the signature”).

5. Compute X=uP - Q.
6. If X = O∞ then return (“Reject the signature”);
7. Take the x-coordinate of X as x1 and compute v =

x1 mod n.
8. If v = r then return (“Accept the signature”); Else

return (“Reject the signature”).

In this proposed scheme, the execution time
required to verify a signature is reduced almost by
half when it is compared with the execution time
required to verify a signature in ECDSA. Both of
the algorithms are compared for the underlying
field size of 32-bit and 64–bit. Signature
verification process of the proposed scheme was
48-57% faster than that of the ECDSA (see section
6). The reason is, in ECDSA’s signature
verification process, there are two elliptic curve
point multiplications i.e. u1 P and u2Q
(algorithm (2)). The results of the point
multiplications are to be added. So, there is one
point addition operation. Whereas in the proposed
one, there is only one scalar multiplication i.e. uP.
Furthermore, there is one point addition operation
(algorithm (4)). Thus, it would be reasonable and
expected that the execution time for signature
verification to be reduced almost by half.

The prominent issue here is security considerations.
Basically, cryptographic schemes are designed to
secure our on-line communication as well as stored
information asset. So, is this proposed scheme as
secure as ECDSA?

The security of ECDSA relies on the mathematical
problem ECDLP. Currently known efficient
algorithms to solve the ECDLP are fully
exponential time algorithms, and hence, the
problem is intractable. Similarly, this proposed
scheme is relied on the ECDLP. However, the way
signature is generated and verified in this scheme is
different from that of the ECDSA. In ECDSA, the
adversary is required to recover d by brute search
or by understanding the per message secret key k or
by using currently known efficient algorithms. If
the adversary can get an opportunity to know the
value of a single message secret key k, it is possible
to recover d from k. For this proposed scheme, if
the adversary learns the per message secret k, d can
be recovered as

))(mod(neksd −−= (13)

Without the knowledge of k, guessing d and k from
the relationship)(mod ndkes ++= is difficult as
there are different values of d and k in [1, n-1] that
can satisfy such relationship. In fact, there are

Tilahun Kiros and Kumudha Raimond

Journal of EEA, Vol. 26, 2009

70

12)1()1(2 +−=−×− nnnn possible solutions in
the interval [1, n - 1] for the equation

)(mod ndkes ++= for a given values of s and e.
Such a result is very huge number. The complexity
of this approach will be)(2nO . So, by using this
approach, it is not possible to guess the value of k
or d. Rather than using this method, the straight
forward attack – exhaustive search - is easier. That
is, computing all the points PnPPP)1....(3,2, −
until the point Q is encountered.

If such a guess would have been possible, then
adversaries could have been also successful in
recovering d from the relationship kduu =+ 21
(see algorithm (2)) in ECDSA. Thus, from these
arguments, it can be seen that this proposed scheme
can be as secure as ECDSA. However,
cryptographic schemes should normally pass
through a lot of evaluations by different
mathematicians and computer scientists before they
get employed in real world applications in order
that their security can be assured.

Currently, the most known efficient algorithm to
attack ECDLP is the Pollard’s rho algorithm. The
main idea of Pollard’s rho algorithm is to find
distinct pairs (a, b) and (a’, b’) of integers modulo
n such that [4]

.)'()'()'(

.''
dPbbQbbPaa

QbPabQaP
−=−=−

+=+ (14)

Here, the goal is to recover the private key d. From
the Eq. (14), the value of d can be recovered as

)(mod)')('(
)'()'(

1 nbbaad
dPbbPaa
−−−=

−=− (15)

The method for finding the pairs (a, b) and (a’, b’)
is to select random integers]1,1[, −∈ nba and
store the triples),,(bQaPba + in a table until
another point equal to bQaP + is obtained for the
second time [4]. This occurrence is called collision
[4]. By the birth day paradox, the expected number
of iterations before a collision is obtained is
approximately .2533.12/ nn ≈π

In the proposed variant of ECDSA, there is one
loophole so far discovered while designing the
algorithm. If the adversary prepares his/her own
message m and calculates the hash value e as

)(mHe = , then by assigning s = e and

Qxr = (mod n)- where Qx is the x -coordinate of

the public key Q and n is the order of the base
point- the signature pair (r, s) will be a valid
signature. In signature verification, the verifier will
verify the signature as

0)(mod)(mod =−=−= neenesu

Then,
QQPQuPX −=−=−= 0

However, -Q contains the coordinate
pair),(QQ yx − , and hence, rnxv Q ==)(mod is as
required. This is the reason for the check es ≠ in
algorithm (3) and the check 0≠u in algorithm (4).

ALTERNATE FORM OF THE PROPOSED

SCHEME

An alternate form of the proposed scheme can be
achieved by including the parameter r while
computing s as shown below:

)(mod ndkers ++= (16)

And k can be computed based on the following
equation

)(mod ndersk −−= (17)

Therefore, in the verification process u (algorithm
(4)) can be computed as shown below

).(mod nersu −= (18)

In the verification process X can be calculated as

kPPderdker

dPPnersQuPX

=−−++=

−−=−=

)(

))(mod((19)

PERFORMANCE COMPARISON OF ECDSA

AND THE PROPOSED SCHEME UPON
PRACTICAL IMPLEMENTATION

To test the time taken to verify a signature or to
generate a signature in ECDSA, and in the
proposed scheme, three sample inputs are used for
k and d. The impact of the message size on the
execution time is negligible.

All the algorithms are executed in a Dell laptop.
The laptop’s processor is Intel Centrino with speed
of 1.5GHz. It has 256MB RAM. Each of the
algorithms has been run five times and then the
time elapsed to execute the program at each run is
registered.

An Efficient Modified Elliptic Curve Digital Signature Algorithm

Journal of EEA, Vol. 26, 2009

71

The time taken to execute the ECDSA’s and the
proposed scheme’s verification process is shown in
Table 1. The corresponding average value is shown
for each of the three sample inputs. Only the
average values are given to save space.

As it can be observed from Table 1, the execution
time difference between corresponding value for
ECDSA and proposed scheme is very large. This is
as a result of reduced elliptic curve point
multiplications. Moreover, though the impact on its
improvement is negligible as the underlying field
size is increasing; two modular inversion
operations available in ECDSA are eliminated in
the proposed scheme.

Table 1: Average time taken to execute signature

verification of ECDSA and the proposed
scheme for each of the three sample inputs

Algorithm

Average elapsed time to verify a signature
(in seconds) – ECDSA vs. proposed scheme
For sample

input 1
For sample

input 2
For sample

input 3
32-
bit

64-
bit

32-
bit

64-
bit

32-
bit

64-
bit

ECDSA 0.31 1.144 0.33 1.09 0.318 1.19
Proposed
Scheme 0.165 0.55 0.16 0.53 0.17 0.39

Difference
in sec. 0.145 0.594 0.17 0.56 0.148 0.80

For each sample input the improvement in
percentage is calculated as

 %.100

secintimeverif.ingCorrespondsECDSA'
Sec.inDifference

× (20)

The result is depicted in Table 2. For 32-bit field
the overall average improvement is 48.28%. For
the 64-bit field the overall average improvement is
56.93%. It can be seen that the proposed scheme’s
signature verification process can run faster than
the ECDSA’s signature verification by about 48-
57%.

Table 2: Average improvement in percentage for

signature verification process ECDSA

Sample input

number

Average improvement for verification
process in percentage (%)

Signature verification
32-bit 64-bit

1 46.77 51.92

2 51.52 51.64

3 46.54 67.23

Sum 144.83 170.79

Average 48.28 56.93

In general, it is observed that above 45%
performance improvement can be achieved for
signature verification process.

CONCLUSION

A related new scheme is proposed and developed.
This new scheme and ECDSA are implemented for
comparison purposes. The signature verification
algorithm of the newly proposed scheme is found
to be above 45% faster than the verification process
of ECDSA. The test was performed for randomly
selected specific sizes of the private key d and the
one-time key k. The underlying field
implementation was up to 192-bit size. Potentially,
if further researches are conducted to examine its
security strength, we believe that the result will
play a great role in enhancing the speed of ECC
based digital signature schemes.

REFERENCES

[1] Menezes, A. Van Oorschot, P. Vanstone, S.

“Handbook of Applied Cryptography”, CRC
Press, pp. 1-165, 223-481, 1997.

[2] Wenbo Mao, “Modern Cryptocraphy: Theory

and Practice”, Prentice Hall, pp. 139-199, 305-
321, 2004.

[3] Stallings, W. “Cryptography and Network

Security: Principles and Practice”, Prentice
Hall, pp. 24-27, 235-394, 2003.

[4] Hankerson, D. Menezes, A. Vanstone, S.

“Guide to Elliptic Curve Cryptography”,
Springer, pp. 1-61, 75-147, 153-196, 2004.

[5] Shoup, V. “A Computational Introduction to

Number Theory and Algebra (version 1)”,
Cambridge University Press, pp. 1-73, 180-
281, 2005.

[6] Lewand, R. “Cryptological Mathematics”, The

Mathematical Association of America, pp. 1-
26, 141-176, 2000.

[7] Diffie, W. Hellman, M. “New Directions in

Cryptography”, http:// crypto.csail.mit.edu/
classes/6.857/papers/diffie-hellman.pdf, 1976.

[8] Rivest, R. Shamir, A. Adleman, L. “A Method

for Obtaining Digital Signatures and Public-
key Cryptosystems”,
http://theory.lcs.mit.edu/~rivest/rsapaper.pdf,
1977.

http://theory.lcs.mit.edu/%7Erivest/rsapaper.pdf

Tilahun Kiros and Kumudha Raimond

Journal of EEA, Vol. 26, 2009

72

[9] Bauer, F. “Decrypted Secrets: Methods and
Maxims of Cryptology”, Springer, pp. 8-43,
2000.

[10] Rosing, M. “Implementing Elliptic Curve

Cryptography”, Manning Publications, pp.
14-43, 104-120, 200-210, 1999.

[11] Rosner, M.C. “Elliptic Curve Cryptosystems

on Reconfigurable Hardware”, Master’s
Thesis, Worcester Polytechnic Institute,
http://www.crypto.ruhr-uni-
bochum.de/imperia/md/content/texte/theses/
ms_mrosner.pdf, 1998.

[12] Johnson, D. B. “ECC, Future Resiliency

and High Security Systems”
http://www.comms.scitech.susx.ac.uk/fft/cry
pto ECCFut.pdf, 2000.

[13] “The Elliptic Curve Cryptosystem ”,

http://www.comms.scitech.susx.ac.uk/fft/cry
pto/EccWhite3.pdf, 2000.

[14] Pietilainen, H. “Elliptic Curve Cryptography

on Smart Cards”, Master’s Thesis, Helsinki
University of Technology,
http://citeseer.ist.psu.edu/cache/papers/cs/25
616/http:zSzzSzwww.iki.fizSznipsuzSzDipp
azSzdi.pdf/blake00elliptic.pdf, 2000.

[15] Schneier, B. “Applied Cryptography:

Protocols, Algorithms, and Source Code in
C”, John Wiley & Sons, pp. 461-481, 1996.

[16] Turan, E. “ECDSA Optimization for ARM

Processors for a NIST Curve Over GF(2m)”,
Master’s Thesis, Oregon State University,
http://security.ece.orst.edu/papers/01Turan.h
tml, 2001.

[17] “Certicom ECC Challenge”,

http://www.certicom.com/download/aid-
111/cert_ecc_challenge.pdf, 2006.

[18] Krasner, J. “Using Elliptic Curve
Cryptography (ECC) for Enhanced
Embedded Security “
http://www.certicom.com/download/aid-
355/WP-enhancedSecurity.pdf, 2004.

[19] Johnson, D. and et al, “The Elliptic Curve

Digital Signature Algorithm (ECDSA)”,
http://www.certicom.com/download/aid-
27/ECDSA.pdf, 2001.

[20] Vanstone, S. “Elliptic Curve Cryptography:

The next generation of wireless security”,
http://www.certicom.com/download/aid-
322/CIC_Markt& Technik_ECC.pdf, 2004.

[21] Tanik, H. K. “ECDSA Optimizations on an

ARM Processor for a NIST Curve Over
GF(p)”, Master’s Thesis , Oregon State
University,
http://islab.oregonstate.edu/papers/01Tanik.
pdf, 2001.

[22] Balasubramaniam, P. et al ,“Implementation

Issues in Elliptic Curve Based
Cryptosystem”, TRANSACTION ON
CRYPTOLOGY, vol. 3, Issue 1, 2006.

[23] Eddy, W. et al, “An Interoperability

Consideration in Selecting Domain
Parameters for Elliptic Curve
Cryptography”, RS Information Systems,
Inc.,
http://gltrs.grc.nasa.gov/reports/2005/CR-
2005-213578.pdf, 2005.

[24] Joye, M. “Compact Encoding of Non-

Adjacent Forms with Applications to Elliptic
Curve Cryptography”, Springer-Verlag,
http://intro.gemplus.com/smart/rd/publicatio
ns/pdf/JT01nafe.pdf, 2001.

http://www.comms.scitech.susx.ac.uk/fft/crypto%20ECCFut.pdf
http://www.comms.scitech.susx.ac.uk/fft/crypto%20ECCFut.pdf
http://www.comms.scitech.susx.ac.uk/fft/crypto/EccWhite3.pdf
http://www.comms.scitech.susx.ac.uk/fft/crypto/EccWhite3.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/25616/http:zSzzSzwww.iki.fizSznipsuzSzDippazSzdi.pdf/blake00elliptic.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/25616/http:zSzzSzwww.iki.fizSznipsuzSzDippazSzdi.pdf/blake00elliptic.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/25616/http:zSzzSzwww.iki.fizSznipsuzSzDippazSzdi.pdf/blake00elliptic.pdf
http://security.ece.orst.edu/papers/01Turan.html
http://security.ece.orst.edu/papers/01Turan.html
http://www.certicom.com/download/aid-111/cert_ecc_challenge.pdf
http://www.certicom.com/download/aid-111/cert_ecc_challenge.pdf
http://www.certicom.com/download/aid-355/WP-enhancedSecurity.pdf
http://www.certicom.com/download/aid-355/WP-enhancedSecurity.pdf
http://www.certicom.com/download/aid-27/ECDSA.pdf
http://www.certicom.com/download/aid-27/ECDSA.pdf
http://www.certicom.com/download/aid-322/CIC_Markt&%20Technik_ECC.pdf
http://www.certicom.com/download/aid-322/CIC_Markt&%20Technik_ECC.pdf
http://islab.oregonstate.edu/papers/01Tanik.pdf
http://islab.oregonstate.edu/papers/01Tanik.pdf
http://gltrs.grc.nasa.gov/reports/2005/CR-2005-213578.pdf
http://gltrs.grc.nasa.gov/reports/2005/CR-2005-213578.pdf
http://intro.gemplus.com/smart/rd/publications/pdf/JT01nafe.pdf
http://intro.gemplus.com/smart/rd/publications/pdf/JT01nafe.pdf

