Main Article Content

Framework for implementation of the Pitman-WR2012 model in seasonal hydrological forecasting: a case study of Kraai River, South Africa


Abstract

Hydrological forecasting becomes an important tool in water resources management in forecasting the future state of the water resources in a catchment. The need for a reliable seasonal hydrologic forecast is significant and is becoming even more urgent under future climate conditions, as the assimilation of seasonal forecast information in decision making becomes part of the short and long-term climate change adaptation strategies in a range of contexts, such as energy supply, water supply and management, rural urban, agriculture, infrastructure and disaster preparedness and relief. This work deals with the framework for implementation of the Pitman-WR2012 model in a hydrological forecasting mode. The Pitman-WR2012 model was forced with 10-member ensemble seasonal climate forecast from Climate Forecast Systems v.2 (CFSv2), which is downscaled using the principal components regression (PCR) approach. The generated seasonal hydrological forecast focused on the summer season, in particular on the Dec–Jan–Feb (DJF) period, which is the rainy season in the studied catchment (Kraai River catchment in the Eastern Cape Province of South Africa). The hydrological forecast issued at the end of November showed skill in December and February (assessed through Receiver Operating Characteristic (ROC) and Ranked Probability Skill Score (RPSS)), with poorer skill in January. Importantly, the skill of streamflow forecast was better than that of rainfall forecast, which likely results from the influence of the initial conditions of the hydrological model. In conclusion Pitman-WR2012 model performed realistically when implemented in seasonal hydrological forecasts mode, and it is important that in that mode the model is run with near-real-time rainfall data in order to maximize forecast skill arising from initial conditions.


Journal Identifiers


eISSN: 1816-7950
print ISSN: 0378-4738
 
empty cookie