Main Article Content
Diffusive gradient in thin-films (DGT) as risk assessment and management tools in the Central Witwatersrand Goldfield, South Africa
Abstract
Diffusive gradient in thin-films (DGT) technology was used to monitor bio-available metals and the tool was developed for risk-based pollution assessment and liability apportionment in the Witwatersrand Goldfields, South Africa, where there is widespread mine-related pollution. DGT technology is a passive sampling technique whereby metal species are selectively diffused from polluted water through a diffusion layer and trapped by an inner chelating resin, giving rise to time-weighted average concentrations.
The results show that the concentrations of most hazardous metals recorded from grab samples are higher than values recorded from DGT samplers, resulting in inaccurate input information to risk assessors, the public and decision makers. DGT samplers deployed along upper, middle and lower reaches of Elsburgspruit, a stream southeast of Johannesburg, provided data which could assist in evaluating the source and evolution of metals along the stream length. DGT samplers deployed in 5 augers at different depths around a tailings dam showed that liming and trenching fails to contain deep seepage of trace metals. The results highlight the potential of using DGT samplers as a monitoring tool for providing accurate metal pollution information, assessing source and evolution of metals in streams or rivers for apportionment of liabilities, and evaluating the success of current contaminant containment methods.
Keywords: Diffusive gradient in thin-films, binding gel, hydrogel, grab samples, diffusive boundary layer