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ABSTRACT
Solar still productivity (SSP) essentially describes the performance of solar still systems and is an important factor to consider 
in achieving a reliable design. This study presents the use of artificial neural networks (ANN), adaptive neuro-fuzzy inference 
systems (ANFIS), and multiple regression (MR) for forecasting the SSP of an inclined solar still in a hot, arid environment. 
The experimental data used for the modelling process included meteorological and operational variables. Input variables 
were relative humidity, solar radiation, feed flow rate, and total dissolved solids of feed and brine. The models were assessed 
statistically using the correlation coefficient (CC), root mean square error (RMSE), overall index of model performance (OI), 
mean absolute error (MAE), and mean absolute relative error (MARE). Overall, ANN was shown to be superior (CC = 0.98, 
RMSE = 0.05 L·m−2·h−1, OI = 0.95, MAE = 0.03 L·m−2·h−1, and MARE = 8.92%) to ANFIS and MR for SSP modelling. The 
relatively low errors obtained by the ANN technique led to high model predictability and feasibility of modelling the SSP. 
Thus, our findings indicate that ANN can be applied as an accurate method for predicting SSP.
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INTRODUCTION

A solar still is a simple device that uses solar energy to convert 
available brackish or saline water into fresh water for both 
domestic and agricultural applications. However, solar stills 
are not attractive in the market owing to their low productivity. 
Researchers worldwide have worked on the enhancement of the 
productivity of solar stills (Mashaly et al., 2016; Gupta et al., 
2016; Rabhi et al., 2017; Panchal and Mohan, 2017). In general, 
experimental investigations and studies are expensive and 
time consuming. �erefore, some scientists and researchers 
have focused on mathematical modelling to �nd and examine 
important parameters and better designs for solar stills (Tiwari 
and Rao, 1984; Sartori, 1987; Toure and Meukam, 1997). 
Unfortunately, all of the above cited studies rely on mechanistic 
internal heat and mass transfer (HMT) models. �ese models 
typically require simplifying assumptions concerning the 
relative magnitude of several elements of HMT.

�e large amount of data required to measure the 
parameters needed for evaluating and validating an HMT 
model limit the e�ectiveness of such approaches in predicting 
solar still productivity (SSP). Although HMT models have been 
used e�caciously in the past, the amount of time and data 
storage, and the frequency of calculations and measurements 
they require, might e�ectively make this methodology 
infeasible in many parts of the world today. So� computing 
techniques have a potential advantage for forecasting SSP 
in that they require fewer parameters compared to HMT 
models. So� computing is an innovative methodology for 
building computationally intelligent systems. So� computing 
techniques can be used as alternative methods because they 
have advantages such as not requiring knowledge of internal 
system parameters, consuming less time, providing simpler 

solutions for multi-parameter problems and enabling factual 
computation (Huang et al., 2010). 

As stated by Zadeh (1992), so� computing is an emerging 
approach towards computation that parallels the aptitude 
of human intelligence to understand in an environment 
of inaccuracy and uncertainty. So� computing comprises 
arti�cial neural networks (ANN), genetic algorithms (GAs), 
fuzzy logic (FL), adaptive neuro-fuzzy inference systems 
(ANFIS), support vector machines (SVMs), and data mining 
(DM). �ese approaches o�er advantages over conventional 
modelling methods, including the capability to handle large 
amounts of noisy data from dynamic and non-linear systems, 
particularly when the underlying physical processes are not 
fully comprehended. Many so� computing methods have 
been used in recent years to estimate the performance of 
solar-based systems, with ANFIS and ANN being the most 
popular. ANFIS and ANN applications have been used in 
estimating the performance of solar chimney power plants 
(Amirkhani et al., 2015), evaluating the control system for 
a solar-powered membrane desalination system (Porrazzo 
et al., 2013), calculating daily global solar radiation under 
sub-humid environments (Quej et al., 2017), and assessing a 
parabolic trough solar thermal power plant (Boukelia et al., 
2017). Moreover, ANN has been used to compute thermal 
performance parameters of solar cookers (Kurt et al., 2008), to 
analyse the performance of triple solar stills (Hamdan et al., 
2013), and to optimize solar still performance under a hyper-
arid environment (Mashaly et al., 2015).

In this study, two di�erent so� computing methods, 
ANN and ANFIS, were extended in order to estimate the 
productivity of an inclined solar still operating under arid 
conditions. �e two models were implemented systematically, 
and in each stage the best condition with the lowest error 
was selected, and following that the model with highest 
precision, between ANN and ANFIS, was selected. To assess 
and con�rm the e�ectiveness of the proposed models, they 
were compared with multiple regression (MR). �erefore, the 
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present study compares the e�ciency of ANN, ANFIS, and MR 
in the estimation of SSP using easily measurable weather and 
operational parameters.

MATERIALS AND METHODS

Experiment description

The experiments were conducted at the Agricultural 
Research and Experiment Station, Department of 
Agricultural Engineering, King Saud University, Riyadh, 
Saudi Arabia (24°44′10.90″N, 46°37′13.77″E), during the 
period February–April 2013, where the weather data was 
obtained from a weather station (model: Vantage Pro2, 
manufacturer: Davis, USA) located close to the experimental 

site (24°44′12.15″N, 46°37′14.97″E). The solar still system 
that was utilized in the experiments consists of one C6000 
panel (F cubed. Ltd., Carocell Solar Panel, Australia). 
The surface area of the panel was 6 m2. This solar still 
is manufactured as a panel using modern cost-effective 
materials, such as coated polycarbonate plastic. The panel 
heats and distils a film of water f lowing over the absorber 
mat of the panel. The panel was fixed at angle of 29° to the 
horizontal. The basic construction materials were galvanized 
steel legs, aluminium frame, and polycarbonate covers. The 
transparent polycarbonate was coated from inside with 
a special coating material to prevent fogging (patent for 
F cubed - Australia). The cross-sectional view of the solar 
still is presented in Fig. 1. The operational mechanism of the 
system is summarized in the following paragraphs.

Figure 1 
Photo and cross-sectional view of the inclined passive solar still used in the study
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Water was fed to the panel using a centrifugal pump 
(model: PKm 60, 0.5 HP, Pedrollo, Italy) with a constant 
�ow rate of 10.74 L·h−1. Eight dripper nozzles drip the feed 
causing a �lm of water to �ow over the absorbent mat. Under 
the absorbent mat is an aluminium screen that helps to 
distribute the dripping water over the absorber mat. Beneath 
the aluminium screen is a plate, also made of aluminium. 
Aluminium was selected for the manufacturing process 
because it is a hydrophilic material, and therefore facilitates 
even distribution of the sprayed water. �e water �ows through 
and over the absorbent mat, and as the solar energy is absorbed 
and partially collected inside the panel, the water gets heated 
and the resultant hot, humid air naturally circulates within the 
panel. �e hot air �ows in the upper part towards the top, and 
then reverses its direction towards the bottom.

By this circulation, the humid air touches the cooled 
surfaces of the transparent polycarbonate cover and the bottom 
polycarbonate layer, due to which the water condenses and 
�ows down the panel, and is collected as a distilled stream. 
Seawater was used as the feed water input to the system. 
Raw seawater was obtained from the Gulf, Dammam, East 
of Saudi Arabia (26°26’24.19” N, 50°10’20.38” E). �e solar 
still system was run during the period 23 February 2013 to 
23 April 2013. �e initial concentration of the total dissolved 
solids (TDS), pH, density (ρ) and electrical conductivity (EC) 
of the raw seawater were 41.4 g∙L−1, 8.02, 1.04 g·cm−3, and 66.34 
mS·cm−1, respectively. �e productivity or the amount of 
distilled water produced (SSP) for a given time period by the 

system was obtained by collecting the cumulative amount of 
water produced over the time period. �e temperatures of the 
feed (TF) and brine (TB) were measured using thermocouples 
(T-type, UK). Temperature data for the feed brine water were 
recorded on a data logger (model: 177-T4, Testo, Inc., UK) at 
1 min intervals. �e amount of feed water (MF) was measured 
by a calibrated digital �ow meter (Micro-Flo, Blue-White, 
USA) that was mounted on the feed water line. �e amount of 
brine water and distilled water were measured by a graduated 
cylinder. TDS and EC were checked using a calibrated (TDS) 
meter (Cole-Parmer Instrument, Vernon Hills, USA). A pH 
meter (model: 3510 pH meter, Jenway, UK) was utilized to 
determine the pH. ρ was measured by a digital density meter 
(model: DMA 35N, Anton Paar, USA). �e seawater was fed 
separately to the panel using the pump mentioned above. 
�e transit time for the water to pass through the panel was 
about 20 min. Consequently, the �ow rate of the feed water, 
distilled water and brine water were measured every 20 min. 
In addition, the total dissolved solids in the feed water (TDSF) 
and brine water (TDSB) were measured every 20 min. Weather 
data such as ambient temperature (To), relative humidity 
(RH), wind speed (WS), and solar radiation (SR) were obtained 
from the weather station mentioned above. Overall, we have 1 
dependent variable, SSP, and 9 independent variables, which 
are To, RH, WS, SR, TF, TB, TDSB, TDSF, and MF. A sample of 
the meteorological and operational data is presented in Table 
1. Summary statistics of the available experimental data are 
presented in Table 2.

TABLE 1
Sample of obtained weather and operational variables for 1 day

Date Time To
(°C)

RH
(%)

WS
(km·h−1)

SR
(W·m−2)

TF
(min−1)

TF
 (°C)

TB
(°C)

TDSF
(g∙L−1)

TDSB
(g∙L−1)

SSP
(m2·h−1)

24/02/2013 9:00 22.00 18.57 5.28 528.33 0.24 33.83 44.88 48.20 59.40 0.58

10:00 23.58 17.21 6.57 656.94 0.24 35.56 47.73 48.87 64.93 0.75

11:00 24.86 16.08 7.18 717.62 0.24 36.87 49.65 49.90 69.50 0.81

12:00 26.25 13.25 7.14 713.95 0.24 37.86 49.61 51.13 70.67 0.78

13:00 26.79 13.00 6.33 632.75 0.24 38.56 48.52 52.30 68.13 0.64
14:00 26.93 13.46 4.91 490.68 0.25 38.38 44.96 53.47 63.60 0.44

15:00 26.45 14.00 3.12 311.57 0.25 37.18 38.82 54.27 58.83 0.21

To: ambient temperature; RH: relative humidity; WS: wind speed; SR: solar radiation; TF: temperature of feed water; TB: temperature of brine water; 
MF: feed �ow rate; TDSF: Total dissolved solids of feed; TDSB: total dissolved solids of brine.

TABLE 2
Summary statistics of the available experimental data

Variable AVG MIN MAX SD MED SD KR SK CV

To 26.64 16.87 33.23 0.29 26.86 3.68 −0.56 −0.40 13.81
RH 23.36 12.90 70.00 1.02 18.86 12.90 2.93 1.93 55.21
WS 2.44 0.00 12.65 0.25 1.30 3.12 3.39 2.03 127.53
SR 587.55 75.10 920.69 14.38 637.03 181.93 −0.32 −0.59 30.96
TF 36.66 22.10 42.35 0.34 37.73 4.27 −0.02 −0.78 11.66
TB 49.58 27.59 68.69 0.64 49.19 8.16 0.26 0.21 16.45
MF 0.21 0.13 0.25 0.00 0.24 0.04 −0.73 −0.87 20.00
TDSF 80.23 41.40 130.00 2.33 73.30 29.42 −1.32 0.30 36.67
TDSB 95.54 46.20 132.80 2.34 92.15 29.59 −1.63 −0.04 30.98
SSP 0.50 0.05 0.97 0.02 0.52 0.24 −1.06 −0.08 47.71

To: ambient temperature; RH: relative humidity; WS: wind speed; SR: solar radiation; TF: temperature of feed water; TB: temperature of brine water; MF: 
feed �ow rate; TDSF: Total dissolved solids of feed; TDSB: total dissolved solids of brine; SSP: solar still productivity; MIN: minimum value; MAX: maximum 
value; AVG: average value; SD: standard deviation; CV: coe�cient of variation; SK: skewness coe�cient; MED: median value; KR: kurtosis coe�cient.
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Artificial neural networks (ANNs)

ANNs are computational modelling tools that attempt to 
simulate structures or functions inspired by biological neural 
networks. In this study, the feed-forward back propagation 
algorithm (FFBPA) is used for the ANN model. �e FFBPA 
neural network is the most popular and widely used ANN 
architecture (Rumelhart et al., 1986). It consists of one input 
layer, one or more hidden layers and one output layer. �e ANN 
architecture used for this study is demonstrated in Fig. 2. �e 
input layer (i) is connected to the hidden layer (j), which is 

in turn linked to the output layer (k) through the connection 
weights (W) and biases (B). �e weights are used to change the 
parameters of the throughput and the varying connections 
to the neurons (n). �e biases are connected to all neurons 
in the hidden and output layers and used to maintain the 
universal approximation of the ANN. A neuron (processing 
element) comprises of 2 parts in the hidden layer. �e �rst 
part aggregates the weighted inputs adding up to a quantity 1. 
�e second part is the transfer/activation function that assists 
the translation of the input parameters (the activation values 
of the nodes) into the desired output parameter. �e precise 

Figure 2
Schematic diagrams for (a) adaptive neuro-fuzzy inference system (ANFIS), (b) artificial neural network (ANN) and (c) multiple regression (MR)
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mathematical expression and explanation of the ANN are as 
follows (Haykin, 1999): �e output layer neuron (Yk) can be 
expressed as follows: 

      Yk = fo(nkj)  (1)

where nkj is the input to the k-th output neuron and can be 
estimated using the formula:
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Further, the neuron’s activation value (hj) in the hidden layer is 
mathematically expressed using the following formula:

   

 

𝑛𝑛𝑘𝑘𝑘𝑘 = ∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  ℎ𝑘𝑘 

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘  

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 (∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  ℎ𝑘𝑘 

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘) 

 

ℎ𝑘𝑘 = 𝑓𝑓(𝑛𝑛𝑘𝑘𝑗𝑗) 

 

𝑛𝑛𝑘𝑘𝑗𝑗 = ∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘  

 

ℎ𝑘𝑘 = 𝑓𝑓ℎ (∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘) 

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 (∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  (𝑓𝑓ℎ (∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘))

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘) 

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 [(𝐵𝐵2)𝑘𝑘 +  ∑ [(𝑊𝑊2)𝑘𝑘𝑘𝑘  𝑓𝑓ℎ ((𝐵𝐵1)𝑘𝑘 +  ∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
)]

𝑁𝑁𝑗𝑗

𝑘𝑘=1
] 

 

 

𝑓𝑓(𝑥𝑥) = 1
1 + 𝑒𝑒𝑥𝑥𝑒𝑒(− 𝑥𝑥) 

 

𝑓𝑓(𝑥𝑥) = 1 − 𝑒𝑒𝑥𝑥𝑒𝑒(− 2𝑥𝑥)
1 + 𝑒𝑒𝑥𝑥𝑒𝑒(− 2𝑥𝑥) 

 

𝑓𝑓(𝑥𝑥) = 2
𝑒𝑒𝑥𝑥𝑒𝑒 (𝑥𝑥) + 𝑒𝑒𝑥𝑥𝑒𝑒(− 𝑥𝑥) 

  (4)

where nji is the input of the j-th neuron in the hidden layer, 
which is calculated from:

  

 

𝑛𝑛𝑘𝑘𝑘𝑘 = ∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  ℎ𝑘𝑘 

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘  

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 (∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  ℎ𝑘𝑘 

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘) 

 

ℎ𝑘𝑘 = 𝑓𝑓(𝑛𝑛𝑘𝑘𝑗𝑗) 

 

𝑛𝑛𝑘𝑘𝑗𝑗 = ∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘  

 

ℎ𝑘𝑘 = 𝑓𝑓ℎ (∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘) 

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 (∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  (𝑓𝑓ℎ (∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘))

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘) 

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 [(𝐵𝐵2)𝑘𝑘 +  ∑ [(𝑊𝑊2)𝑘𝑘𝑘𝑘  𝑓𝑓ℎ ((𝐵𝐵1)𝑘𝑘 +  ∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
)]

𝑁𝑁𝑗𝑗

𝑘𝑘=1
] 

 

 

𝑓𝑓(𝑥𝑥) = 1
1 + 𝑒𝑒𝑥𝑥𝑒𝑒(− 𝑥𝑥) 

 

𝑓𝑓(𝑥𝑥) = 1 − 𝑒𝑒𝑥𝑥𝑒𝑒(− 2𝑥𝑥)
1 + 𝑒𝑒𝑥𝑥𝑒𝑒(− 2𝑥𝑥) 

 

𝑓𝑓(𝑥𝑥) = 2
𝑒𝑒𝑥𝑥𝑒𝑒 (𝑥𝑥) + 𝑒𝑒𝑥𝑥𝑒𝑒(− 𝑥𝑥) 

  
(5)

Accordingly, the hj can be written as:

       

 

𝑛𝑛𝑘𝑘𝑘𝑘 = ∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  ℎ𝑘𝑘 

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘  

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 (∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  ℎ𝑘𝑘 

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘) 

 

ℎ𝑘𝑘 = 𝑓𝑓(𝑛𝑛𝑘𝑘𝑗𝑗) 

 

𝑛𝑛𝑘𝑘𝑗𝑗 = ∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘  

 

ℎ𝑘𝑘 = 𝑓𝑓ℎ (∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘) 

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 (∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  (𝑓𝑓ℎ (∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘))

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘) 

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 [(𝐵𝐵2)𝑘𝑘 +  ∑ [(𝑊𝑊2)𝑘𝑘𝑘𝑘  𝑓𝑓ℎ ((𝐵𝐵1)𝑘𝑘 +  ∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
)]

𝑁𝑁𝑗𝑗

𝑘𝑘=1
] 

 

 

𝑓𝑓(𝑥𝑥) = 1
1 + 𝑒𝑒𝑥𝑥𝑒𝑒(− 𝑥𝑥) 

 

𝑓𝑓(𝑥𝑥) = 1 − 𝑒𝑒𝑥𝑥𝑒𝑒(− 2𝑥𝑥)
1 + 𝑒𝑒𝑥𝑥𝑒𝑒(− 2𝑥𝑥) 

 

𝑓𝑓(𝑥𝑥) = 2
𝑒𝑒𝑥𝑥𝑒𝑒 (𝑥𝑥) + 𝑒𝑒𝑥𝑥𝑒𝑒(− 𝑥𝑥) 

  
(6)

 

By substituting Eq. 10 in Eq. 6, Yk can be calculated as 
follows:

  

 

𝑛𝑛𝑘𝑘𝑘𝑘 = ∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  ℎ𝑘𝑘 

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘  

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 (∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  ℎ𝑘𝑘 

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘) 

 

ℎ𝑘𝑘 = 𝑓𝑓(𝑛𝑛𝑘𝑘𝑗𝑗) 

 

𝑛𝑛𝑘𝑘𝑗𝑗 = ∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘  

 

ℎ𝑘𝑘 = 𝑓𝑓ℎ (∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘) 

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 (∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  (𝑓𝑓ℎ (∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘))

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘) 

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 [(𝐵𝐵2)𝑘𝑘 +  ∑ [(𝑊𝑊2)𝑘𝑘𝑘𝑘  𝑓𝑓ℎ ((𝐵𝐵1)𝑘𝑘 +  ∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
)]

𝑁𝑁𝑗𝑗

𝑘𝑘=1
] 

 

 

𝑓𝑓(𝑥𝑥) = 1
1 + 𝑒𝑒𝑥𝑥𝑒𝑒(− 𝑥𝑥) 

 

𝑓𝑓(𝑥𝑥) = 1 − 𝑒𝑒𝑥𝑥𝑒𝑒(− 2𝑥𝑥)
1 + 𝑒𝑒𝑥𝑥𝑒𝑒(− 2𝑥𝑥) 

 

𝑓𝑓(𝑥𝑥) = 2
𝑒𝑒𝑥𝑥𝑒𝑒 (𝑥𝑥) + 𝑒𝑒𝑥𝑥𝑒𝑒(− 𝑥𝑥) 

   (7) 

With rearrangement, Eq. 15 might be written as:

 

𝑛𝑛𝑘𝑘𝑘𝑘 = ∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  ℎ𝑘𝑘 

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘  

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 (∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  ℎ𝑘𝑘 

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘) 

 

ℎ𝑘𝑘 = 𝑓𝑓(𝑛𝑛𝑘𝑘𝑗𝑗) 

 

𝑛𝑛𝑘𝑘𝑗𝑗 = ∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘  

 

ℎ𝑘𝑘 = 𝑓𝑓ℎ (∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘) 

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 (∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  (𝑓𝑓ℎ (∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘))

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘) 

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 [(𝐵𝐵2)𝑘𝑘 +  ∑ [(𝑊𝑊2)𝑘𝑘𝑘𝑘  𝑓𝑓ℎ ((𝐵𝐵1)𝑘𝑘 +  ∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
)]

𝑁𝑁𝑗𝑗

𝑘𝑘=1
] 

 

 

𝑓𝑓(𝑥𝑥) = 1
1 + 𝑒𝑒𝑥𝑥𝑒𝑒(− 𝑥𝑥) 

 

𝑓𝑓(𝑥𝑥) = 1 − 𝑒𝑒𝑥𝑥𝑒𝑒(− 2𝑥𝑥)
1 + 𝑒𝑒𝑥𝑥𝑒𝑒(− 2𝑥𝑥) 

 

𝑓𝑓(𝑥𝑥) = 2
𝑒𝑒𝑥𝑥𝑒𝑒 (𝑥𝑥) + 𝑒𝑒𝑥𝑥𝑒𝑒(− 𝑥𝑥) 

  (8) 

where Xi are input parameters; Ni is the number of input 
neurons; Nj is the number of output neurons; (W1)ji are the 
weights from the input layer to the hidden layer; (W2)kj are the 
weights from the hidden layer to the output layer; (B1)j are the 
biases in the hidden layer; (B2)k are the biases in the output 
layer; fh is the activation (transfer) function in the hidden layer; 
and fo is the activation function in the output layer.

In this study, we employed 3 different types of 
activation functions: sigmoid, hyperbolic tangent, and 
hyperbolic secant in each of the hidden and output layers to 
train the ANN. The general functional forms of the sigmoid 

(SIGM) (Eq. 9), hyperbolic tangent (TANH) (Eq. 10), and 
hyperbolic secant (SECH) (Eq. 11) transfer functions can be 
expressed as:

 

𝑛𝑛𝑘𝑘𝑘𝑘 = ∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  ℎ𝑘𝑘 

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘  

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 (∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  ℎ𝑘𝑘 

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘) 

 

ℎ𝑘𝑘 = 𝑓𝑓(𝑛𝑛𝑘𝑘𝑗𝑗) 

 

𝑛𝑛𝑘𝑘𝑗𝑗 = ∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘  

 

ℎ𝑘𝑘 = 𝑓𝑓ℎ (∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘) 

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 (∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  (𝑓𝑓ℎ (∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘))

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘) 

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 [(𝐵𝐵2)𝑘𝑘 +  ∑ [(𝑊𝑊2)𝑘𝑘𝑘𝑘  𝑓𝑓ℎ ((𝐵𝐵1)𝑘𝑘 +  ∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
)]

𝑁𝑁𝑗𝑗

𝑘𝑘=1
] 

 

 

𝑓𝑓(𝑥𝑥) = 1
1 + 𝑒𝑒𝑥𝑥𝑒𝑒(− 𝑥𝑥) 

 

𝑓𝑓(𝑥𝑥) = 1 − 𝑒𝑒𝑥𝑥𝑒𝑒(− 2𝑥𝑥)
1 + 𝑒𝑒𝑥𝑥𝑒𝑒(− 2𝑥𝑥) 

 

𝑓𝑓(𝑥𝑥) = 2
𝑒𝑒𝑥𝑥𝑒𝑒 (𝑥𝑥) + 𝑒𝑒𝑥𝑥𝑒𝑒(− 𝑥𝑥) 

  
(9)

 

𝑛𝑛𝑘𝑘𝑘𝑘 = ∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  ℎ𝑘𝑘 

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘  

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 (∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  ℎ𝑘𝑘 

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘) 

 

ℎ𝑘𝑘 = 𝑓𝑓(𝑛𝑛𝑘𝑘𝑗𝑗) 

 

𝑛𝑛𝑘𝑘𝑗𝑗 = ∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘  

 

ℎ𝑘𝑘 = 𝑓𝑓ℎ (∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘) 

 

𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑜𝑜 (∑(𝑊𝑊2)𝑘𝑘𝑘𝑘  (𝑓𝑓ℎ (∑(𝑊𝑊1)𝑘𝑘𝑗𝑗  𝑋𝑋𝑗𝑗 

𝑁𝑁𝑖𝑖

𝑗𝑗=1
+ (𝐵𝐵1)𝑘𝑘))

𝑁𝑁𝑗𝑗

𝑘𝑘=1
+ (𝐵𝐵2)𝑘𝑘) 
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�e ANN model was developed using the Qnet2000 
so�ware. In this study, the available data obtained from the 
experimental work were randomly divided into 3 portions: 
70% as the training datasets (112 data points) for the learning 
process, 20% as the testing datasets (32 data points) to test the 
precision of the model and 10% for the validation procedure 
(16 data points).

Before the modelling process, the data is automatically 
normalized between 0.15 and 0.85. �e normalization 
accelerates the training process, and enhances the network’s 
generalization capabilities. However, to avoid over-training, the 
number of iterations was limited and �xed to 10 000. Increasing 
the epoch size may worsen the problem of over-training. �e 
learn rate and momentum factor were �xed at 0.01 and 0.8, 
respectively. Di�erent ANN architectures with one hidden 
layer were trained. �e optimal number of neurons in the 
hidden layer was determined by a trial and error procedure, 
where the number of neurons in the hidden layer was varied 
from 2 to 20. However, the number of the neurons should not 
be set to too high a number, to avoid over-training, or set to 
too low a number, which can lead to insu�cient generalization. 
In addition, the transfer function was varied between SIGM, 
TANH, and SECH in the hidden and output layers, in order to 
�nd the best transfer function among them. �ese procedures 
mentioned above enable us to �nd the best architecture for the 
ANN model.

�e training process for the FFBPA neural network is 
carried out repetitively, until the error between the desired 
value and the forecasted value becomes minimal, and the 
training process moves towards stabilization. �e ideal 
structure for this neural network is 3 layers: one for each 
of the input, hidden, and output layers. Only one hidden 
layer is required in FFBPA, because a 3-layer network 
can produce arbitrarily complex decision regions (Maier 
and Dandy, 2000). �e increasing technique was used for 
selecting the number of neurons for evaluation of various 
con�gurations. In this technique, when the ANN reaches 
a local minimum, new neurons are added to the ANN 
gradually. �is technique has greater practical utility than 
other techniques typically used for detecting the optimum 
size of an ANN. �e advantage of this method is that the 
ANN complexity improves gradually with the increase in 
neurons. �e optimum size of the ANN is always obtained by 
adjustments. Monitoring and assessing the local minimum 
is done during the training process. �ese procedures help to 
avoid local minima convergence and overtraining, increase 
the predictive ability of a network, and remove spurious 
e�ects caused by random starting values.
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Adaptive neuro-fuzzy inference system (ANFIS)

�e adaptive neuro-fuzzy inference system (ANFIS), which 
incorporates the best features of fuzzy logic (FL) and arti�cial 
neural network (ANN) systems, is de�ned by Jang (1993). As 
an architecture, the ANFIS is composed of if–else rules and 
input–output data couples of fuzzy logic, and it uses learning 
algorithms from neural networks for training. Moreover, 
ANFIS is an approach to simulate complex nonlinear 
mappings using neural network learning and fuzzy inference 
methodologies, and has the capability of working with 
uncertain, noisy and inaccurate environments. ANFIS utilizes 
the ANN training process to adjust the membership function 
and the associated parameter that approaches the desired 
datasets. �e learning algorithm in ANFIS is a hybrid learning 
algorithm that utilizes the back-propagation learning algorithm 
and least squares method together. In order to understand and 
simplify the process, a sample having 2 inputs and an output is 
considered. Five layers are used to build an ANFIS architecture 
of the �rst-order Sugeno-type inference system presented in 
Fig. 2. Two inputs, x and y, and one output, f, along with two 
fuzzy IF–THEN rules are taken into account as an example. In 
Fig. 2, the circle and square show a �xed node and an adaptive 
node, respectively. �e functions of each of the 5 layers are 
explained in the following sections. For a �rst-order Sugeno 
fuzzy model, the following two fuzzy if–then rules are used 
(Jang, 1993):

Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1 (12)
Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y + r2  (13)

where x and y are the inputs and A1, B1, A2, B2 are fuzzy sets, 
p1, p2, q1, q2, r1, and r2 are the coe�cients of the output function 
that are determined during the training. 

Layer 1 is the fuzzi�cation layer (layer of input nodes). Every 
node i is an adaptive node with a node output expressed by:
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where µAi and µBi–2 are the fuzzy membership functions.

Layer 2 is the rule layer (layer of rule nodes). Every node i in 
this layer is a �xed node, marked by a circle and labelled Π, 
representing simple multiplication. �e output of this layer is the 
product of all the incoming signals and can be formulated as:
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Layer 3 is the normalization layer (layer of average nodes). In 
this layer, the ith node is a circle labelled N, and computes the 
normalized �ring strength as follows:
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Layer 4 is the defuzzi�cation layer (layer of consequent nodes). 
In this layer, every node i marked by a square is an adaptive node 
with a node function. �e output of this layer is calculated by:

 

 

�ܱ�𝑗
1 = ݅  ݎ𝑖𝑖(𝑥𝑥)ǡ      𝑓𝑓ߤ  = 1ǡ 2 

 

�ܱ�𝑗
1 = ݅ ݎǡ    𝑓𝑓(ݕ)𝑖𝑖షమߤ  = ͵ǡ Ͷ 

 

�ܱ�𝑗
2 = 𝑗𝑗ݓ  = ݅ ݎ𝑓𝑓   (ݕ)𝑖𝑖ߤ  𝑖𝑖(𝑥𝑥)ߤ  = 1ǡ2Ǥ 

 

�ܱ�𝑗
ଷ = 𝑗𝑗ݓ  = 𝑗𝑗ݓ

1ݓ + 2ݓ 
ǡ    𝑓𝑓ݎ ݅ = 1ǡ 2Ǥ 

 

�ܱ�𝑗
ସ = 𝑗𝑗𝑓𝑓𝑗𝑗ݓ  = 𝑗𝑗(𝑒𝑒𝑗𝑗𝑥𝑥ݓ + ݕ𝑗𝑗ݍ + ݅  ݎ𝑗𝑗)    𝑓𝑓ݎ  = 1ǡ 2ǡ 

 

�ܱ�𝑗
ହ = 𝑓𝑓𝑜𝑜௨௧ = ∑ 𝑗𝑗𝑓𝑓𝑗𝑗ݓ

2

𝑗𝑗=1
 =  

σ 𝑗𝑗𝑓𝑓𝑗𝑗ݓ
2
𝑗𝑗=1

1ݓ + 2ݓ
 

 

𝑓𝑓𝑜𝑜௨௧ = 1ݓ 
1ݓ + 2ݓ 

𝑓𝑓1 + 2ݓ 
1ݓ + 2ݓ 

𝑓𝑓2 

 

𝑓𝑓𝑜𝑜௨௧ = 1𝑓𝑓1ݓ  +  2𝑓𝑓2ݓ 

 

𝑓𝑓𝑜𝑜௨௧ = 𝑒𝑒1𝑥𝑥)1ݓ  + ݕ1ݍ + (1ݎ  + 𝑒𝑒2𝑥𝑥)2ݓ  + ݕ2ݍ +  (2ݎ 

 

𝑓𝑓𝑜𝑜௨௧ = 𝑒𝑒1(1𝑥𝑥ݓ) + 1ݍ(ݕ1ݓ) + 1ݎ(1ݓ) + 𝑒𝑒2(2𝑥𝑥ݓ) + 2ݍ(ݕ2ݓ) +  2ݎ(2ݓ)

 

𝑌𝑌 = ߚ + 1𝑋𝑋1ߚ + 2𝑋𝑋2ߚ + ڮ + 𝑘𝑘𝑋𝑋𝑘𝑘ߚ +  ߝ

 

𝑌𝑌 = 𝑋𝑋ߚ +  ߝ

 

൦
1ݕ
2ݕ
ή

ݕ

൪ =
ۏ
ێ
ێ
1ۍ 𝑥𝑥11 ή 𝑥𝑥1
1 𝑥𝑥21 ή 𝑥𝑥2
ή ή ή ή
1 𝑥𝑥1 ή 𝑥𝑥ے

ۑ
ۑ
ې

൦
ߚ
1ߚ
ή

ߚ

൪ + ൦
1ߝ
2ߝ
ή

ߝ

൪ 
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where {pi, qi, ri} is the parameter set of this node.

Layer 5 is the output layer. �e single node in this layer is a 
�xed circle node labeled ∑, which calculates the �nal overall 
output as the summation of all incoming signals. �e overall 
output is computed by this formula:

  

 

�ܱ�𝑗
1 = ݅  ݎ𝑖𝑖(𝑥𝑥)ǡ      𝑓𝑓ߤ  = 1ǡ 2 

 

�ܱ�𝑗
1 = ݅ ݎǡ    𝑓𝑓(ݕ)𝑖𝑖షమߤ  = ͵ǡ Ͷ 

 

�ܱ�𝑗
2 = 𝑗𝑗ݓ  = ݅ ݎ𝑓𝑓   (ݕ)𝑖𝑖ߤ  𝑖𝑖(𝑥𝑥)ߤ  = 1ǡ2Ǥ 

 

�ܱ�𝑗
ଷ = 𝑗𝑗ݓ  = 𝑗𝑗ݓ

1ݓ + 2ݓ 
ǡ    𝑓𝑓ݎ ݅ = 1ǡ 2Ǥ 

 

�ܱ�𝑗
ସ = 𝑗𝑗𝑓𝑓𝑗𝑗ݓ  = 𝑗𝑗(𝑒𝑒𝑗𝑗𝑥𝑥ݓ + ݕ𝑗𝑗ݍ + ݅  ݎ𝑗𝑗)    𝑓𝑓ݎ  = 1ǡ 2ǡ 

 

�ܱ�𝑗
ହ = 𝑓𝑓𝑜𝑜௨௧ = ∑ 𝑗𝑗𝑓𝑓𝑗𝑗ݓ

2

𝑗𝑗=1
 =  

σ 𝑗𝑗𝑓𝑓𝑗𝑗ݓ
2
𝑗𝑗=1

1ݓ + 2ݓ
 

 

𝑓𝑓𝑜𝑜௨௧ = 1ݓ 
1ݓ + 2ݓ 

𝑓𝑓1 + 2ݓ 
1ݓ + 2ݓ 

𝑓𝑓2 

 

𝑓𝑓𝑜𝑜௨௧ = 1𝑓𝑓1ݓ  +  2𝑓𝑓2ݓ 

 

𝑓𝑓𝑜𝑜௨௧ = 𝑒𝑒1𝑥𝑥)1ݓ  + ݕ1ݍ + (1ݎ  + 𝑒𝑒2𝑥𝑥)2ݓ  + ݕ2ݍ +  (2ݎ 

 

𝑓𝑓𝑜𝑜௨௧ = 𝑒𝑒1(1𝑥𝑥ݓ) + 1ݍ(ݕ1ݓ) + 1ݎ(1ݓ) + 𝑒𝑒2(2𝑥𝑥ݓ) + 2ݍ(ݕ2ݓ) +  2ݎ(2ݓ)

 

𝑌𝑌 = ߚ + 1𝑋𝑋1ߚ + 2𝑋𝑋2ߚ + ڮ + 𝑘𝑘𝑋𝑋𝑘𝑘ߚ +  ߝ

 

𝑌𝑌 = 𝑋𝑋ߚ +  ߝ

 

൦
1ݕ
2ݕ
ή

ݕ

൪ =
ۏ
ێ
ێ
1ۍ 𝑥𝑥11 ή 𝑥𝑥1
1 𝑥𝑥21 ή 𝑥𝑥2
ή ή ή ή
1 𝑥𝑥1 ή 𝑥𝑥ے

ۑ
ۑ
ې

൦
ߚ
1ߚ
ή

ߚ

൪ + ൦
1ߝ
2ߝ
ή

ߝ

൪ 
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Finally, the overall output can be formulated as:  

  

 

�ܱ�𝑗
1 = ݅  ݎ𝑖𝑖(𝑥𝑥)ǡ      𝑓𝑓ߤ  = 1ǡ 2 

 

�ܱ�𝑗
1 = ݅ ݎǡ    𝑓𝑓(ݕ)𝑖𝑖షమߤ  = ͵ǡ Ͷ 

 

�ܱ�𝑗
2 = 𝑗𝑗ݓ  = ݅ ݎ𝑓𝑓   (ݕ)𝑖𝑖ߤ  𝑖𝑖(𝑥𝑥)ߤ  = 1ǡ2Ǥ 

 

�ܱ�𝑗
ଷ = 𝑗𝑗ݓ  = 𝑗𝑗ݓ

1ݓ + 2ݓ 
ǡ    𝑓𝑓ݎ ݅ = 1ǡ 2Ǥ 

 

�ܱ�𝑗
ସ = 𝑗𝑗𝑓𝑓𝑗𝑗ݓ  = 𝑗𝑗(𝑒𝑒𝑗𝑗𝑥𝑥ݓ + ݕ𝑗𝑗ݍ + ݅  ݎ𝑗𝑗)    𝑓𝑓ݎ  = 1ǡ 2ǡ 

 

�ܱ�𝑗
ହ = 𝑓𝑓𝑜𝑜௨௧ = ∑ 𝑗𝑗𝑓𝑓𝑗𝑗ݓ

2

𝑗𝑗=1
 =  

σ 𝑗𝑗𝑓𝑓𝑗𝑗ݓ
2
𝑗𝑗=1

1ݓ + 2ݓ
 

 

𝑓𝑓𝑜𝑜௨௧ = 1ݓ 
1ݓ + 2ݓ 

𝑓𝑓1 + 2ݓ 
1ݓ + 2ݓ 

𝑓𝑓2 

 

𝑓𝑓𝑜𝑜௨௧ = 1𝑓𝑓1ݓ  +  2𝑓𝑓2ݓ 

 

𝑓𝑓𝑜𝑜௨௧ = 𝑒𝑒1𝑥𝑥)1ݓ  + ݕ1ݍ + (1ݎ  + 𝑒𝑒2𝑥𝑥)2ݓ  + ݕ2ݍ +  (2ݎ 

 

𝑓𝑓𝑜𝑜௨௧ = 𝑒𝑒1(1𝑥𝑥ݓ) + 1ݍ(ݕ1ݓ) + 1ݎ(1ݓ) + 𝑒𝑒2(2𝑥𝑥ݓ) + 2ݍ(ݕ2ݓ) +  2ݎ(2ݓ)

 

𝑌𝑌 = ߚ + 1𝑋𝑋1ߚ + 2𝑋𝑋2ߚ + ڮ + 𝑘𝑘𝑋𝑋𝑘𝑘ߚ +  ߝ

 

𝑌𝑌 = 𝑋𝑋ߚ +  ߝ

 

൦
1ݕ
2ݕ
ή

ݕ

൪ =
ۏ
ێ
ێ
1ۍ 𝑥𝑥11 ή 𝑥𝑥1
1 𝑥𝑥21 ή 𝑥𝑥2
ή ή ή ή
1 𝑥𝑥1 ή 𝑥𝑥ے

ۑ
ۑ
ې

൦
ߚ
1ߚ
ή

ߚ

൪ + ൦
1ߝ
2ߝ
ή

ߝ

൪ 
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Substituting Eq. 7 into Eq. 10:

 

�ܱ�𝑗
1 = ݅  ݎ𝑖𝑖(𝑥𝑥)ǡ      𝑓𝑓ߤ  = 1ǡ 2 

 

�ܱ�𝑗
1 = ݅ ݎǡ    𝑓𝑓(ݕ)𝑖𝑖షమߤ  = ͵ǡ Ͷ 

 

�ܱ�𝑗
2 = 𝑗𝑗ݓ  = ݅ ݎ𝑓𝑓   (ݕ)𝑖𝑖ߤ  𝑖𝑖(𝑥𝑥)ߤ  = 1ǡ2Ǥ 

 

�ܱ�𝑗
ଷ = 𝑗𝑗ݓ  = 𝑗𝑗ݓ

1ݓ + 2ݓ 
ǡ    𝑓𝑓ݎ ݅ = 1ǡ 2Ǥ 

 

�ܱ�𝑗
ସ = 𝑗𝑗𝑓𝑓𝑗𝑗ݓ  = 𝑗𝑗(𝑒𝑒𝑗𝑗𝑥𝑥ݓ + ݕ𝑗𝑗ݍ + ݅  ݎ𝑗𝑗)    𝑓𝑓ݎ  = 1ǡ 2ǡ 

 

�ܱ�𝑗
ହ = 𝑓𝑓𝑜𝑜௨௧ = ∑ 𝑗𝑗𝑓𝑓𝑗𝑗ݓ

2

𝑗𝑗=1
 =  

σ 𝑗𝑗𝑓𝑓𝑗𝑗ݓ
2
𝑗𝑗=1

1ݓ + 2ݓ
 

 

𝑓𝑓𝑜𝑜௨௧ = 1ݓ 
1ݓ + 2ݓ 

𝑓𝑓1 + 2ݓ 
1ݓ + 2ݓ 

𝑓𝑓2 

 

𝑓𝑓𝑜𝑜௨௧ = 1𝑓𝑓1ݓ  +  2𝑓𝑓2ݓ 

 

𝑓𝑓𝑜𝑜௨௧ = 𝑒𝑒1𝑥𝑥)1ݓ  + ݕ1ݍ + (1ݎ  + 𝑒𝑒2𝑥𝑥)2ݓ  + ݕ2ݍ +  (2ݎ 

 

𝑓𝑓𝑜𝑜௨௧ = 𝑒𝑒1(1𝑥𝑥ݓ) + 1ݍ(ݕ1ݓ) + 1ݎ(1ݓ) + 𝑒𝑒2(2𝑥𝑥ݓ) + 2ݍ(ݕ2ݓ) +  2ݎ(2ݓ)

 

𝑌𝑌 = ߚ + 1𝑋𝑋1ߚ + 2𝑋𝑋2ߚ + ڮ + 𝑘𝑘𝑋𝑋𝑘𝑘ߚ +  ߝ

 

𝑌𝑌 = 𝑋𝑋ߚ +  ߝ

 

൦
1ݕ
2ݕ
ή

ݕ

൪ =
ۏ
ێ
ێ
1ۍ 𝑥𝑥11 ή 𝑥𝑥1
1 𝑥𝑥21 ή 𝑥𝑥2
ή ή ή ή
1 𝑥𝑥1 ή 𝑥𝑥ے

ۑ
ۑ
ې

൦
ߚ
1ߚ
ή

ߚ

൪ + ൦
1ߝ
2ߝ
ή

ߝ

൪ 
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�ܱ�𝑗
1 = ݅  ݎ𝑖𝑖(𝑥𝑥)ǡ      𝑓𝑓ߤ  = 1ǡ 2 

 

�ܱ�𝑗
1 = ݅ ݎǡ    𝑓𝑓(ݕ)𝑖𝑖షమߤ  = ͵ǡ Ͷ 

 

�ܱ�𝑗
2 = 𝑗𝑗ݓ  = ݅ ݎ𝑓𝑓   (ݕ)𝑖𝑖ߤ  𝑖𝑖(𝑥𝑥)ߤ  = 1ǡ2Ǥ 

 

�ܱ�𝑗
ଷ = 𝑗𝑗ݓ  = 𝑗𝑗ݓ

1ݓ + 2ݓ 
ǡ    𝑓𝑓ݎ ݅ = 1ǡ 2Ǥ 

 

�ܱ�𝑗
ସ = 𝑗𝑗𝑓𝑓𝑗𝑗ݓ  = 𝑗𝑗(𝑒𝑒𝑗𝑗𝑥𝑥ݓ + ݕ𝑗𝑗ݍ + ݅  ݎ𝑗𝑗)    𝑓𝑓ݎ  = 1ǡ 2ǡ 

 

�ܱ�𝑗
ହ = 𝑓𝑓𝑜𝑜௨௧ = ∑ 𝑗𝑗𝑓𝑓𝑗𝑗ݓ

2

𝑗𝑗=1
 =  

σ 𝑗𝑗𝑓𝑓𝑗𝑗ݓ
2
𝑗𝑗=1

1ݓ + 2ݓ
 

 

𝑓𝑓𝑜𝑜௨௧ = 1ݓ 
1ݓ + 2ݓ 

𝑓𝑓1 + 2ݓ 
1ݓ + 2ݓ 

𝑓𝑓2 

 

𝑓𝑓𝑜𝑜௨௧ = 1𝑓𝑓1ݓ  +  2𝑓𝑓2ݓ 

 

𝑓𝑓𝑜𝑜௨௧ = 𝑒𝑒1𝑥𝑥)1ݓ  + ݕ1ݍ + (1ݎ  + 𝑒𝑒2𝑥𝑥)2ݓ  + ݕ2ݍ +  (2ݎ 

 

𝑓𝑓𝑜𝑜௨௧ = 𝑒𝑒1(1𝑥𝑥ݓ) + 1ݍ(ݕ1ݓ) + 1ݎ(1ݓ) + 𝑒𝑒2(2𝑥𝑥ݓ) + 2ݍ(ݕ2ݓ) +  2ݎ(2ݓ)

 

𝑌𝑌 = ߚ + 1𝑋𝑋1ߚ + 2𝑋𝑋2ߚ + ڮ + 𝑘𝑘𝑋𝑋𝑘𝑘ߚ +  ߝ

 

𝑌𝑌 = 𝑋𝑋ߚ +  ߝ

 

൦
1ݕ
2ݕ
ή

ݕ

൪ =
ۏ
ێ
ێ
1ۍ 𝑥𝑥11 ή 𝑥𝑥1
1 𝑥𝑥21 ή 𝑥𝑥2
ή ή ή ή
1 𝑥𝑥1 ή 𝑥𝑥ے

ۑ
ۑ
ې

൦
ߚ
1ߚ
ή

ߚ

൪ + ൦
1ߝ
2ߝ
ή

ߝ

൪ 
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�e �nal output can be written as:

 

�ܱ�𝑗
1 = ݅  ݎ𝑖𝑖(𝑥𝑥)ǡ      𝑓𝑓ߤ  = 1ǡ 2 

 

�ܱ�𝑗
1 = ݅ ݎǡ    𝑓𝑓(ݕ)𝑖𝑖షమߤ  = ͵ǡ Ͷ 

 

�ܱ�𝑗
2 = 𝑗𝑗ݓ  = ݅ ݎ𝑓𝑓   (ݕ)𝑖𝑖ߤ  𝑖𝑖(𝑥𝑥)ߤ  = 1ǡ2Ǥ 

 

�ܱ�𝑗
ଷ = 𝑗𝑗ݓ  = 𝑗𝑗ݓ

1ݓ + 2ݓ 
ǡ    𝑓𝑓ݎ ݅ = 1ǡ 2Ǥ 

 

�ܱ�𝑗
ସ = 𝑗𝑗𝑓𝑓𝑗𝑗ݓ  = 𝑗𝑗(𝑒𝑒𝑗𝑗𝑥𝑥ݓ + ݕ𝑗𝑗ݍ + ݅  ݎ𝑗𝑗)    𝑓𝑓ݎ  = 1ǡ 2ǡ 

 

�ܱ�𝑗
ହ = 𝑓𝑓𝑜𝑜௨௧ = ∑ 𝑗𝑗𝑓𝑓𝑗𝑗ݓ

2

𝑗𝑗=1
 =  

σ 𝑗𝑗𝑓𝑓𝑗𝑗ݓ
2
𝑗𝑗=1

1ݓ + 2ݓ
 

 

𝑓𝑓𝑜𝑜௨௧ = 1ݓ 
1ݓ + 2ݓ 

𝑓𝑓1 + 2ݓ 
1ݓ + 2ݓ 

𝑓𝑓2 

 

𝑓𝑓𝑜𝑜௨௧ = 1𝑓𝑓1ݓ  +  2𝑓𝑓2ݓ 

 

𝑓𝑓𝑜𝑜௨௧ = 𝑒𝑒1𝑥𝑥)1ݓ  + ݕ1ݍ + (1ݎ  + 𝑒𝑒2𝑥𝑥)2ݓ  + ݕ2ݍ +  (2ݎ 

 

𝑓𝑓𝑜𝑜௨௧ = 𝑒𝑒1(1𝑥𝑥ݓ) + 1ݍ(ݕ1ݓ) + 1ݎ(1ݓ) + 𝑒𝑒2(2𝑥𝑥ݓ) + 2ݍ(ݕ2ݓ) +  2ݎ(2ݓ)

 

𝑌𝑌 = ߚ + 1𝑋𝑋1ߚ + 2𝑋𝑋2ߚ + ڮ + 𝑘𝑘𝑋𝑋𝑘𝑘ߚ +  ߝ

 

𝑌𝑌 = 𝑋𝑋ߚ +  ߝ

 

൦
1ݕ
2ݕ
ή

ݕ

൪ =
ۏ
ێ
ێ
1ۍ 𝑥𝑥11 ή 𝑥𝑥1
1 𝑥𝑥21 ή 𝑥𝑥2
ή ή ή ή
1 𝑥𝑥1 ή 𝑥𝑥ے

ۑ
ۑ
ې

൦
ߚ
1ߚ
ή

ߚ

൪ + ൦
1ߝ
2ߝ
ή

ߝ

൪ 
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As in the ANN modelling, the ANFIS modelling process 
includes 3 stages: training, testing and validation. �e data 
division is the same as that used with ANN modelling. �erefore, 
the training, testing, and validation sets have 112, 32, and 16 data 
points, respectively. Before training, the data are normalized to 
be in the range between 0 and +1 in order to decrease their range 
and increase the precision of the �ndings. A�er the normalization 
process, the data are ready for the training process. 

�e MATLAB so�ware (MATLAB 8.1.0.604, R2013a, the 
MathWorks Inc., USA) was used to develop the ANFIS model 
from the experimental data to forecast SSP. �e Sugeno-type 
fuzzy inference system was used in the modelling of SSP. �e 
grid partition method was employed to classify the input data 
and in making the rules (Jang, 1993). In the modelling process, 
we employed 8 di�erent types of input MFs, including triangle 
(TRIMF), trapezoidal (TRAPMF), generalized bell (GBELLMF), 
Gaussian (GAUSSMF), 2-sided Gaussian (GASUSS2MF), Pi curve 
(PIMF), product of 2 sigmoidal functions (PSIGMF), and di�erence 
between 2 sigmoidal functions (DSIGMF). �e output MF was 
selected as a linear function. Moreover, a hybrid learning algorithm 
that combines the least-squares estimator and the gradient descent 
method was utilized to estimate the optimum values of the FIS 
parameters of the Sugeno-type inference system (Jang, 1993). �e 
number of epochs was chosen as 50 owing to their small error. 

Multiple regression (MR)

Linear regression is the oldest statistical method in regression 
and can be considered a benchmark for new methods. Multiple 
regression (MR) is a linear statistical method that attempts to �nd 
the best relationship between a dependent parameter and several 

https://doi.org/10.4314/wsa.v45i2.11
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other independent parameters through the least square method and 
by �tting a linear equation to the observed data. Every value of the 
independent parameter x is associated with a value of the dependent 
parameter y.  �e MR model can be formulated as follows:

 

�ܱ�𝑗
1 = ݅  ݎ𝑖𝑖(𝑥𝑥)ǡ      𝑓𝑓ߤ  = 1ǡ 2 

 

�ܱ�𝑗
1 = ݅ ݎǡ    𝑓𝑓(ݕ)𝑖𝑖షమߤ  = ͵ǡ Ͷ 

 

�ܱ�𝑗
2 = 𝑗𝑗ݓ  = ݅ ݎ𝑓𝑓   (ݕ)𝑖𝑖ߤ  𝑖𝑖(𝑥𝑥)ߤ  = 1ǡ2Ǥ 

 

�ܱ�𝑗
ଷ = 𝑗𝑗ݓ  = 𝑗𝑗ݓ

1ݓ + 2ݓ 
ǡ    𝑓𝑓ݎ ݅ = 1ǡ 2Ǥ 

 

�ܱ�𝑗
ସ = 𝑗𝑗𝑓𝑓𝑗𝑗ݓ  = 𝑗𝑗(𝑒𝑒𝑗𝑗𝑥𝑥ݓ + ݕ𝑗𝑗ݍ + ݅  ݎ𝑗𝑗)    𝑓𝑓ݎ  = 1ǡ 2ǡ 

 

�ܱ�𝑗
ହ = 𝑓𝑓𝑜𝑜௨௧ = ∑ 𝑗𝑗𝑓𝑓𝑗𝑗ݓ

2

𝑗𝑗=1
 =  

σ 𝑗𝑗𝑓𝑓𝑗𝑗ݓ
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where Y is the dependent parameter or response, k is the 
number of independent parameters, Xj is the independent 
parameter, β is the regression coe�cient, j = 0, 1, 2,…,k, and ε 
is a term that contains the in�uences of un-modeled sources of 
variability that impact the dependent parameter.

�e functional connection between the dependent and 
independent parameters can be expressed in matrix form as follows:
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where Y is an output parameter vector of size n × 1; X is an 
input parameter matrix of size n × (p + 1); β is a coe�cient vector 
of size (p + 1) × 1 and e is an error vector of size n × 1. According 
to Eq. 9, p multi-linear regressions can be expressed as follows:
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�ܱ�𝑗
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β regression parameter coe�cients in matrix form can be 
illustrated as follows:

            

 

ߚ = (𝑋𝑋ᇱ𝑋𝑋)ି1𝑋𝑋ᇱ𝑌𝑌 

 

ܥܥ =
σ (ܵܵ �ܲ�𝑜ǡ𝑗𝑗 − ܵܵܲതതതതത𝑜𝑜)(ܵܵ ܲǡ𝑗𝑗 − ܵܵܲതതതതത)

𝑗𝑗=1

ටσ (ܵܵ �ܲ�𝑜ǡ𝑗𝑗 − ܵܵܲതതതതത𝑜𝑜)2 ൈ σ (ܵܵ ܲǡ𝑗𝑗 − ܵܵܲതതതതത)2
𝑗𝑗=1


𝑗𝑗=1

 

 

ܧܵܯܴ = ඨσ (ܵܵ �ܲ�𝑜ǡ𝑗𝑗 − ܵܵ ܲǡ𝑗𝑗)2
𝑗𝑗=1

𝑛𝑛  

 

ܫܱ = 1
2 ൭2 − ܧܵܯܴ

ܵܵ ܲ௫ − ܵܵ ܲ𝑗𝑗
−

σ (ܵܵ �ܲ�𝑜ǡ𝑗𝑗 − ܵܵ ܲǡ𝑗𝑗)2
𝑗𝑗=1

σ (ܵܵ �ܲ�𝑜ǡ𝑗𝑗 −  ܵܵܲതതതതത𝑜𝑜)2
𝑗𝑗=1

൱ 

 

ܧܣܯ =
σ ห ܵܵ �ܲ�𝑜ǡ𝑗𝑗 −  ܵܵ ܲǡ𝑗𝑗ห 


𝑗𝑗=1

𝑛𝑛  

 

ܧܴܣܯ = 1
2 ቆ∑ ቤ

 ܵܵ �ܲ�𝑜ǡ𝑗𝑗 −  ܵܵ ܲǡ𝑗𝑗
 ܵܵ �ܲ�𝑜ǡ𝑗𝑗

ቤ
 



𝑗𝑗=1
ൈ 1ͲͲቇ 

 

���തതതതത𝑜𝑜 

 

���തതതതത 

 

ܵܵܲ = −ͲǤ1ͷͲ − ͲǤͲͲ͵ ൈ ܪܴ + ͲǤͲͲ1 ൈ ܴܵ + 1Ǥ1ͻͷ ൈ ிܯ − ͲǤͲ12 ൈ ிܵܦܶ + ͲǤͲ1Ͳ ൈ        ܵܦܶ
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where β regression coe�cients are found through the least 
square technique; (X′X)-1 is the inverse of the X′X matrix, and 
X′ is the transpose of the X matrix. 

A schematic diagram of the MR process is described in 
Fig. 2. It is important to assess the goodness-of-�t and the 
statistical signi�cance of the estimated parameters of the 
developed regression models; the procedures that are usually 
applied to verify the goodness-of-�t of regression models are 
hypothesis testing, R2 and the analysis of residuals. For this 
purpose, the F-test is used to verify the statistical signi�cance 
of the overall �t and the t-test is used to assess the signi�cance 
of the individual parameters. In other words, the t-test 
examines the importance of individual coe�cients, while the 
F-test is utilized to compare di�erent models to assess the 
model that best �ts the population of the sample data (Um 
et al., 2011). In this study, the SPSS so�ware (IBM Inc., USA) 
was used to develop the MR model. �e same data used for 
developing the ANN and ANFIS models were used in the 
development of the MR model.

ANN, ANFIS, and MR model performance assessment 
criteria

�e performance of the ANFIS and ANN models were assessed 
based on the coe�cient of correlation (CC), the root mean 
square error (RMSE), the overall index of model performance 
(OI), the mean absolute error (MAE), and the mean absolute 
relative error (MARE). �ese indicators can be mathematically 
described and computed through Eqs. (14)–(18) (Mashaly and 
Alazba, 2016).

 

ߚ = (𝑋𝑋ᇱ𝑋𝑋)ି1𝑋𝑋ᇱ𝑌𝑌 

 

ܥܥ =
σ (ܵܵ �ܲ�𝑜ǡ𝑗𝑗 − ܵܵܲതതതതത𝑜𝑜)(ܵܵ ܲǡ𝑗𝑗 − ܵܵܲതതതതത)

𝑗𝑗=1

ටσ (ܵܵ �ܲ�𝑜ǡ𝑗𝑗 − ܵܵܲതതതതത𝑜𝑜)2 ൈ σ (ܵܵ ܲǡ𝑗𝑗 − ܵܵܲതതതതത)2
𝑗𝑗=1


𝑗𝑗=1

 

 

ܧܵܯܴ = ඨσ (ܵܵ �ܲ�𝑜ǡ𝑗𝑗 − ܵܵ ܲǡ𝑗𝑗)2
𝑗𝑗=1

𝑛𝑛  

 

ܫܱ = 1
2 ൭2 − ܧܵܯܴ

ܵܵ ܲ௫ − ܵܵ ܲ𝑗𝑗
−

σ (ܵܵ �ܲ�𝑜ǡ𝑗𝑗 − ܵܵ ܲǡ𝑗𝑗)2
𝑗𝑗=1

σ (ܵܵ �ܲ�𝑜ǡ𝑗𝑗 −  ܵܵܲതതതതത𝑜𝑜)2
𝑗𝑗=1

൱ 

 

ܧܣܯ =
σ ห ܵܵ �ܲ�𝑜ǡ𝑗𝑗 −  ܵܵ ܲǡ𝑗𝑗ห 


𝑗𝑗=1

𝑛𝑛  

 

ܧܴܣܯ = 1
2 ቆ∑ ቤ
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ߚ = (𝑋𝑋ᇱ𝑋𝑋)ି1𝑋𝑋ᇱ𝑌𝑌 

 

ܥܥ =
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where n is the number of data points, SSPo,i and SSPp,i are the 
observed and predicted values respectively, 
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 are 
the means of the observed and predicted values respectively, 
and SSP max and SSPmin are the maximum and minimum 
measured values, respectively.

RESULTS AND DISCUSSION

Data description and variable selection

Table 2 shows the statistical summary of the experimental data 
(To, RH, WS, SR, TF, TB, TDSB, TDSF, MF, and SSP). �is table 
summarizes statistical details about these parameters such as the 
maximum, minimum, mean, standard error, median, standard 
deviation, kurtosis, skewness, and coe�cient of variation for each 
parameter. From Table 2, it is seen that the distribution curves 
for To, RH, SR, TF, TB, MF, TDSF, TDSB, and SSP are platykurtic 
since the kurtosis values are less than 3. On the other hand, the 
distribution curve for WS is leptokurtic as the kurtosis value 
is greater than 3. �e distributions are highly skewed for RH 
and WS because the skewness values are greater than +1. �e 
skewness values for SR, TF, and MF are between −1 and −1/2 and, 
therefore, the distributions for these variables are moderately 
skewed. Moreover, the distributions are approximately symmetric 
for To, TB, TDSF, TDSB, and SSP since the skewness values are 
between −1/2 and +1/2. From the coe�cient of variation (CV) 
values, it is clear that the data for To, TF and TB are relatively 
homogenous (0.10 ≤ CV< 0.20).  In addition, the data for MF is 
relatively heterogeneous (0.20 ≤ CV< 0.30). Finally, the data for 
RH, WS, SR, TDSF, TDSB, and SSP are heterogeneous (CV ≥ 0.30).

Parameter selection is the process of selecting an optimum 
subset of input parameters from the set of potentially useful 
parameters that may be available in the context of a given 
problem. In this study, we adopt stepwise regression to 
analyse and select parameters, which consequently increases 
the predictive accuracy of the developed models. A stepwise 
regression technique (i.e., step-by-step iterative construction 
of a regression model that includes automatic selection of 
independent parameters) was applied to explore relationships 
among the collected data. �e Mallows statistic (Cp) was 
employed as a criterion to select the set of independent factors 
that most closely determines the dependent parameter. Cp 
is a powerful selection procedure in a stepwise analysis. �e 
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purpose of Cp is to guide the researcher in the process of subset 
selection. Good subsets are ones with small Cp values and/or 
values of Cp close to the number X of variables in the model 
(Mallows, 1995; Kadane and Lazar, 2004). �e result of the 
stepwise analysis according to the Cp coe�cient is presented 
in Table 3. According to results presented in Table 3, the model 
with the 5 terms ‘RH, WS, SR, TDSF, and TDSB’ is relatively 
precise and unbiased because its Mallows’ Cp (5.029) is small 
and closest to the number of variables plus the constant (6). 
�erefore, the ANN, ANFIS, and MR models were trained 
using these variables.

ANN model 

To determine the best ANN architecture to use, we varied the 
number of neurons/nodes in the hidden layer. In addition, the 
transfer/activation function was varied between the sigmoid 
(SIGM), hyperbolic tangent (TANH), and hyperbolic secant 
(SECH) functions in the hidden and output layers. Table 4 
displays the results of the statistical performance of the ANN 
models with various neuron numbers in the hidden layer 
and various transfer functions during the training process. 
�e number of nodes in the hidden layer, along with the 
identi�cation of activation functions between the layers, was 
determined through a trial-and-error procedure to select the 
best ANN model architecture. �e number of neurons was 
increased from 2 to 20 in the hidden layer. 

We examined the CC, RMSE, OI, MAE, and MARE values 
as the number of hidden neurons in the ANN was increased. 
Generally, the ANN architecture markedly improved with 
higher numbers of hidden neurons, as re�ected in the values 
of the statistical indicators for the three activation functions 
(Table 4). �e ANN-SIGM models’ CC values ranged from 0.983 
to 0.992, RMSE values from 0.030 to 0.044 L·m−2·h−1, OI values 
from 0.960 to 0.976, MAE values from 0.020 to 0.033, and 
MARE values from 5.259 to 8.221. �e ANN-TANH models’ CC 
values ranged from 0.983 to 0.992, RMSE values from 0.030 to 
0.044 L·m−2·h−1, OI values from 0.960 to 0.976, MAE values 
from 0.019 to 0.032, and MARE values from 5.031 to 7.960. 
Furthermore, the ANN-SECH models’ CC values ranged from 
0.983 to 0.992, RMSE values from 0.030 to 0.044 L·m−2·h−1, OI 
values from 0.960 to 0.976, MAE values from 0.018 to 0.032, and 
MARE values from 4.759 to 8.595. Clearly, the SECH function is 
more accurate than the SIGM and SECH functions.

As illustrated in Table 4, the SECH function performed 
better than the SIGM and TANH functions, and there was 
an obvious enhancement in the model when the number 
of hidden nodes was increased, especially when the SECH 
function was used. �is is in accordance with Boroomand-
Nasab and Joorabian (2011) and Kamanbedast (2012). High 
values of CC and OI, and low values of RMSE, MAE and 
MARE, indicating good model performance, were obtained 
by increasing the number of neurons in the hidden layer. �e 
SECH function yielded the best network performance for SSP. 
When the number of hidden neurons reached 10, there was a 
clear improvement in the ANN when the SECH function was 
used. From Table 4, it can be seen that the best architecture of 
the ANN model has 10 neurons in the hidden layer. �e CC, 
RMSE, OI, MAE, and MARE for this con�guration are marked 
in bold in Table 4, and are 0.994, 0.028 L·m−2·h−1, 0.979, 0.019, 
and 4.964, respectively.

However, the ANN model with one hidden layer and 10 
neurons in the hidden layer was selected as the optimum 
ANN model for predicting SSP. �e transfer function for 

this model was SECH for the hidden and output layers. �is 
function yielded the best network performance and generally 
performed better than the SIGM and TANH, as shown in 
Table 4. �erefore, the developed ANN model architecture 
has a con�guration of 5–10–1 neurons. �is yielded the best 
prediction of SSP with the lowest error. 

ANFIS model 

�is section discusses the 8 ANFIS models developed during 
the training process, with additional details about the best 
ANFIS model. We developed 8 ANFIS models with 8 di�erent 
types of input membership functions (MFs). �e MFs used 
were TRIMF, TRAPMF, GBELLMF, GAUSSMF, GASUSS2MF, 
PIMF, DSIGMF, and PSIGMF. �e ANFIS models developed 
have 5 inputs (RH, SR, MF, TDSF, and TDSB) and one output 
(SSP). Table 5 shows the outcomes of the statistical parameters, 
CC, RMSE, OI, MAE, and MARE, which are numerical 
indicators used to assess the agreement between the observed 
and predicted SSP values during the training stage. 

For all the ANFIS models, in the input layer, 5 neurons 
were incorporated. For each of the neurons, 3 identical MFs 
were considered with 3 linguistic terms (low, medium, high) 
and accordingly 243 (3 × 3 × 3 × 3 × 3) rules were developed 
for the implementation of the ANFIS model. �e model 
properties of the ANFIS model structures are listed in Table 5.  
�e ANFIS models’ CC values ranged from 0.9998 to 0.9999, 
RMSE values from 0.0007 to 0.0048 L·m−2·h−1, OI values from 
0.9972 to 0.9996, MAE values from 0.0005 to 0.0027 L·m−2·h−1, 
and MARE values from 0.1424 to 0.8857%. �e CC and OI 
values are very close to 1 while RMSE, MAE, and MARE 
values are close to zero, indicating excellent agreement between 
the measured results and the predicted results in the ANFIS 
models during the training stage. �ese �ndings emphasize the 
accuracy and e�ciency of the ANFIS models for estimating SSP 
by using the 8 MFs. 

�e performances for all MFs at the training stage are 
approximately the same. However, in relative terms, the 
highest performance in the training process is obtained 
with GBELLMF. �e CC, RMSE, OI, MAE, and MARE for 
GBELLMF were 0.9999, 0.0013 L·m−2·h−1, 0.9993, 0.0007 
L·m−2·h−1 and 0.1519%, respectively. �is agrees with the 
results of Taghavifar and Mardani (2014) and Xie et al. (2017). 
However, the best ANFIS structure for SSP prediction was 
obtained by using GBELLMF which consisted of 5 layers and 
is marked in bold in Table 5. �erefore, this ANFIS structure 
was selected. �e 1st layer of the developed model included the 
input parameter (RH, SR, MF, TDSF, and TDSB) membership 
functions (MFs). �is layer provides the input parameter values 
to the following layer. �e 2nd layer, which was an MF layer, 
determined and checked the weights for each MF. For the best 

TABLE 3
Results of stepwise selection procedure

Step Subsets (variables) Mallows statistic (Cp)

1 SR 931.421
2 SR, TDSF 147.345
3 SR, TDSF, TDSB 93.512
4 SR, TDSF, TDSB, MF 8.263

5 SR, TDSF, TDSB, MF, WS 5.029
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ANFIS model, the fuzzi�cation layer (2nd layer) contained 15 
nodes and 45 non-linear parameters. �e rule layer (3rd layer) 
with 524 nodes achieved a pre-condition matching process for 
fuzzy rules. �e 4th layer (the defuzzi�cation layer) with 524 
nodes and 1 458 linear parameters took the inference of the 
rules and generated output values. �e 5th layer summed up and 
combined the inputs and transformed the fuzzy classi�cation 
into a binary outcome. Overall, the total number of parameters 
and fuzzy rules were 1 503 and 243, respectively, for the ANFIS 
model using GBELLMF.

MR model 

In this study, the MR model was selected to develop a 
relationship between the SSP and the 5 variables that a�ect 
it (RH, SR, MF, TDSF, and TDSB). �e SSP was the dependent 
variable, while the other variables were independent. �e 
following mathematical expression was obtained to estimate 
SSP based on MR analysis:
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TABLE 4
Statistical performance of the ANN model with various neuron numbers in the hidden layer and transfer functions

ANN 
Arch.

SIGM TANH SECH

CC RMSE
(L·m−2·h−1) OI MAE MARE CC RMSE

(L·m−2·h−1) OI MAE MARE CC RMSE
(L·m−2·h−1) OI MAE MARE

5-2-1 0.983 0.044 0.960 0.033 8.221 0.984 0.043 0.961 0.032 7.960 0.985 0.043 0.962 0.032 8.595
5-3-1 0.990 0.035 0.971 0.023 5.797 0.991 0.032 0.974 0.022 5.843 0.990 0.035 0.971 0.024 6.313
5-4-1 0.990 0.034 0.971 0.022 5.892 0.992 0.031 0.975 0.020 5.381 0.990 0.035 0.971 0.024 6.276
5-5-1 0.992 0.030 0.976 0.020 5.259 0.992 0.031 0.976 0.021 5.372 0.992 0.030 0.976 0.020 5.767
5-6-1 0.990 0.035 0.971 0.023 5.695 0.993 0.029 0.977 0.020 5.225 0.992 0.031 0.975 0.021 5.518
5-7-1 0.990 0.034 0.971 0.023 6.152 0.992 0.031 0.975 0.021 5.787 0.992 0.031 0.975 0.022 6.006
5-8-1 0.989 0.035 0.970 0.023 6.093 0.993 0.029 0.977 0.020 5.364 0.993 0.029 0.978 0.019 5.512
5-9-1 0.990 0.035 0.971 0.023 6.004 0.992 0.030 0.976 0.020 5.474 0.993 0.029 0.977 0.020 5.163
5-10-1 0.990 0.035 0.971 0.023 6.047 0.992 0.031 0.976 0.020 5.679 0.994 0.028 0.979 0.019 4.964
5-11-1 0.990 0.034 0.972 0.023 5.933 0.993 0.030 0.977 0.020 5.337 0.993 0.028 0.978 0.019 5.467
5-12-1 0.989 0.035 0.970 0.024 5.949 0.993 0.030 0.976 0.019 5.343 0.993 0.029 0.977 0.019 5.206
5-13-1 0.989 0.037 0.969 0.026 6.397 0.992 0.031 0.975 0.021 5.805 0.992 0.030 0.976 0.020 5.642
5-14-1 0.989 0.036 0.970 0.024 6.251 0.993 0.030 0.977 0.019 5.031 0.994 0.027 0.979 0.019 4.867
5-15-1 0.989 0.036 0.970 0.024 6.220 0.992 0.031 0.975 0.021 5.499 0.994 0.027 0.979 0.018 4.852
5-16-1 0.989 0.035 0.970 0.024 6.083 0.992 0.030 0.976 0.019 5.201 0.994 0.027 0.979 0.019 4.802
5-17-1 0.989 0.036 0.969 0.025 6.217 0.992 0.031 0.975 0.021 5.971 0.993 0.028 0.978 0.019 5.073
5-18-1 0.989 0.036 0.969 0.025 6.216 0.992 0.030 0.976 0.020 5.572 0.992 0.030 0.976 0.020 5.306
5-19-1 0.988 0.037 0.969 0.026 6.502 0.993 0.030 0.977 0.020 5.242 0.994 0.028 0.979 0.019 4.759
5-20-1 0.989 0.036 0.969 0.025 6.111 0.993 0.030 0.977 0.020 5.365 0.993 0.028 0.978 0.019 5.033

TABLE 5
Performance of the ANFIS model with various membership functions

MFs
Model properties Statistical parameters

NN NLP NNP TNP NFR CC RMSE OI MAE MARE

TRIMF 524 1 458 45 1 503 243 0.9999 0.0040 0.9977 0.0027 0.6376

TRAPMF 524 1 458 60 1 518 243 0.9998 0.0048 0.9972 0.0026 0.8857

GBELLMF 524 1 458 45 1 503 243 0.9999 0.0013 0.9993 0.0007 0.1519

GAUSSMF 524 1 458 30 1 488 243 0.9999 0.0014 0.9992 0.0007 0.1498

GAUSS2MF 524 1 458 60 1 518 243 0.9999 0.0012 0.9994 0.0007 0.2350

PIMF 524 1 458 60 1 518 243 0.9999 0.0041 0.9976 0.0022 0.7844

PSIGMF 524 1 458 60 1 518 243 0.9999 0.0007 0.9996 0.0005 0.1424

DSIGMF 524 1 458 60 1 518 243 0.9999 0.0007 0.9996 0.0005 0.1424
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B, SE, t-stat, and the p-value of independent parameters 
have been listed in Table 6. 

SR is an in�uential parameter in the computation of SSP, 
since the SE of the coe�cients of this parameter is ± 4.3  10-05. 
All the values of t-stat for independent parameters are greater 
than +1.983 or less than −1.983, con�rming the goodness of the 
coe�cients. �e absolute value of these t-stat values should be 
greater than 1.983 (critical t-value at 106 degrees of freedom) 
to ensure the goodness of the coe�cients. �e values of the 
regression coe�cients for all parameters were highly and 
statistically signi�cant (P-value < 0.05). However, SR is the 
most signi�cant parameter in the MR model with the highest 
t-stat (20.060). In addition, it is revealed that the RH and TDSF 
were inversely proportional to SSP. �e statistical parameters 
of the multiple regression tabulated in Table 6 were calculated 
using the learning/training process. �e CC, RMSE, OI, 
MAE and MARE obtained were 0.965, 0.125 L·m−2·h−1, 0.799, 
0.109 L·m−2·h−1, and 29.078%, respectively.

Comparison of models

In this section, we compare the performances between 
the ANN model, ANFIS model, and the MR model. �e 
performances of these models were assessed according to 
statistical criteria such as CC, RMSE, OI, MAE, and MARE. 
�e �ndings based on applying these models are compared in 
Table 7. During the training process, it is clear from Table 7 
that the values predicted by the ANN �t almost perfectly with 
the observed values, but a little less closely than those predicted 
by the ANFIS model, as re�ected in the values of the statistical 
indicators. �ese results indicate that the ANN model is better 
than the MR model in the training process.

During the testing process, the CC values for the ANFIS 
and MR models were about 1.44% and 3.29%, respectively, and 
less accurate than that of the ANN model, as shown in Table 7. 
�e RMSE values for the ANFIS and MR models were about 
1.27 and 2.44 times higher, respectively, than the value for the 
ANN model. �e OI values for the ANFIS and MR models are 
less than that for the ANN model. �e values of MAE for the 
ANFIS and MR models (0.045 L·m−2·h−1and 0.120 L·m−2·h−1) 
were almost 1.22 and 3.24 times that of the ANN model. In 
addition, the values of MARE for the ANFIS and MR models 
were nearly 1.21 and 3.27 times that of the ANN model. During 
the validation process, the ANFIS and MR models had CC 
values of about 5.38% and 4.14%, respectively, and these were 
less accurate than that of the ANN model, as indicated in 
Table 7. �e values of RMSE for the ANFIS and MR models 
(0.085 L·m−2·h−1and 0.144 L·m−2·h−1, respectively) were almost 
1.49 and 2.53 times that of the ANN model (0.057 L·m−2·h−1). 
�e OI value for the ANN model was 10.85% and 25.03% more 
accurate than that of the ANFIS and MR models, respectively. 
�e MAE values of 0.063 L·m−2·h−1 and 0.135 L·m−2·h−1for the 
ANFIS and MR models were larger by 61.54% and 246.15%, 
respectively, than that of the ANN model. �e MARE value 
in the ANN model was 21.80% and 168.44% less than that 
for the ANFIS and MR models, respectively. �e CC, RMSE, 
OI, MAE, and MARE values con�rm that the ANFIS and 
MR models perform relatively poorly. Table 7 clearly reveals 
that the predictive performance of the ANN model are 
signi�cantly higher than those of the ANFIS and MR models. 
�ese outcomes indicate that the ANN model can be used 
successfully for SSP modelling. 

Another representation of the �ndings generated using 
the developed models is demonstrated in Fig. 3, where the 
scatter plots and relative errors (REs) show the accuracy of the 

TABLE 6
Performance of the MR model

MR model B SE t-stat P-value CC RMSE OI MAE MARE

(Constant) −0.150 0.144 −1.041 0.300

0.965 0.125 0.799 0.109 29.078

RH −0.003 0.001 −2.489 0.014

SR 0.001 4.3 x 10-5 20.060 7.08 x 10-38

MF 1.195 0.433 2.759 0.007
TDSF −0.012 0.001 −12.410 2.22 x 10-22

TDSB 0.010 0.001 9.531 6.37 x 10-16

TABLE 7
Statistical indicators of the proposed ANN, ANFIS, and MR models during the training, testing, and validation processes

Dataset Model type CC RMSE OI MAE MARE

Training
ANN 0.994 0.028 0.979 0.019 4.964

ANFIS 0.999 0.001 0.999 0.001 0.152
MR 0.965 0.125 0.799 0.109 29.078

Testing
ANN 0.973 0.055 0.940 0.037 10.514

ANFIS 0.959 0.070 0.910 0.045 12.766
MR 0.941 0.134 0.758 0.120 34.379

Validation
ANN 0.967 0.057 0.931 0.039 11.289

ANFIS 0.915 0.085 0.830 0.0630 13.750
MR 0.927 0.144 0.698 0.135 30.304
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Figure 3 
Performance of the ANN, ANFIS, and MR models during training, testing, and validation stages

models in predicting the SSP. In addition, the comparison of 
the measured and estimated data obtained from ANN, ANFIS, 
and MR models is presented in Fig. 3, which clearly shows that 
the ANN model �ts more perfectly than the ANFIS and MR 
models. �e data were mostly evenly distributed around the 1:1 
line, showing a very close visual agreement between the observed 
and predicted values for the ANN model. Further, Fig. 3 shows 
the REs of predicted SSP values for the training, testing, and 
validation datasets for the ANN, ANFIS, and MR models. �is 
�gure shows di�erences between the results of the two models 
with average relative errors of 0.01%,−1.12%, and 6.23% for the 
ANFIS model when using the training, testing, and validation 
datasets, respectively. �e �gure also shows the average relative 
errors of 25.39%, 32.84%, and 27.65% for the MR model when 
using the training, testing, and validation datasets, respectively. 

�e corresponding values for the ANN model were generally 
lower at 0.22%, 0.31%, and 5.41% for the training, testing, and 
validation datasets, respectively. In general, Fig. 3 and Table 
7 convincingly demonstrate the superiority of ANN to ANFIS 
and MR. �is is in agreement with �ndings of previous studies 
(Choubin et al., 2016; Khademi et al., 2016).

CONCLUSIONS

In this investigation, we discussed the use of arti�cial neural 
network (ANN), adaptive neuro-fuzzy inference system 
(ANFIS), and multiple regression (MR) for SSP modelling, 
acquired experimental data from a passive inclined solar still 
in an arid climate, and applied the above models to this data. 
Further, since input selection is a signi�cant step in modelling, 
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we used a stepwise technique to arrive at 5 combinations. 
Based on the outcomes of the stepwise analysis, 5 parameters, 
RH, SR, MF, TDSF, and TDSB, were used as input parameters. 
�e only output parameter is the SSP. In order to evaluate the 
performance of the ANN, ANFIS, and MR models, 70%, 20%, 
and 10% of the experimental data were utilized for model 
training, testing, and validating, respectively. �e predicted 
SSP values were compared to the observed values, where the 
assessment was based on the statistical error indicators CC, 
RMSE, OI, MAE, and MARE. �e �ndings show that the 
ANN, ANFIS, and MR models can estimate SSP successfully 
and accurately. However, the ANN model performs better 
than the ANFIS and MR models. In particular, an ANN model 
with architecture 5-10-1, trained using the back-propagation 
algorithm and with a hyperbolic secant activation function in 
the hidden and output layers, is found to be the optimal model 
for predicting SSP. 
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