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Abstract

The quest for good practice in modelling merits thorough and sustained attention since good practice increases the credibility 
and impact of the information, and insight that modelling seeks to generate. This paper presents the findings of an evaluation 
whose goal was to understand the uncertainty in applying a distributed hydrological model to the Grote Nete catchment in 
Flanders, Belgium. Uncertainties were selected for investigation depending on how significantly they affected the model’s 
decision variables. A Fault Tree was used to determine various combinations of inputs, mathematical code, and human error 
failures that could result in a specified risk. A combination of forward and backward approaches was used in developing the 
Fault Tree. Eleven events were identified as contributing to the top event. A total of 7 gates were used to describe the Fault 
Tree. A critical path analysis was carried out for the events and established their rank or order of significance. Three measures 
of importance were applied, namely the F-Vesely, the Birnbaum, and the B-Proschan importance measures. Model develop-
ment of distributed models involves considerable uncertainty. Many of these dependencies arise naturally and their correct 
evaluation is crucial to the accurate analysis of the modelling system reliability. 
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Introduction

The quest for good practice in modelling merits thorough and 
sustained attention since good practice increases the credibil-
ity and impact of the information, and insight that modelling 
seeks to generate (Jakeman et al., 2006). This paper presents 
the findings of an evaluation whose goal was to understand the 
uncertainty in applying a distributed hydrological model to the 
Grote Nete catchment in Belgium, which could be otherwise 
stated as the assessment of whether the model can do what is 
reasonably expected of it in representing the distributed hydrol-
ogy of this catchment. The results would establish the degree 
of confidence to be placed in the model’s representation of the 
catchment response. The evaluation was conducted as a first step 
in model development by a trial and error process whose aims 
ultimately included learning about the hydrologic characteris-
tics of the study area, the information available for modeling this 
area, and MIKE SHE as the modeling tool used in distributed 
modeling of the study area. This was a site-specific evaluation, 
but whose outcome can be used in similar circumstances. This 
paper presents a case of the solution to the problem of building 
distributed models with the quality characteristics necessary 
for representation of the complex hydrology of a natural catch-
ment.
	 The water resources of the Grote Nete catchment have been 
profoundly influenced by anthropogenic activities, including the 
construction of canals, agricultural and land drainage systems, 
and land use changes. Physical deterioration of rivers and their 
floodplains is common. In recent years, awareness and concern 
have increasingly been directed towards the potential adverse 
impacts that anthropogenic changes have had on river valley 

ecosystems. Scientists have come to realise that mankind’s 
economic strides made over the last two centuries were at the 
expense of the earth’s biodiversity, its environment, and the sta-
bility of its self-regulatory systems (Todd et al., 2003). The grow-
ing awareness of the value of natural ecosystems has resulted in 
various efforts being initialised to reverse past anthropogenic 
changes, and various methods for natural restoration are being 
considered. Quantitative and qualitative information on these 
intervention measures is known to fluctuate with country or 
region, extent of ecological degradation, present land use within 
region, and understanding of the accompanying hydrological 
processes (Kusler and Kentula, 1990; Mitsch and Wilson, 1996; 
Richardson, 1994). 
	 However, changing people’s views on water use and making 
them understand the meaning and necessity of good watershed 
management requires solid scientific arguments. Such arguments 
can be communicated to the stakeholders involved through the 
use of decision support systems (DSS). Model-based DSS are 
nowadays used frequently to assess the impacts of policies prior 
to their implementation (Andreu et al., 1996; De Kok et al., 2001; 
Mysiak et al., 2005). Examples include multiple criteria decision 
analysis (MCDA), a tool to support sustainable management of 
groundwater resources in South Africa (Pietersen, 2006); and 
the hydrological decision support framework (HDSF), intended 
as a tool for assessing and managing water resources (Clark and 
Smithers, 2006). Models are used to answer the research ques-
tions that arise with water retention, including the risks associ-
ated with water conservation, the required extent of basin resto-
ration, and the existence of other options to address the primary 
problem of hydrological extremes. Scenarios are then used as 
a prerequisite for assessing the influence of potential land-use/ 
land-cover changes on runoff generation (Niehoff et al., 2002). 
In the case of the Grote Nete catchment, to both fill the existing 
gap in knowledge of the hydrological influence restorative inter-
vention measures and provide a basis for undertaking watershed 
management with stakeholders, it was necessary to develop a 
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physically-based, spatially distributed hydrological model as 
a first part of what would eventually be a holistic DSS for the 
Grote Nete catchment. 
	 The growing availability of inexpensive parallel comput-
ers for deployment in distributed modelling and the improve-
ments in visualisation of simulations, are increasingly removing 
the hitherto limitation of computer power as a constraint to the 
application of models. With the increasing application of dis-
tributed models comes the need to understand potential risks 
or uncertainties related to their use. Errors and uncertainties in 
their use are often substantial (Willems, 2005). It is easy to read 
too much into the output and model predictions, and there is a 
risk that the model gets used for a purpose other than what it 
was developed for, potentially rendering the conclusions invalid 
(Jakeman et al., 2006). It is very difficult to characterise all the 
processes in nature, and it is impossible to make predictions of 
future responses without acknowledging the inherent risk or 
uncertainty involved (Beven, 2000). Technological develop-
ments in distributed hydrological modelling have created a need 
for methods capable of analyzing their reliability. This is espe-
cially so in the areas of assessing model reliability, detecting 
weak links in the modelling process, modelling process opti-
misation, and provision of insight into the normal or abnormal 
behaviour of the models. There are plenty of uncertainties in the 
modelling process. Process simulation models are complex in 
nature and it is not easy to simplify them (Garen et al., 1999). A 
‘good’ model strikes the balance between complexity and accu-
racy (Beck et al., 1997).  

Distributed models

Distributed models are those which are able to explicitly 
represent the spatial variability of some, if not most, of the 
important land surface and climatic characteristics. Such models 
have important applications to the interpretation and prediction 
of the effects of land-use change and climate variability since 
they relate model parameters directly to physically observable 
land surface characteristics. Model development of distributed 
models involves challenges related to the validation of internal 
variables, and at multiple scales. Problems in code verification 
and model validation arise from the difficulties in obtaining 
complete input data (Grayson et al., 1992). A common problem 
is the existence of multiple optimal parameter sets and the pres-
ence of high interaction or correlation between subsets of fitted 
model parameters. The former problem has been discussed by 
Beven who suggests that there may be many acceptable param-
eter sets within a model structure, which may come from dif-
ferent regions of the parameter space (Beven, 1993; Beven and 
Freer, 2001). This then results in the possibility of having mul-
tiple calibrated parameter sets spanning a broad range of feasi-
ble parameter space, which produce virtually indistinguishable 
simulated river discharge (Kuczera and Franks, 2002). Given 
the observations available, there may be no rigorous basis for 
differentiating between the acceptable parameter sets. Beven 
introduced the term ‘equifinality’ to describe this phenomenon 
(Beven, 1993). The most important implication of the equifinal-
ity problem is the non-uniqueness of calibrated parameters. A 
reverse scenario is the risk that the global optimum is not found 
(Jakeman et al., 2006).

Uncertainty 

Uncertainty is interpreted differently by different disciplines 
(Mowrer, 2000). It encompasses many concepts (Morgan and 

Henrion, 1990). Beven describes the risk of a possible outcome 
as uncertainty (Beven, 2000). He writes that techniques for 
uncertainty or risk analysis are well developed, but are not 
widely used. Model outcomes are left vulnerable if the uncer-
tainty associated with the modelling is not analysed (Beven, 
2000). Some terminology related to uncertainty including var-
iation, variability, ambiguity, heterogeneity, approximation, 
inexactness, vagueness, inaccuracy, subjectivity, imprecision, 
misclassification, misinterpretation, error, faults, mistakes, 
and artefacts (Dubus et al., 2003). Uncertainty assessment is 
increasingly being applied, with expected benefits including 
quantification of uncertainty, identification of factors most 
influential to model predictions, and generation of output most 
relevant to decision making. Uncertainty must be considered 
in developing any model, but is particularly important, and 
usually difficult in the case of integrated models (Jakeman et 
al., 2006). 

Uncertainty sources in distributed modelling

In distributed hydrological modelling, risk and uncertainty lie 
within the collection of possible outputs and their likelihoods. 
They are the sum of outcome, likelihood, significance, causal 
scenario, and the population affected (Kumamoto and Henley, 
1996). It is very difficult to characterise all the processes in 
nature, or to make predictions of future responses without 
acknowledging the inherent risk or uncertainty involved.
	 Uncertainties are selected for investigation depending on 
how significantly they affect the decision variable (De Kort 
and Booij, 2007). Many studies have been carried out on 
uncertainties in hydrology, primarily based on the principles 
and criteria of classical statistics that lay emphasis on mean 
square errors of percentiles and on unbiasedness (Parent and 
Bernier, 2003). The importance of uncertainty may be deter-
mined by first-order uncertainty analysis (Melching et al., 
1990), sensitivity analysis (Morris, 1991), Monte Carlo anal-
ysis (Seibert, 1997), Bayesian uncertainty (Tol and de Vos, 
1998), parameter uncertainty investigation by validation, or 
by uncertainty frameworks including among others, the Gen-
eralised Uncertainty Estimation, GLUE (Beven and Binley, 
1992), the Bayesian Forecasting System, and the Pareto Opti-
mal Set procedure. Rather diabolically, however, the selection 
and implementation of techniques designed to account for risk 
and uncertainties are themselves subject to significant uncer-
tainty. For instance, overall results from Monte Carlo-based 
probabilistic assessments will be influenced by the selection 
of input parameters to be included in the analysis (Nofziger 
et al., 1994), the type and parameterisation of probability 
distribution functions attributed to input parameters (Brattin 
et al., 1996), the absence or presence of correlation between 
variables, the extent of the correlations considered (Smith et 
al., 1992), the sampling scheme used (Saltelli et al., 2000) and 
the seed number used in the sampling (Dubus and Janssen, 
2003).

Materials and methods

Fault Tree analysis, terms and techniques

A Fault Tree is a graphical representation of events in a hier-
archical, tree-like structure (Fig. 5). It is used to determine 
various combinations of inputs, mathematical code, and human 
error failures that could result in a specified risk. From the time 
of its conceptualisation in the Bell Telephone Laboratories in 
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the 1960s as a technique to perform safety evaluation (Haasl, 
1965), Fault Tree analysis has become an established tool used 
to analyse risk and the likelihood of failure of systems. The tech-
nique categorises risks as events. The ‘top event’ signifies the 
least desired event; an ‘intermediate event’ is the result of more 
primary events below; an ‘undeveloped event’ is one that is not 
developed further for lack of data or its relative insignificance; 
and a ‘primary event’ is a basic event for which failure data are 
available (Amendola and Bustamante, 1988; Kumamoto and 
Henley, 1996). Two gates of a Fault Tree are the ‘OR’ logic gate, 
whereby output occurs if any one of the input events occurs; and 
the ‘AND’ logic gate, whereby output occurs only if all the input 
events occur simultaneously. The gate type determines how the 
inputs to the gate are logically connected for the minimal cut set 
analysis process.
	 In Fault Tree analysis, system failure causality is well repre-
sented by a logic tree diagram which increases in its resolution 
as the diagram develops until primary events are encountered. 
This diagrammatic representation offers a clear representation 
of fault propagation through the system whilst representing a 
mathematical logic equation. The Fault Tree is a logical rela-
tionship between an event and its causes, and provides a logical 
framework for expressing combinations of event failures that can 
lead to the top event. Gates are used to describe the relationship 
between the input and output events in a Fault Tree. Fault Tree 
analysis has been used to support engineering and management 
decisions, trade-off analysis, and risk analysis (Kumamoto and 
Henley, 1996; Amendola and Bustamante, 1988; Haasl, 1965; 
Harms-Ringdahl, 1993).

Model selection criteria

A source of uncertainty in modelling is the choice of model 
(Dubus et al., 2003). An appropriate model may be difficult to 
choose (Garen et al., 1999), and model simulation with similar 
data can produce very different responses (Reed et al., 2004). 
The uncertainty evaluation presented in this paper was car-
ried out in the context of a study on the effects of rewetting on 
extreme river discharge events in the Grote Nete catchment, and 
how these are likely to be affected by proposed catchment res-
toration measures (Rubarenzya et al., 2005). An important con-
sideration therefore in selecting the model was the applicability 
for scenario analysis, which necessitated a realistic physically-
based, fully distributed representation of the study area. MIKE 
SHE (Graham and Butts, 2006) was adopted. It is a distributed 
model that incorporates the different components of the hydro-
logical cycle, and for which each process can be represented at 
different levels of complexity. 

MIKE SHE

MIKE SHE is a distributed model that simulates the entire land 
phase of the hydrological cycle (Refsgaard and Storm, 1995). It 
includes all of the processes in the land phase of the hydrological 
cycle, including precipitation, evapotranspiration, canopy inter-
ception, overland sheet flow, channel flow, unsaturated sub-sur-
face flow and saturated groundwater flow. Each of these proc-
esses can be represented at different levels of spatial distribution 
and complexity, according to the goals of the modelling study, 
the availability of field data and the modeller’s choices (Graham 
and Butts, 2006). The discrete grids form the computational 
units and the vertical axis is discretised into layers (Yang et al., 
2000).  Figure 1 shows the model implementation for the Grote 
Nete catchment. 

Figure 1
Schematic representation of the Grote Nete model in MIKE SHE

MIKE SHE was used to build a distributed hydrological model 
of the study area. Model testing was done using a combination 
of goodness-of-fit statistics and a multicriteria model refinement 
protocol as implemented in the tool for hydrological time series 
analysis, WETSPRO (Rubarenzya et al., 2006a). In verifying the 
model, both the split-sample approach and a graphical approach 
using validation plots were employed. The calibration period 
was taken from 1986 to 1988, and the validation period from 
1990 to 1995. This avoided the period in-between, when river 
dredging activities are believed to have interfered with the river 
stage measurements. 

The study area

The Grote Nete catchment in Belgium is a middle-sized hydro-
logical catchment located in the northeast of Flanders (Fig. 2). 
The soils are predominantly composed of sand, sandy loam in 
the southern and valley areas, and silt (Batelaan, 2006), and 
49.6% of the area consists of sandy permeable soils. The topog-
raphy  is flat, ranging from 12 m in the west to 69 m in the east 
with an average value of 22 m (Batelaan, 2006), and has a shal-
low phreatic surface. Catchment slopes are in the range of 0% 
to 5%, with an average value of 0.3% (Batelaan, 2006). The 
Grote Nete catchment is composed of numerous river tributaries  
(Fig. 4), and a dense network of ditches and subsurface pipe 
drains that feed into the main Grote Nete, Molse Nete, and Grote 
Laak Rivers. The confluence of the Grote Nete and Grote Laak 

Unsaturated zone flow 
1-D finite difference – 
Gravity flow 

Rainfall

Evapotranspiration 
Kristensen and Jensen method

Overland flow 
2-D Finite difference – 
Diffusive wave eqn.

Channel flow  
1-D St. Venant eqns. – Fully 
dynamic wave approx. 

Saturated zone flow 
3-D Finite Difference – Darcy flow

Figure 2
The area in grey indicates the location of the study area in 

Belgium. Also indicated on the map are the three main 
political regions of the country
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Rivers occurs just upstream of the Varendonk limnigraphic  
station. In addition, the catchment has numerous small lakes, 
the result of sand mining in the past for glass production. The 
catchment area is 385 km2 at the outlet Varendonk limnigraphic 
station. 

Model inputs

A brief description of the Grote Nete catchment model and its 
main inputs is given in the following sections.

Rainfall measurements
Seven rain gauges were used as sources of rainfall input and 
the spatial rainfall distribution was determined by the Thiessen 
polygon method (Fig. 3). 

Potential evapotranspiration
The potential evapotranspiration, Ep, was calculated for a closed, 
short-cut grass surface, optimally supplied with water, and 
using coefficients that were calibrated for Belgian conditions. In 
estimating the evapotranspiration, ETo, climatic data supplied 
by the Royal Meteorological Institute of Belgium (RMI) from 
the meteorological station at Geel (51o 09’ 30’ N, 4o 59’ 30’E; at 
elevation 21 m) were used. 

Saturated zone flow
The saturated zone model consisted of a 3-dimensional Darcy 
equation. This permitted three-dimensional flow in the hetero-
geneous aquifer with shifting conditions between unconfined 
and confined conditions. The flow was calculated using a maxi-
mum allowable time step of 1 h. The catchment geology was 
described in terms of four geological layers to which hydraulic 
properties were assigned through grid-code files. The 3-dimen-
sional geological model described the extent, thicknesses and 
elevation of the layers. For each layer, distributed estimates were 
determined for the horizontal and vertical hydraulic conductivi-
ties.  A separate well file was created to represent the abstraction 
from the five abstraction wells located within the catchment, 
and another three just outside the boundary. Included in this file 
were the coordinates of each well, the vertical location of the 
filter, and a time series of water abstraction. The drainage com-
ponent of the MIKE SHE groundwater module was included. It 
described drainage using drainage codes (areas considered to 
be drained), drain levels (distributed maps of effective drainage 

levels, i.e., groundwater table elevation 
above which drainage flow occurs), and a 
drainage time constant. 

Vadose zone flow
The unsaturated zone model was a verti-
cal soil profile model that interacted with 
both the overland flow and the ground
water model. The lower boundary con-
dition for this zone was defined by the 
location of the groundwater table. The 
Richards equation was used to represent 
flow in this zone. The study area is char-
acterised by sandy to sandy loam soils, 
and has a high water table. The distrib-
uted soil map was broadly classified into 
six major soil classes. Vertical discretisa-
tion then followed from the ground sur-
face level down to 20 m. The minimum 
discretised cell height was 0.025 m at the 

ground surface level. To each discretised layer, soil properties 
were assigned, including the retention curve parameters and 
Averjanov pedotransfer coefficients (Rubarenzya et al., 2006b). 
Vertical flow and water content of the unsaturated soil was 
calculated using a maximum time step of 30 min. MIKE SHE 
automatically updated the computational time steps during the 
simulation to avoid numerical instability following high rainfall 
inputs.

Overland flow
The overland flow component was defined by the two-dimensional 
diffusion wave approximation of the St. Venant equations govern-
ing shallow water flow. To limit the amount of water that could 
flow over the ground, a parameter for water detention was intro-
duced. The overland flow was calculated using a maximum time 
step of 30 min. The distributed surface roughness over the catch-
ment was established after calibration of values from literature. 

Channel flow and surface water features
The Grote Nete catchment is composed of numerous river tribu-
taries (Fig. 4). In addition, the catchment has many small lakes, 
the result of sand mining in the past for glass production. Sur-
face waters were represented as land use categories, along with 
the corresponding roughness and evapotranspirative param-
eters. The river network was represented in MIKE 11 (Havno 
et al., 1995), which is a hydrodynamic model that is coupled to 
MIKE SHE and simulates the one-dimensional river flows and 
water levels using the fully dynamic St. Venant equations. The 
maximum discretisation was 750 m distance (dx), with a fixed 
time step (dt) of 10 min. 

Land use and vegetation
The final land-use map was based on the 1995 land-use map of 
Flanders. However, the latter map had several land-use classes 
of which there were insufficient data. This was solved by under-
taking a reclassification of the 1995 land-use map of Flanders to 
reduce the number of classes to 8 major land-use categories.  The 
aim of this reclassification was to simplify the land-use input 
and balance data availability with the detail required of spatially 
distributed modelling, and to merge very small land uses into 
similar categories. Each land use had an associated user-defined 
vegetation development file, which contains information on the 
annual growth cycle, and progression of the Leaf Area Index 
(LAI) and crop coefficient (Kc) values. 

Figure 3
The study area showing rainfall gauging stations and their corresponding 

Thiessen polygons
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Uncertainty sources identification

An uncertainty source, known in Fault 
Tree analysis as an event, is taken to sig-
nify an individual source of uncertainty 
that can be distinguished from the general 
uncertainty. Oreskes notes that only a few 
risks or uncertainties are easily quantified, 
and many or most are quantified with dif-
ficulty (Oreskes, 1998). Literature reports 
some attempts to differentiate between 
contributions of the different sources of 
uncertainty to the overall uncertainty. This 
process allows for explicit definition of the 
events to be included in the evaluation. 
Discretion was used in selection of events. 
O’Hagan observed the usefulness of expert 
knowledge when undertaking such studies 
(O’Hagan, 1998). For example, the attention 
of Bayesian statisticians is returning to the 
quantification of expert opinion, with due 
consideration of their uncertainties (Parent and Bernier, 2003). 
This study, like others before, analysed uncertainties chosen 
because they were convenient, in the opinion of the researchers, 
and were relevant to the dependent variable of the model. 
	 Because this study calibrated a model against river discharge 
as the dependent variable, the top event or ultimate uncertainty 
was defined as simulation uncertainty, that is, the inaccuracy of 
predictions in the dependent variable. The study utilised logic 
gates, through which combinations of uncertainties could be 
grouped as they contribute to the top event. All gates were of 
the ‘or’ logic type, implying that the uncertainty output from the 
gate could occur if any one of the input events occurs.

Fault Tree and Critical Path analysis
A Critical Path analysis was carried out for the events and 
established their rank or order of significance. A Critical Path 
is a group of events that has the highest probability of occur-
rence among all possible sets of events. Events of larger rank 
represented those more critical, that is, more likely to cause a 
realisation of the top event. Three measures of importance were 
applied, namely the F-Vesely, the Birnbaum, and the B-Proschan 
importance measures (Meng, 2000; Dutuit and Rauzy, 2005). 
The F-Vesely (Fussell-Vesely) importance measure represents 
an event’s contribution to the system unavailability. Increasing 
or decreasing the availability of events with a higher importance 
value will have the most significant effect on system availability. 
The Birnbaum measure for an event represents the sensitivity 
of system unavailability with respect to changes in the events 
unavailability. The B-Proschan (Barlow-Proschan) event impor-
tance measure takes into consideration the sequence of event 
failures within its calculation. It is the probability that the sys-
tem fails because a critical cut set containing the event fails, 
taking into consideration that the event fails last. 
	 The uncertainty analysis was used to define events and 
linked them to form a logic diagram, the Fault Tree (Fig. 5). 
The top event was described precisely. The resolution of the 
tree increased from the top event down to the primary events. A 
combination of forward and backward approaches (Kumamoto 
and Henley, 1996) was used in developing the Fault Tree. The 
backward approach began at a particular event and traced back 
its possible causes, while the forward approach began with set 
of failure events and went forward to determine their possi-
ble effects. The Fault Tree served the purpose of directing the 

analysis to identify failure modes. The process of indicating 
aspects of the system responsible for system failure provided 
a graphic aid to define the progression of events leading to 
the top event, allowing for the concentration on one particular  
system failure at a time, and providing an insight into overall 
system behaviour. 

Outcomes of the study

Importance evaluation of uncertainty sources

The first step in the evaluation was compilation of a list of 
sources of uncertainty. This uncertainty evaluation was being 
conducted for a specific catchment in Belgium, and as alluded 
to by O’Hagan, was based on the judgment of the researchers 
(O’Hagan, 1998). Thus, while some events emerged as being 
universal to distributed modelling, there were events that are 
unique to this case study. In addition, the decision on which 
uncertainties to classify as independent events and which to 
combine with others was arrived at based on the perceived 
severity of the uncertainty in the context of the distributed 
modelling study. In the case of the Grote Nete catchment,  
11 events were identified as contributing to the top event  
(Fig. 5). The events included:

1. 	 Temporal variability of inputs acknowledges the uncer-
tainty that accrues when not modelling steady-state condi-
tions. Most model inputs vary in time, and the significance 
depends on both the model and the specific parameter. It is 
important that a model be able to represent different spatial 
scales. An appropriate scale would then encompass spatial 
and temporal aspects (Blöschl and Sivapalan, 1995). For the 
Grote Nete  model this significance was for instance, related 
to processes in the vadose zone, including soil physical and 
hydraulic parameters and the related pedotransfer functions 
(Bouma, 1989). The model does not allow for variation of 
these inputs with time, which introduced uncertainty in the 
modelling outcome.  

2. 	 Costs and complexity of taking measurements are related 
to the type of input sought, and the required resolution. 
This results in sampling uncertainties on parameters 
due to the limited availability of information (Parent and 

Figure 4
Map showing the river tributaries of the Grote Nete catchment. 

The figure highlights those tributaries included in the river model.
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Bernier, 2003). This also leads to ‘measurement error’, a 
term that refers to uncertainty arising from sampling in the 
field (Dubus et al., 2003). Generally measurement regimes 
are costly, and uncertainty is introduced during the com-
promise between the inputs necessary for assembly of a 
model with acceptable results, and the available financial 
resources. While we must at any given time accept the data 
that are available (Jakeman et al., 2006), there is also a risk 
from using data obtained with different equipment and 
approaches (Dubus et al., 2003). For the Grote Nete model, 
this aspect particularly limited any efforts to augment exist-
ing data sets of land use and river geometry with new field 
measurements. 

3. Parameter heterogeneity or natural randomness integrated 
a combination of the parameter type, catchment size, spa-
tial and temporal resolution, and degree of detail of avail-
able parameter values. For the Grote Nete catchment it was 
recognised that some parameters are more naturally vari-
able than others, and it is known that different model devel-
opers are likely to come up with different sets of optimal 
parameter sets, each set describing the system acceptably 
well. Models with too many degrees of freedom may then 
be fitted to irrelevant ‘noise’ or inconsistent components of 
the noise, have near-redundant parameter combinations, or 
obscure significant behaviour because of the spurious vari-
ation allowed by too much freedom (Jakeman et al., 2006). 
Studies have revealed that not accounting for parameter 
heterogeneity can exert a strong influence on the predic-
tive capability of the model. For the Grote Nete model, this 
uncertainty was most evident when building the sub-surface 
model, where large sections of the earth’s strata had to be 
assumed to be homogeneous, responding with similar water 
retention and transmission properties. 

4. 	 Human error may arise from unstable or biased experi-
mental and measurement procedures, interpretation, typing 
error or the simple variation between persons (Stine and 
Hunsaker, 2001). Other examples of this source of uncer-
tainty include the possibility of an incorrect or unrealistic 
model structure selection (Parent and Bernier, 2003), digiti-
sation of data (Burrough, 1998), and upscaling models above 
the scale at which they were developed (Gaunt et al., 1997). 
This event is most prominent in measuring parameters, set-
ting up the model, model parameterisation, and calibration 
and validation. It was among the hardest events to quantify 
since it involves numerous persons at different stages, but it 
presents significant uncertainty. With regard to model build-
ing, MIKE SHE incorporates some checks for gross errors, 
but is unable to detect more subtle errors. While elements of 
this uncertainty may be found in other identified uncertain-
ties, numerous authors explicitly identify this uncertainty, 
and it is possible to have the occurrence of human error even 
in the absence of any of the other uncertainties identified. 

5. 	 Temporal variability of parameters represents the uncer-
tainty from the fact that input data change with time. This 
is different from the first uncertainty source temporal vari-
ability of inputs) in that while the former relates to physical 
inputs that define the catchment, like land use, this uncer-
tainty source relates to the parameters that then mainly 
define how empirical relationships are solved by the model. 
In MIKE SHE, it is possible to enter some data as time 
series in order to represent this variability. Examples of 

these include river boundary data. However, there are other 
parameters, for instance horizontal and vertical conductiv-
ity, and Strickler’s coefficients, which are considered static. 
This uncertainty is significant in the case of the Grote Nete, 
where, for instance, the seasonal growth of macrophytes in 
the rivers is believed to have an influence on recorded river 
stages and consequently, measured river discharges. The 
importance of this uncertainty is parameter-specific, and 
may depend on the purpose of the study. 

6. Precipitation input uncertainty. Reliability of point meas-
urements of precipitation is determined by measurement 
height, the presence of surrounding large features, evap-
oration losses, absence of heating facilities to allow for 
measurement of snowfall, differences in collector shapes, 
and inadequate calibration. Even assuming that precipita-
tion measurements are reasonably precise, they still can 
only represent point measurements of a very distributed 
phenomenon. For instance, significant variability in rain-
fall data (Krajewski et al., 1998) will directly affect the 
water balance (Dubus et al., 2003), and the modelling 
outcome has a large uncertainty if this variability is not 
considered (Chaubey et al., 1999). Uncertainty also lies in 
the approach of measuring rainfall. Tipping bucket rain 
gauges are, for instance, known for losing water during 
bucket movements; consequently rainfall intensities are 
underestimated and the underestimation increases with 
increasing rainfall intensity. Generally, this uncertainty 
becomes more significant for a decreasing number of plu-
viometers in the catchment. 

7. 	 Missing or unavailable data. In applying the complex, 
data-intensive MIKE SHE model to the Grote Nete catch-
ment, missing or unavailable data was another source of 
uncertainty which was categorised as a distinct uncertainty 
source. Hypotheses and assumptions regarding missing data 
had to be made in building the model, and the uncertainty in 
this uncertainty source lay in how unrealistic these assump-
tions were. In the case of the Grote Nete model this uncer-
tainty was categorised as an independent uncertainty source 
as it represented instances where there were no data at all. 
Thus, extrapolation and averaging methods are applicable 
here. Good examples here were the crop parameters for the 
Kristensen-Jensen evapotranspiration method. This uncer-
tainty generally reduces with experience of the modeller. 

8. 	 Numerical approximations in code. This is one of the most 
basic forms of error in modelling, but is notoriously difficult 
to estimate (Dubus et al., 2003). This uncertainty depends 
on the temporal and spatial resolution of the model setup, 
and the relative differences in size of adjacent spatial cells 
or time steps. This uncertainty also emanates from the fact 
that the model is based on empirical relationships whose 
approximate solution is then arrived at by a series of itera-
tions. Structural error or conceptual error is the term given 
to a model’s inability to simulate experimental observa-
tions even when an appropriate set of model inputs is used 
(Beck et al., 1997). They may result during conversion of a 
scientific concept into a set of equations or computer code 
(Addiscott, 2001); or through inappropriate or omitted rep-
resentation of significant processes (Dubus et al., 2003).

9. 	 The definition of system boundaries. Boundaries are an inte-
gral part of the initial conceptual model and uncertainty lies 
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in wrongly defining boundaries. The system being modelled 
should be clearly defined (Jakeman et al., 2006) but this is 
not always feasible. In the case of the Grote Nete catchment, 
this uncertainty referred to the definition of initial condi-
tions, spatial catchment boundaries, sub-surface stratifica-
tions, and saturation conditions. While it was assumed that 
the catchment boundary followed the topography, the geo-
logical record of the area shows that the area was initially 
flat, and the relief features are the result of Aeolian sands. 
Thus, the catchment boundaries do not necessarily follow 
the relief. In addition, the common approach of approximat-
ing the saturated zone by a few homogeneous layers clearly 
introduced a measure of uncertainty in the modelling of the 
sub-surface region. 

10.	 Scale approximations. This uncertainty originates from the 
inability to model at real scales which results in scale depend-
encies and resolution problems. In theory the appropriate 
scale and resolution are determined by the desired nature of 
outputs, and interpretations to be made thereof (Birkhead et 
al., 2007). However, in reality, the problem of specifying an 
optimal mesh resolution remains unbounded, and for mesh 
construction, objective a priori rules do not exist. 

11.	 Unknown volume of industrial and domestic effluent. This 
source of uncertainty is particular to the Grote Nete catch-
ment, where a number of industries discharge unknown 
quantities of effluent into the rivers. These ungauged 
inflows affect the interpretation that should be made from 
model simulation outputs and creates uncertainty especially 
during calibration and validation. Related to this would be 
the seepage of irrigation water into the river streams, which 
irrigation water was initially drawn from outside the catch-
ment; and seepage and leakage of water from the canals that 
cross the catchment.

Discussion

A principal purpose of uncertainty evaluation is the derivation of 
uncertainty, which may then be managed by proposing alterna-
tive models, evaluating the uncertainty of each alternative until 
a satisfactory alternative is obtained. When distributed models 
are used as decision support tools, the uncertainty of their inac-
curacy or inadequacy is perceived to be high especially if loss of 
life and property would result from their failure. Good model-
ling practice caters for both results and the accuracy of results. 
Simulation uncertainty (of river discharge) was established as 
the top event in this evaluation. A number of events are respon-
sible for this state, all of which do occur to varying degrees in 
any modelling. An initial observation was that all uncertainty 
sources are probable when modelling with MIKE SHE. How-
ever the significance of uncertainty to the modelling process 
from each is site-specific. 

Uncertainty sources

Uncertainty sources or Events 1, 2, 3, 4 relate to the evaluation 
of land-use effects in distributed modelling. Here, the model 
relies on a physically based description of the rainfall-runoff 
processes, and the effects of different land covers defining the 
catchment’s response to land-use change. Hence, for the attain-
ment of reliable results, soil- and land-cover properties have 
to be accurate and represent the heterogeneous nature of the 
catchment. However, the literature shows that this degree of 
accuracy is rarely met. In the case of the Grote Nete catchment, 
the uncertainty in the parameterisation of soils and land covers 
was expressed in some of the primary events. This uncertainty 
was further made more obvious by the regionalisation of point 
measurements, as in the case of determining area rainfall by 
the method of Thiessen polygons, because of the natural varia-
tion that was exhibited by the parameters. The choice of spatial 
resolution took into consideration improvement in insights into 
spatial and temporal processes that accrue from an increased 
spatial resolution, and how the resolution affects MIKE SHE’s 
solution of the non-linear partial differential equations to yield 
the simulation results. 

Gates

Seven gates were used to describe the uncertainties, and they are 
discussed in the following sections. In Fault Tree analysis, gates 
are used to represent the upward clustering of lower events in 
their progression towards the top event. Gate 7 (G7) (Fig. 5) rep-
resents model structure uncertainty or model inadequacy, which 
is the uncertainty associated with the modeller’s limited under-
standing of the system. The behaviour of hydrological systems is 
very difficult to describe (Beven, 2000), and some responses are 
probably unknown (Dubus et al., 2003). MIKE SHE like many 
other engineering models tries to describe the natural hydrologi-
cal system. Unfortunately, the model does not accurately repre-
sent nature, for instance, in the solutions to the river component 
based on the Saint Venants equations (Kazezyilmaz-Alhan et al., 
2005) subject to the known assumptions, or the approximations 
in solving the Richards equation for unsaturated flow. Events 
through this gate included the scale approximations, unknown 
industrial and domestic effluent being discharged into the rivers, 
and the definition of system boundaries. 
	 Gate 6 (G6) represents model input uncertainty. This gate 
is the uncertainty from missing or unavailable data. For a com-
plex distributed model like MIKE SHE, it is always likely that 
input data will be limited. Good examples are the soil hydrau-
lic properties, which are subject to large spatial variability and 
measurement technique. Here, pedotransfer functions are used 
to express the relationships between basic soil properties and 
parameters which are difficult to measure. Pedotransfer func-
tions, however, increase the uncertainty during parameterisa-
tion (Tietje and Tapkenhinrichs, 1993). Events through this gate 

G1

G2 G3

G4 1 G5 G6 G7

2 3 4 5 6 7 8 9 10 11

Figure 5
Fault Tree of uncertainty 
events identified for the 
Grote Nete catchment 

model 
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included precipitation input uncertainty, missing or unavailable 
data, and numerical approximations in the code. 
	 Gate 5 (G5) represents parameter uncertainty. This is the 
uncertainty arising from limited amounts of data for use in the 
calibration and validation of the model. The gate also encom-
passed the use of fitting parameters to describe some processes 
that could not be otherwise described. Examples included field 
drains, where a fitting parameter was used to describe ele-
ments of both overland and saturated zone flow. Events through 
this gate included human error and the temporal variability of 
parameters.
	 Gate 4 (G4) represents the spatial variability of parameters. 
This is the uncertainty resulting from the model’s inability 
to represent the variation of parameters in space as occurs in 
nature. Parameters are also represented with distinct boundaries 
and yet are gradually varying in nature, leading to misclassifica-
tion of locations (Tarantola et al., 2002). The costs and complex-
ity of taking measurements, and parameter heterogeneity within 
the catchment were encompassed by this gate.
	 Gate 3 (G3) represents the epistemic uncertainties, which 
are those due to either inadequate data for building the model 
or limitations in knowledge of the processes within the system. 
This gate then brought together events through Gates 5, 6, and 7 
as they progress towards the top event.
	 Gate 2 (G2) represents the inherent uncertainties, which are 
as a result of the stochastic or random character of the natu-
ral system. In principle, these uncertainties are unrelated to the 
model implementation. Of all the gates so far classified, this 
represents one for which it may not be possible to reduce the 
uncertainty even with long historical data records. Dedicated 
procedures such as GLUE (Beven, 2001) or the Pareto Optimal 
Set procedure (Yapo et al., 1998) may be used to provide a confi-
dence interval for each optimised parameter but the uncertainty 
estimates provided will be dependent on subjective choices, such 
as the selection of objective function and the limit at which the 
model is considered to be not calibrated (Beven, 2001). ‘Param-
eter lumping’ may also prevent a decrease in uncertainty fol-
lowing calibration (Dubus and Brown, 2002). This gate brings 
together Gate 4, and the temporal variability of inputs. Finally, 
Gates 2 and 3 lead up to the top event, simulation uncertainty, 
through Gate 1 (G1).
	 A possible drawback observed during the evaluation was that 
since not all possible events were considered, it is possible that 
several potentially important events are not selected for the evalu-
ation. In addition, the possible influence of climate change on the 
modelling was not explicitly included on the Tree. It is known 
that climate change research is both complex and uncertain (Van 
Wageningen and Du Plessis, 2007). However, since climate change 
is a form of temporal variability in model input parameters, it may 
be inferred to be included under Events 1 and 5.

Results from the Grote Nete catchment model

The outcome of the uncertainty assessment was then taken into 
account in undertaking to develop a physically-based, fully dis-
tributed model of the Grote Nete catchment. A multi-criteria 
modelling protocol involving both the split-sample approach and 
a graphical approach using validation plots was employed to test 
the model during the calibration and validation stages. Hourly 
river discharge data was used, with a calibration period from 
1986 – 1988, and validation from 1990 – 1995 (Rubarenzya et 
al., 2006a). The resulting model met three predetermined three 
statistical criteria over both the calibration and the validation 
periods. At Varendonk limnigraphic station located at the outlet 

of the catchment, the mean square error (MSE) of discharge was 
less than 0.10 (m3/s)2; and the Nash and Sutcliffe efficiency coef-
ficient (EF) and the dimensionless coefficient of determination 
(R2) were both greater than 0.7. Hydrographs of the measured 
and simulated river discharge showed good fits during both the 
calibration (Fig. 6) and the validation periods (Fig. 7).
	 Figure 8 shows an analysis of the performance of the model 
in representing extreme high values. The extremely high flow 
values were obtained from a Peak Over Threshold analysis car-
ried out on the discharge values. Here, analysis of the perform-
ance of individual extremely high flows was performed firstly, 
to rule out any possibility of rejecting the model as a conse-
quence of a possible shift (backwards or forward) in the output 
hydrograph when compared to the measured hydrograph. Sec-
ondly, to assess how well the model is simulating high extremes. 
Studying Fig. 8 leads to the conclusion that there is good agree-
ment between measured and simulated values. It was observed 
that the scatter of points about the bisector was good for both the 
model validation and calibration.

Conclusions

This paper outlined a methodology for uncertainty evaluation in 
the context of the distributed hydrological modelling of the Grote 
Nete catchment in Belgium. Although there have been some 
attempts at putting variability at the heart of modelling itself, 
deterministic models are likely to remain the primary means of 
representing the response of the hydrological system for the fore-
seeable future. However, model development of distributed mod-
els involves considerable uncertainty. Many of these dependen-
cies arise naturally and their correct evaluation is crucial to the 
accurate evaluation of the modelling system reliability. 
	 The goal in this evaluation was to understand the uncertainty 
in applying a distributed hydrological model to a specific catch-
ment, or stated otherwise, to assess whether the model can do 
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Figure 6
Detail of daily stream discharge hydrographs at Varendonk 

(calibration period, 1986 to 1988)

Figure 7
Daily stream discharge hydrographs at Varendonk 

(validation period, 1990 to 1995)
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what is reasonably expected of it by the user. The results would 
establish the degree of confidence to be placed in the model’s 
representation of the catchment response. This paper presented 
a case of the solution to the problem of building distributed mod-
els with the quality characteristics necessary for representation 
of the complex hydrology of a natural catchment.
	 Eleven uncertainty events were identified as contributing to 
the top event. A total of 7 gates were used. The study found 
that only a few uncertainties could be well quantified, and many 
of these were quantified with difficulty. Literature reports some 
attempts at differentiating between contributions of the different 
sources of uncertainty to the overall uncertainty. This process 
allows for explicit definition of the events to be included in the 
evaluation, and a definition of primary and undeveloped events. 
The results and conclusions of this uncertainty evaluation have 
been used to inform an integrated study of the response of the 
Grote Nete catchment to river valley rewetting. 

Acknowledgements

This research was funded through a grant from the Interuniver-
sity Programme in Water Resources Engineering (IUPWARE). 
The authors appreciate the constructive comments and sugges-
tions of the anonymous reviewers of this paper.

References

Addiscott TM (2001) Non-linearity in modelling soil processes. 
Eur. J. Soil Sci. 52 129-138.

Amendola A and Bustamante AS (1988) Reliability Engineer-
ing. Kluwer Academic Publishers.

Andreu J, Capilla J and Sanchis E (1996) AQUATOOL, a gen-
eralised decision-support system for water-resources planning and 
operational management. J. Hydrol. 177 269-291.

Batelaan O (2006) Phreatology. Characterising Groundwater 
Recharge and Discharge Using Remote Sensing, GIS, Ecology, 
Hydrochemistry, and Groundwater Modelling. Ph.D. Thesis, Vrije 
Universiteit Brussel.

Beck MB, Ravetz J R, Mulkey LA and Barnwell TO (1997) 
On the problem of model validation for predictive exposure assess-
ments. Stoch. Hydrol. Hydraul. 11 229-254.

Beven KJ (1993) Prophecy, reality and uncertainty in distributed 
hydrological modelling. Adv. Water Resour. 16 41-51.

Beven KJ (2000) On model uncertainty, risk and decision making. 
Hydrol. Proc. 14 2605-2606.

Beven KJ (2001) Rainfall-Runoff Modelling: The Primer. John Wiley 
and Sons, Chichester, UK.

Beven KJ and BINLEY AM (1992) The future of distributed mod-
els: model calibration and uncertainty prediction. Hydrol. Proc. 6  
265-277.

Beven KJ and FREER J (2001) Equifinality, data assimilation, and 
uncertainty estimation in mechanistic modelling of complex envi-
ronmental systems using the GLUE methodology. J. Hydrol. 249 
(2001) 11-29.

Birkhead AL, James CS and Kleynhans MT (2007) Hydro-
logical and hydraulic modelling of the Nyl River floodplain. Part 2: 
Modelling hydraulic behaviour. Water SA 33 (1) 9 -20.  http://www.
wrc.org.za/downloads/watersa/2007/Jan%2007/1996b.pdf

Blöschl G and Sivapalan M (1995) Scale issues in hydrological 
modelling: a review. In: Kalma JD and. Sivapalan M (eds.) Scale 
Issues in Hydrological Modelling. Wiley, Chichester. 9-48.

Bouma J (1989) Using soil survey data for quantitative land evalua-
tion. Adv. Soil Sci. 9 177-213.

Brattin W J, Barry TM and Chiu N (1996) Monte Carlo mode-
ling with risk uncertain probability density functions. Human Ecol. 
Risk Assess. 2 820-840.

Burrough PA (1998) Principles of Geographical Information Sys-
tems. Oxford University Press, Oxford, UK.

Chaubey I, Haan CT, Salisbury JM and Grunwald S (1999) 
Quantifying model output uncertainty due to spatial variability of 
rainfall. J. Am. Water Resour. Assoc. 35 1113-1123.

Clark DJ and Smithers JC (2006) Hydrological Decision Support 
Framework (HSDF) – Initial design. Water SA 32 (4) 465-472. http://
www.wrc.org.za/downloads/watersa/2006/Oct%2006/1937.pdf

de Kok JL, Engelen G, White R and Wind HG (2001) Model-
ling land-use change in a decision-support system for coastal-zone 
management. Environ. Modell. Assess. 6 123-132.

de Kort IAT and Booij MJ (2007) Decision making under uncer-
tainty in a decision support system for the Red River. Environ. Mod-
ell. Softw. 22 (2) 128-136.

Dubus IG and Brown CD (2002) Sensitivity and first step uncer-
tainty analyses for the preferential flow model MACRO. J. Environ. 
Qual. 31 227-240.

Dubus IG, Brown CD and Beulke S (2003) Sources of uncertainty 
in pesticide fate modelling. Sci. Total Environ.  317 (1-3) 53-72.

Dubus IG and Janssen PHM (2003) Issues of replicability in Monte 
Carlo modelling: a case study with a pesticide leaching model. Envi-
ron. Toxicol. Chem. 22 3081-3087.

Dutuit Y and Rauzy A (2005) Approximate estimation of system 
reliability via fault trees. Reliab. Eng.  Syst. Safe. 87 (2) 163-172.

Garen D, Woodward D and Geter F (1999) A user agency’s 
view of hydrologic, soil erosion and water quality modelling. Cat-
ena 37 277-289.

Gaunt JL, Riley J, Stein A and Penning de Vries FWT 
(1997) Requirements for effective modelling strategy. Agric. Syst. 
54 153-168.

Graham DN and Butts MB (2006) Flexible integrated watershed 
modeling with MIKE SHE. In: VP Singh and DK Frevert (eds.) 
Watershed Models. Taylor and Francis, CRC Press, Boca Raton, 
USA.

Grayson RB, Moore ID and McHahon TA (1992) Physically 
based hydrologic modelling. 1. A terrain-based model for investiga-
tive purposes. Water Resour. Res. 28 (10) 2639-2658.

Haasl DF (1965) Advanced Concepts in Fault Tree Analysis. Seattle, 
Washington.

Harms-Ringdahl L (1993) Safety Analysis. Principles and  
Practice in Occupational Safety. Elsevier Applied Science, Essex, 
England.

Havno K, Madsen MN and Dorge J (1995) MIKE 11 - A general-
ised river modelling package. In: VP Singh (ed.) Computer Models 
of Watershed Hydrology Water Resources Publications, Colorado, 

Figure 8
Comparison plots of discharge 
maxima from Varendonk (after 

Box-Cox transformation) 
during model calibration (left) 
and validation (right) periods

0 1 2 3 4
BC (Measured maxima, m3/s)

0

1

2

3

4

BC
 (S

im
ul

at
ed

 m
ax

im
a,

 m
3 /s

)

0 1 2 3 4 5
BC (Measured maxima, m3/s)

0

1

2

3

4

5

BC
 (S

im
ul

at
ed

 m
ax

im
a,

 m
3 /s

)



642 Available on website http://www.wrc.org.za
ISSN 0378-4738 = Water SA Vol. 33 No. 5 October 2007

ISSN 1816-7950 = Water SA (on-line)

USA. 809-846.
Jakeman AJ, Letcher RA and Norton JP (2006) Ten iterative 

steps in development and evaluation of environmental models. Envi-
ron. Modell. Softw. 21 (5) 602-614.

Kazezyilmaz-Alhan CM, Medina JMA and Rao P (2005) On 
numerical modeling of overland flow. Appl. Math. Comput. 166 (3) 
724-740.

Krajewski WF, Kruger A and Nespor V (1998) Experimental 
and numerical studies of small-scale rainfall measurements and 
variability. Water Sci. Technol. 37 131-138.

Kuczera G and Franks SW (2002) Testing hydrologic models: 
Fortification or falsification? In: VP Singh and DK Frevert (eds.) 
Mathematical Models of Large Watershed Hydrology. Water 
Resources Publications, LLC, Colorado. 141-186.

Kumamoto H and Henley EJ (1996) Probabilistic Risk Assess-
ment and Management for Engineers and Scientists (2nd edn.). The 
Institute of Electrical and Electronics Engineers, Inc., New York, 
USA.

Kusler JA and Kentula ME (1990) Wetland Creation and Resto-
ration: The Status of the Science. Island Press, Washington, DC.

Melching CS, Yen BC and Wenzel Jr HG (1990) A reliability 
estimation in modelling watershed runoff with uncertainties. Water 
Resour. Res. 26 2275-2286.

Meng FC (2000) Relationships of Fussell-Vesely and Birnbaum 
importance to structural importance in coherent systems. Reliab. 
Eng. Syst. Safe. 67 (1) 55-60.

Mitsch WJ and Wilson RF (1996) Improving the success of wet-
land creation and restoration with know-how, time and self-design. 
J. Appl. Ecol. 6 77-83.

Morgan MG and Henrion M (1990) Uncertainty: A Guide to Deal-
ing with Uncertainty in Quantitative Risk and Policy Analysis. Cam-
bridge University Press, New York.

Morris MD (1991) Factorial sampling plans for preliminary computa-
tional experiments. Technometrics 33 161-174.

Mowrer HT (2000) Uncertainty in natural resource decision support 
systems: sources, interpretation and inportance. Comput. Electron. 
Agric. 27 139-154.

Mysiak J, Giupponi C and Rosato P (2005) Towards the develop-
ment of a decision support system for water resource management. 
Environ. Modell. Softw. 20 203-214.

Niehoff D, Fritsch U and Bronstert A (2002) Land-use 
impacts on storm-runoff generation: scenarios of land-use change 
and simulation of hydrological response in a meso-scale catchment 
in SW-Germany. J. Hydrol. 267 (1-2) 80-93.

Nofziger DL, Chen JS and Haan CT (1994) Evaluating the chemi-
cal movement in layered soil model as a tool for assessing risk of 
pesticide leaching to groundwater. J. Environ. Sci. Health Part A 
– Toxic/Hazardous Substances & Environmental 29 1133-1155.

O’Hagan A (1998) Eliciting expert beliefs in substantial practical 
applications. The Statistician 47 (1) 21-35.

Oreskes N (1998) Evaluation not validation of quantitative models. 
Environ. Health Perspect.  106 1453-1460.

Parent E and Bernier J (2003) Encoding prior experts judgments 
to improve risk analysis of extreme hydrological events via POT 
modeling. J. Hydrol. 283 (1-4) 1-18.

Pietersen K (2006) Multiple criteria decision analysis (MCDA): A 
tool to support sustainable management of groundwater resources 
in South Africa. Water SA 32 (2) 119-128. http://www.wrc.org.za/
downloads/watersa/2006/April%2006/1764.pdf\

Reed S, Koren V, Smith M, Zhang Z, Moreda F, Seo DJ, 
Arnold JG, Bandaragoda C, Bingeman A, Bras R, 

Butts MB, Carpenter TM, Cui Z, Diluzio M, Geor-
gakakos KP, Gaur A, Guo J, Gupta HV, Hogue T, 
Ivanov V, Khodatalab N, Lan L, Liang XLD, Mitch-
ell K, Peters-Lidard C, Rodriguez E, Seglenieks F, 
Shamir E, Tarboton D, Vieux B, Vivoni E and Woods 
R (2004) Overall distributed model intercomparison project results. 
J. Hydrol. 298 27-60.

Refsgaard JC and Storm B (1995) MIKE SHE. In: VP Singh (ed.) 
Computer Models for Watershed Hydrology. Water Resources Pub-
lications, Highland Ranch, Colorado, USA. 809-846.

Richardson CJ (1994) Ecological functions and human values in 
wetlands: a framework for assessing forestry impacts. Wetlands 14 
1-9.

Rubarenzya MH, Willems P, Berlamont J and Feyen J 
(2005) Distributed modeling of the Nete catchment (Belgium) for 
rewetting and extreme event analysis. Proc. OZWATER Watershed 
Conference. Held from May 8-12, Brisbane, Australia.

Rubarenzya MH, Willems P, Berlamont J and Feyen J 
(2006a) Application of WETSPRO tool in MIKE SHE model devel-
opment and testing. The American Society of Civil Engineers. Proc.
EWRI World Environmental and Water Resources Congress. Held 
from May 21-25, Omaha, Nebraska, USA.

Rubarenzya MH, Willems P, Feyen J and Berlamont J 
(2006b) Modeling of soil hydraulic properties and base flow in Flan-
ders. The American Society of Civil Engineers. Proc. EWRI World 
Environmental and Water Resources Congress. Held from May  
21-25, Omaha, Nebraska, USA.

Saltelli A, Chan K and Scott EM (2000) Sensitivity Analysis. 
John Wiley and Sons, Chichester, UK.

Seibert J (1997) Estimation of parameter uncertainty in HBV model. 
Nord. Hydrol. 28 247-262.

Smith AE, Ryan PB and Evans JS (1992) The effect of neglecting 
correlations when propagating uncertainty and estimating the popu-
lation distribution of risk. Risk Anal. 12 467-474.

Stine PA and Hunsaker CT (2001) An introduction to uncertainty 
issues for spatial data used in ecological applications. In: MF Good-
child, MA Friedl and TJ Case (eds.) Spatial Uncertainty in Ecology.  
Springer Verlag, New York. 91-107.

Tarantola S, Giglioli N, Jesinghaus J and Saltelli A 
(2002) Can global sensitivity analysis steer the implementation of 
models for environmental assessments and decision-making? Stoch. 
Env. Res. Risk A. 16 63-76.

Tietje O and Tapkenhinrichs M (1993) Evaluation of pedo-
transfer functions. Soil Sci. Soc. Am. J. 57 1088-1095.

Todd J, Brown EJG and Wells E (2003) Ecological design applied. 
Ecol. Eng. 20 421-440.

Tol RSJ and de Vos AF (1998) A Bayesian statistical analysis of the 
enhanced greenhouse effect. Climate Change 38 87-112.

Van Wageningen A and Du Plessis JA (2007) Are rainfall inten-
sities changing, could climate change be blamed and what could be 
the impact for hydrologists? Water SA 33 (4) 571-574. http://www.
wrc.org.za/downloads/watersa/2007/Jul%2007/2076.pdf .

Willems P (2005) Uncertainties in rainfall-runoff modeling. In: 
JH Lehr and J Keeley (eds.) Water Encyclopedia: Oceanography; 
Meteorology; Physics and Chemistry; Water Law; and Water His-
tory, Art, and Culture. , John Wiley & Sons. 297-303.

Yang D, Herath S and Musiake K (2000) Comparison of dif-
ferent distributed hydrological models for characterisation of catch-
ment spatial variability. Hydrol. Proc. 14 403-416.

Yapo PO, Gupta HV and Sorooshian S (1998) Multi-objective 
global optimisation for hydrologic models. J. Hydrol. 204 (1-4) 83-
97.


