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ABSTRACT

Beams are widely used as structural elements and
machine elements in civil, mechanical, naval and

aeronautical engineering with quite complex

design j'eatures These structural and machine

elements are designed j'or different load conditions,
with good range oj' saj'ety j'actors, and are
inspected regularly. Still, unexpected and sudden

j'ailures oc('ur due to the presence oj' flaws or
cracks. ThiS paper discusses the behaviour oj' a
cracked Timoshenko beam under vibration.

PartIcularly, the effect oj' crack depth and location
along the beam length is treated and results

obtained by the j'inite element method are
presented. The effect oj' crack is intrqc/uced in the

system by considering stress intensity j'actors at the
crack tip j'or different crack modes which give the

energy release rate due to the crack. The energy
release rate is then used to determine the

compliance oj'the cracked element j'rom which the

stiffness oj'the beam element can be determined.

INRODUCTION

The need for quantitative damage investigation and
detection methods that can be applied to complex
structures has led to the continued development of
methods which can be applied to examine static
and dynamic characteristics of structures. In the
past three decades, researchers have used open and
closed crack models in their investigation of the
behaviour of cracked beams subjected to vibratory
motion. Dimarogonas and Chondros [4] used local
flexibility matrix to simulate the stiffness of the
shaft system with opening crack. Maiti [9], Tsai
et.a/. [20] and Ostachowicz et.a/. [11], in their
study of crack in a structural element assumed the
crack to be open and that it remained open during
vibration. Such an assumption avoids the
complexities that may result from the non-linear
characteristics present in a breathing crack.

Likewise, other researchers have implemented
closed crack model in their work for investigation
of crack behavior. Among them, Chondros and
Dimarogonas [2]. Dimarogonas and Paipetis [3],
and Shen [16] dealt with closed crack model to

study the dynamic response of structural members
\vith variable elasticity.

To study the behavior of crack in structures,
vibration parameters like compliance, mechanical
impedance and damping factors have played great
role. The presence of crack in a structure affects,
directly or indirectly, these vibration
characteristics. Specifically, the eigen frequency
and mode shapes of structures are affected by the
inclusion of cracks. For this reason researchers

have focused on these parameters to investigate the
behavior of crack. Pandey et.a/. [13] investigated
the behavior of crack as related to mode shape of
structures. They have shown that the absolute
changes in the curVature mode shapes are localized
in the region of damage and hence can be used to
analyze the damage in the structures. Sekhar et.a!.

[15], Qain et.al [14], Sinha et.a/. [17], Chinchalkar
[I], Maiti et.al [8], Ostachowitcz et.al [12], Matijaz
[18], Gouanaris et.al [5], Nikolakopouloz, et. al

[10] have proposed different approaches to analyze
crack problems of structural vibration. Skrinar [18J

presented a generalization of a simple mathematical
model based on the FEM for transverse motion of a

beam with crack. Maiti et.a/. [8] have used both the
forward method, in the determination of vibration
characteristics of a beam knowing the crack
parameters, and the inverse method, determination
of crack parameters from known vibration
characteristics. Vibration characteristics of cracked

Timoshenko beams have also been analyzed by
using the finite element method [7].

In this paper investigation of crack behavior of a
cantilevered Timoshenko beam is dealt with and

solutions are obtained by using the finite element
method. To avoid complexities that may arise from
non-linearity of the system, the crack is modeled as
an open crack. In addition, the beam supports a
mass at the free end. The natural frequencies and
mode shapes of vibration are dete.mined which are
helpful in the detection of the presence of crack
without disassembling the system.

CRACK MODELING

In order to study the behavior of crack in the beam,
some assumptions are introduced. The crack is
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(2)

(3)

considered as an. open crack with a lilliform
transverse crack depth across the width of the
beam. The f1exural rigidity of the beam is constant
except at the cracked clement, where the moment
of inertia will be affected due to the presence of the
crack.

According to Saint- Venant's principle, the
presence of the crack affects the stress field only in
the region adjacent to the crack which in turn
affects the element stiffness matrix in the vicinity
of the crack. To find appropriate shape functions to
express the kinetic energy and elastic potential
energy of the crackcd element is difficult because
of the discontin4ity qf deformation due to the
presence of the crack. IIowever, the energy release
rate due to the crack, obtained from studies made in

fracture mechanics [ 19], can be utilized to
determine the flexibility coefficients from the stress
intensity factor by using Castigliano's theorem.
These flexibility coefficients can then be used to
determine the stiffuess of the cracked element.

Consider a cantilever beam of length I with given
stiffness properties and cross sectional dimensions
b x h, and a transverse crack of depth a (see Fig. I).
In general, the beam is subjected to the applied

loads shown in the figure where P, is an axial load;

P, and PJ are shear forces; and P4 and Pj are

bending moments. In the study of the effect of the
presence of a crack in the transverse vibration of a
cantilever beam presented in this paper, only

bending mom.ent about the z-axis Pj' and the shear

force PJ parallel to the y-axis due to the tip force
are considered.

where, J(a) is the strain energy density function
(SEDF) or the J-Integral,

P, is the load corresponding to the

displacement U I' and

a is crack depth.

The local flexibility coefficients' due to the crack
can be obtained by using Castigliano's theorem,

and are given by.

cr aUj . a2 [ra () ]
c =-=-- J a da

ij ap apap·o
J 'J

Integrating the strain energy density flillction along
the width b, the local flexibility coefficients of the
cracked element are obtained, in non-dimensional
form, as

au 1 a2 [fb fa () ]
ccr = -' = ---- J a dadz

Yap) b apiap) 0 0

The J integral is evaluated from the stress intensity

factors at the crack-tip. As concerns the crack-tip

stresses, crack mode due to the bending moment Pj

is the opening mode, mode 1, whereas the load p)
induces both openiTlg and sliding modes, modes I
and II. The stress intensity factors that correspond

to these crack modes are given by [20]

K = 3P3L r;(;;F ,the stress intensity due to
11 bh2 'I/"U I

shear force for mode I (5)

The local flexibility coefficients c)), Cl5 and C55

are obtained by combining Eq. (3) with Eqs. (4)-(6)
which, in non-dimensional form, are given by

y
z

Figure I Loaded beam element with transverse
crack

KIlJ = (TJ~Fll (~) , where (T = PJh J bh

cr au 1 a2 [bc,) = ap~ = b ap'ap) L r J(a)dadz]

(6)

(7)

The displacement field Ui, due to the presence of

the crack of depth a, has been derived by Paris [20]
and is given by the equation

II, = a~j [r J(a)da]
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(I)

The J integral, which is a function of the crack
length, is given by [20]

J(a) = ~, [(Kn + KIS + K~J] (8)

Substituting for the stress intensity factors from
Eqs. (4) - (6), the J integral is obtained as
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J a ol..[1 jp,LF,/;;;i' +2[3p,LF,r;;;Y6p,r;;;F, \J+[6P,r;;;F')' +[p,r;;;F,,)']( ) E' l bllJ) thl A bhl bhl bh

(9)
Substituting for J(a) in Eq. (7) and carrying out the
integration, the tlexibility coefficients, for an

element of the beam of length Ie that carries the
crack, are obtained to be

" ;rr[181,F/]a2C35 = E' f7ii4 2"

(10)

(11 )

(12)

In the formulation of transverse vibration of a

Timoshenko beam, the effect of rotary inertia and
shear deformation are included, which are ignored
in Bernoulli beam analysis. Due to the shear
deformation, a plane normal to the beam axis
before deformation does' not remain normal to the
beam axis .after the deformation. The kinematics of

deformation of the beam is shown in Fig. 3. To
derive the equation of motiorr of the beam, energy
method is used. ~

Let u and v be the axial and transverse

displacements of the beam, respectively. Because
of the shear deformation, the slope of the beam e is
different from dv. Instead, the slope is given by

dx .

B = dv _ r where r is the transverse shear strain.
dx

Consequently, the displacement field for the beam
can be written as

From Eqs. (13) and (14), the axial and shear strains
are

vex) = v (14)

where the x-axis is located along the neutral axis of
the beam.

TIMOSHENKO BEAM FORMULATION

A cantilever beam of length I and cross sectional

area b x h carrying a mass M T at the tip is­
considered for analysis.

I--B[ ~l_ -.J
Figure 2 Cantilever beam with mass at the tip

u(x,y) = -ye(x)

dB

[; = -y dx
dv

y= -B+ dx

(n)

(15)

(16)

Bv/B..x-y

Bv/Bx

y, ( /'
I__ ~/ __ ----+---

Figure 3 Kinematics of Timoshenko beam deformation

x, u
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Element stiffness matrices- of an un-cracked
element

The stiffness matrix of an uncracked element is

obtained from strain energy considerations. The

strain energy for an element of length Ie is

H = X2 - x, H = x - XI using physical
I I 2 I, e

coordinate, or
I I

HI=2(1-~} H2=2(1+q-) usmg an

isoparametric element.

From Eq. (18), the element stiffness matrix due to
bending is obtained to be

Substituting fer e from Eq. (20) and carrying out
the integration, after simplifications the element
stiffness matrix is obtained to be

. b f I, f h 2 T b K f " f hi' rL=- t:Et:dvdr+- rGrdydr
2 0 -h 2 • 2 0 -h,"

(1-)

The first term in Eq (I 7) is the bending strain
energy and the second term is the shear strain
energy. K is the shear correction coefficient that
depends on the cross section. For rectangular cross

sections, '" = ~ [1. 3]
6

[K']= ~fl,(dBY EJ(dB)dxb 2 0 dxJ dx
(21 )

Substitutmg Eqs. (15) and (16) in Eq. (17) and
integrating \"ith re~pect to y gives

(22)

Similarly, the element stiffness matrix due to shear
strain energy is given by

\\'here [ and A are the moment of inel,la and cross

sectional area of the beam, respectively. (23)

To derive the element stiffness matrix for the beam,

the variables v and B are interpolated within each

element. For a generic element, the nodal

displacements, VI' ()I for node I, and V2' 8, for

node 2 are shown in Fig. 4.

Yi

--­
x

Substituting for v and e , and upon integration, the
element stiffness matrix due to shear strain is

r 4 2/ -4 2/

[K;] = KGA 2/, I,; - 2/, I," I

(24)
4/, -4 -2/, 4 - 21, _2/, I; - 2/, I,'

Stiffness matrix ofthe element that carries the
crack

Figure 4 Element nodal displacements

Using these nodal displacements and linear shape
functions, the displacements V and () are

v = [HI H,J{:J

8 = [HI H,J{::}

(19)

(20)

The loading condition of the element of the beam
that includes the crack is shown in FigS

(tl + I)
Ps=P Ij-~~t Pj=M• ~ I

where Hj and H2 are linear shape functions given

by
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Figure 5 Schematic representatioI'L of an element of
the beam with crack

The stiffness of this element is obtained by
determining the compliance of the element from
strain energy considerations. The strain energy of
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The total flexibility coefficient will then include the
part due (0 stram energy without crack and the

strain energy with crack and is given by

the element is obtained by considering first the
uncracked situation to which the crack strain

energy is then added. The strain energy of the
element without the crack IS obtained by

considering bending strain energy and shear strain
energy.

The.bending strain energy is

(30)

The shear strain energy can be expressed by [3]

U = iJh f" [(-A!f!J' + 2 Ai!'. P(l, - x)h + (P(I, - X)h)' Lb 2£ 0 21 21 21 21 f
or,

3 [ P'J ']
Ub =- M't, +:\fPt,' +-'-2E1 3

(26)

where e(nc.) is the compliance of beam due toI)

strain energy without crack,

e(a) is the compliance of beam due toI)

strain energy 0[' crack

where K is the shear coefficient, A is area of the

beam cross-section of beam, r is the shear angle,

and r is the shear stress. The shear angle and the

shear stress are given by, respectively, r = rp_ Ov ,
ax

where cp is the rotation of cross-section; and, = 3P
2A

The total strain energy is the sum of strain energy
due to bending and shear.

From equilibrium condition of the element we
obtain

where [N] is the nodal transfer matrix given by

[-I 01
[N]= -/' -01 I

o I J

The stiffness matrix of the cracked element is

obtained from the flexibility matrix by applying the
given transformation matrix [II].

(33)

(32)

[P ] 1 T

t~,= [N]{:,')
lP."M'd

(28)

(27)

U=U.+U,

3 [ P't'] 9 KP't
U=-"M't +lvlPJ'+--' +---'

2E1 ' , 3 8 GA

I fl,
U =- KrAdx

, 2 0

The flexibility coefficient for the element without
considering the crack is

c(~) = ~, wherep, = p, P, =M; i, j= 3,5 (29)
, 8P,8PJ

Having obtained the stiffness matrices for the

cracked beam element [K:r], and for the uncracked

elements [K;], the element stiffness matrices are

assembled to give the global stiffness matrix IK]

Hence, the flexibility coefficients are obtained to be
The consistent mass matrix of an element of the
beam

The flexibility coefficient matrix of an element
without considering the effect of the crack is given
by~

The consistent mass matrix of the beam is

computed from relations for the kinetic energy of
the system. The kinetic energy of the beafll is

T=.!.f Jp(u'+v2):tAdx
20 A(x)

Evaluating iI and V from Eqs. (8) and (9), the

kinetic energy becomes

Journal of EEA, Vol 23, 2006
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In Eq (36) the first term is due to the translatory
inertia and the second term is due to rotary inertia.
Introducing the shape functions in Eq. (36), the
mass matrix can be computed from the translatory

mass 1'vf ,: and rotary mass ~OI of the elemerit and

are given by
I,

.\.f,~= f mBT Bdx'
o

/,

Me = fmr' BT Bdx'm'
o

where [B] is the derivative of the shape funetion
matrix.

Introducing I (x) = L y' dA, moment of inertia of

the cross section, In = Ap , mass 'per unit length of

beam element, and r' =!.-, where r is the radius of
A

gyration of the cross section,
thc equation of the kinetic energy of a beam
element becomes

(38)

EQUATION OF MOTION

wqere [K] is the global stiffness matrix, [M] is the
global mass matrix, OJ is the angular frequency,

and {¢} is the modal shape.

The system characteristic equation for free
vibration is

NUMERICAL EXAMPLE AND DISCUSSION
OF RESULTS

The method discussed in the paper has been
applied to a cracked cantilevered Timoshenko
beam for two cases: the first beam considered is a

test beam for experimental investigation, and the
second one is an actual beam of significant
dimensions.

Once the mass and stiffness matrices are obtained,
the equation of motion for free vibration of the
beam is given by

(36)I If" ., I If" ,',

7 = - mv dx + - mr e dx
20 20

Carrying out the integration, the mass matrices due
to the translatory inertia and rotary inertia are
obtained to be

Effect of crack position and crack depth ratio on
the natural frequency ratio

20I0

,\f,~ ; m:'1 ~

00o I,and

0

20

0

000

r 1o -1 01

mr'l 0 0

0

~j
.\I;" = ~f- _ I 0

1
. lo 0

0

The element mass matrix of the beam element that
carries the applied mass iI/I at the tip should include
the applied mass and is given by

/,

M,: = f mBT B dx + M T [B(t.)Y[B(t.)]
o

which, upon simplification yields

In order to make a detailed discussion of the effect

of crack depth ratio on the natural frequency ratio
of a cracked beam to that of an uncracked beam, a
numerical example is presented. A test beam with
geometric properties l=O.2m, h=O.0078m,
b=O.025m, and material properties p="7850kg/m2,
E=2l6MPa and G=90MPa has been considered.

Fig. 6 exhibits the results obtained, i.e. the ratio of
the frequency of the cracked beam to that of the
uncracked beam, for different crack depth ratios
alh. From the figure it can be observed that, for the
same crack depth ratio, the frequency ratio
decreases as the crack position gets closer to the
built-in end, indicating that the dangerous crack
position is near the fixed end. The results obtained
closely tally with those obtained by Kisa et al [6]
who derived the stiffness matrix by dividing the
beam into two components connected by a spring.

[2 0 I 0

m! '0 0 0 0

.\I" ; 6~ 1 0 2 0

o 0 0 0 ro 0 0 0

o 0 0 0
+M

TOO I 0

o 0 0 0
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Figure 6 Fundamental (first) frequency ratios for different crack positions

Effect of crack position and crack depth ratio on
the natural frequencies and mode
shapes

To conduct. a detaile'd discussion of the effect of

crack depth ratio on the natural frequencies of a
cantilever beam, a beam with geometric properties
1=O.6m, h=0.05m, b=0.06m, and material

properties p=7850kg/m3, E=216MPa and
G=90MPa is considered.

The comparison of the first and second natural
frequencies obtained for the cracked and uncracked

beams are given in Table I for different crack
depth ratios Moreover, the effect of the tip mass

A1 T is also included. From the figures given in the

table, one can conclude that the presence of the
crack reduces the natural frequency, and as the
depth crack ratio increases, the natural frequency
decreases significantly. The addition of the tip
mass reduces the natural frequency significantly,
which has been aggravated by the presence of the
crack

The effect of the presence of the mass A1 is

depicted in Fig. 7. As can be clearly observed from

the figure, the fundamental frequency of the
cracked beam is reduced appreciably by the
presence of the tip mass for all depth ratios.

Table 1 Natural frequencies of the cracked beam for varying crack depth ratios, for a crack located at element
seven

First Natural Frequency Second Natural Frequency

I

Beam withBeam withBeam withBeam withBeam withBeam withBeam withBeam with
no crack

crackno crackcrackno crackcrackno crackcrack
Crack

andandand with aand aandandand with aand a
Depth

withoutwithoutmass atmass at thewithoutwithoutmass at themass at the
ratio

massmassthe tiptipmassmasstiptip
0

262.68262.6894.7294.721680.381680.381213.641213.64
0.1

262.6825904494.7291.641680.381464.601213.641050.47
0.2

262.68258.92094.7291.541680.381458.401213.64104609
0.3

262.68258.66694.7291.321680.381445.981213.641037.29
0.4

262.68258.15494.7290.901680.381421.891213.641020.40
0.5

262.6825703494.7290.001680.381373.171213.64986.86
0.6

262.68254.31194.7287.871680.381273.191213.64920.38
0.7

262.68247.27194.7282.811680.381094.501213.64808.28
0.8

262.68229.83994.7272.351680.38867.83 .1213.64676.28
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Figme 7 Changes of the first natural frequencies as a function of the crack depth at clement seven with and

witho_ut tip-mass

Mode shapes of the cracked and uncracked beam
with and without a mass at the free end have been

studied. The rcsults are shown in Fig. 8 where the
deviation of the mode shapes for the fundamental
and second modes of the cracked and uncracked

beam are presented For all cases the position of the
crack is located at mid-span of the beam. As can be
noted from thc mode shape diagrams, the

displacement of the crackcd beam is higher in
comparison to that of the uncrackcd beam, clearly
indicating that the effcct of crack increascs the
displacement of the beam. It can also bc ohserved
that application of the tip mass also significantly
increases the displacement of the crack cd heam.
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Figure 8 a) First and second mode shapes of the beam with crack (continuous line) and without crack (dashed

line) with no tip mass; b) mode shapes with crack (contmuous lme) and without crack (dashed line)
with a tip mass
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CONCLUSION

l[mJ

Figure 9 Deviation of first mode shape due to crack
for beam without mass .

Figure 9 shows the deviation of the displacencent of
the cracked beam from that of the uncraeked beam

for the fundamcntal mode, i.e. the mode shape
deviation of the fundamental mode. It is evident

from the mode shape deviation that there is a sharp
change in the slope at the crack location as
indicated bv the discontinuity at mid-span.
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