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Abstract

Factor analysis was applied to 56 groundwater samples collected from wells located in the Araripe Sedimentary Basin, in 
the north-east of Brazil.  The parameters are a set of  9 physicochemical, chemical, and isotope data, constituted by electrical 
conductivity (EC), ionic concentrations of Ca2+, Mg2+, Na+, K+, Cl−, SO4

2−, alkalinity and δ18O0/00. In R-mode factor analysis, 
the first 3 factors explain 62% of the variance, their loadings allowing the interpretation of hydrogeochemical processes that 
take place in the area. Q-mode factor analysis on the 56 water samples decreases space dimensionality to 6, explaining 93% 
of the total database information. With the aid of a scalar and angular measurement method, objects were clustered, resulting 
in 11 groups classified according to their inherent characteristics, related to their hydrogeological origin.

Keywords: hydrogeochemistry, R-mode factor analysis, Q-mode factor analysis, Araripe sedimentary basin, 
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Introduction

The ever-increasing demand for potable water requires knowl-
edge of the quality of stored waters, as well as of the natural and 
anthropogenic processes that influence it. Waters stored in the 
same aquifer system can differ in their chemical composition 
due to internal and external processes, and suitable methodolo-
gies are needed for their identification. 
	 A great manifold of parameters is used in water research 
for assessing water quality, pollution, evaporation, flow dynam-
ics and chemical evolution through the water cycle. Thus, great 
amounts of data are generated. In order to gain insight into the 
relationships between the parameters associated with a given 
set of objects, multivariate techniques have been applied to 
reveal hidden affinities present in the database, and undetect-
able by other means. Mathematically, these methods reduce 
space dimensionality by a suitable choice of new dimensions 
constructed as linear combinations of the original ones, sim-
plifying the representation of the data set and facilitating its 
interpretation. 
	 Many multivariate analysis techniques have been applied 
in hydrological studies: R-mode analysis in groundwater qual-
ity studies (Grande et al., 1996; Liu et al., 2003; Panagopoulos 
et al., 2004; Garcia-Rodriguez et al., 2007); R-mode, Q-mode 
and cluster analysis to assess surface/groundwater interaction 
and groundwater mixing (Reghunath et al., 2002); R-mode and 
cluster analysis to study groundwater quality in the Blue Nile 
basin (Hussein 2004); principal component analysis (PCA), 
cluster, and discriminant analysis to evaluate spatial and  

temporal variations in river waters (Wunderlin et al., 2001; Singh 
et al., 2004); PCA and R-mode factor analysis to understand 
origin and variation of each solute in natural waters (Anazawa 
et al., 2005). Geochemical data were used to test the influence 
of different factor-analysis techniques on the results extracted 
(Reimann et al., 2002).

Material and methods

A set of 56 groundwater samples was analysed for 9 physical 
and chemical parameters comprising major ion concentrations 
(Ca2+, Mg2+, Na+, K+, Cl−, SO4

2−), alkalinity (alka), electrical con-
ductivity (EC) and the isotope oxygen-18 (δ18O0/00). The samples 
were taken from wells located in the Cariri valley, part of the 
Araripe sedimentary basin, Brazil, embedded in Precambrian 
basement rock. This basin is divided between the Federal States 
of Ceará, Pernambuco (Pe) and Piauí (Pi). The greatest part is in 
Ceará and comprises the Araripe plateau and the Cariri valley, 
containing the most important groundwater storage of the State. 
Figure 1 shows the region under study, enclosing the towns of 
Crato, Juazeiro do Norte, and Barbalha and the areas of the 
formations Exu, Arajara, Santana, and Rio da Batateira. Water 
samples were collected from the Rio da Batateira aquifer, from 
wells that provide water for industrial, rural and urban use.

Factor analysis

Factor analysis is a multivariate statistical method which, 
through a linear dependence model constructed in an abstract 
space called factor score space, searches for correlations among 
measured variables that characterise a set of objects/samples. 
Its main feature is to decrease space dimensionality through 
the construction of a new dimensional base that preserves the 
essential information contained in the original database. Linear 
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dependencies of variables are measured in that new space, where 
new variables are defined by the column vectors of a so-called 
factor-loading matrix (A) in the space spanned by the column 
vectors of the factor score matrix (F).
	 R-mode factor analysis searches for interrelationships among 
variables. The mathematical model is:

where:
 	 Y is the data matrix in deviate form
	 yij = 	 xij - ‹xj› (with xij representing parameter j of object/
			   sample i and ‹xj›  the mean of variable j) or in 
			   standardised form,               (sj being the standard  	
			   deviation of variable j)
 	 A′ is A transposed and E the residual matrix. 

The maximum likelihood estimation method was used to com-
pute estimates for A by a numerical iterative procedure (Jöreskog 
1967; 1977; Davis, 1986). 
	 In R-mode factor analysis, to define the best dimensionality 
(k) of space, we have calculated chi-square (χk

2) and the number 
of degrees of freedom (dk) for every factor space dimensionality. 
A measure of the relative importance in increasing the number 
of dimensions by one is defined by  
as the difference ratio between chi-square and degrees of free-
dom.
	 Q-mode factor analysis is a multivariate technique intended 
to classify objects according to interrelations among them, 
so that each object (row) in the data matrix is understood as a 
combination of hypothetical or real objects with specific param-
eter values. The technique consists of measuring the resem-
blance among objects (index of proportional similarity) nor-
malising data matrix rows (objects) so that measured variables  
can be interpreted as proportions, 

           

. Imbrie and  
Purdy (1962) defined the similarity coefficients as cos qnm = 
wn.w′m of the angle between any two data matrix row vectors 
(objects n and m), where wn = [wn1 wn2 .... wnp] is a row vector of 
matrix W. Then, the similarity matrix can be written as HN x N = 
WW′. 
	 The model is expressed as the product of a factor- 
loading matrix (AN x k) and a factor score matrix (Fp x k),  
WN x p ≈ AN x k F′k x p , and the similarity matrix can be written as  

H = WW′ = AF′FA′ . This matrix can be factorised (Reyment et 
al., 1996) to find F and A.
	 To achieve simplicity (with the elements of factor-load-
ing vectors approaching 0 or 1) varimax orthogonal rotation, 
designed by Kaiser (1958) so as to maximise the variance of the 
factors, was applied to the calculated factor-loading matrices.

Results and discussions

R-mode

The parameters computed for our data set are listed in  
Table 1. Considerable information is gained when dimensional-
ity increases from 1 to 2 (∆k = 9.74), from 2 to 3 (∆k = 2.59), but 
not from 3 to 4 (∆k = 0.74). So the best choice for dimensionality 
is 3, with 74% of accumulated information.
	 The varimax rotated factor-loading matrix is shown in  
Table 2 (where only factors with modulus greater than 0.24 are 
represented). The first factor explains 26% of total variance, 
the second, 20% and the third, 16%, total accumulated vari-
ance being 62%. This is the percentage of variance explained 
(in the entire database) without overestimating the amount of 
information available, according to the chi-square analysis. 
Space dimensionality decreased from the original 9 variables to 
only 3, so that, with the aid of multivariate statistical analysis, 3 
main hydrogeochemical processes can explain the complexity of  
Cariri valley waters, as presented below.
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Figure 1
Study area location and 
map with outcropping 

areas of Araripe sedimen-
tary basin formations
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TABLE 1
Dimensionality, chi-square, 
number of freedom (dk), the 
relative importance per step 
in dimensional increase (∆k)

k (χk
2        ) dk ∆k

1 106.00 27 9.74
2 28.20 19 2.59
3 10.10 12 0.74
4 5.68 6 0.77
5 1.84 1 –
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	 Figure 2 is a bar diagram illustrating the relative importance 
of the variables in the factor-loading vectors from Table 2. All 3 
factors have high EC loadings. The 1st factor, explaining 26% of 
the entire sample set variance, shows high correlation between 
Ca2+, Mg2+, SO4

2−, alkalinity and EC.  As limestone and gypsum 
are common minerals in the Santana formation (Ponte and Appi, 
1990), this factor proves that hydrogeochemical reactions relating 
precipitation/dissolution processes with calcite, dolomite, and gyp-
sum minerals are important in water quality evolution in this area. 
	 The 2nd factor, corresponding to 20% of total variance, is 
related to δ18O0/00, Na+, Ca2+, SO4

2− and alkalinity. High cor-
relation with Na+ and, to a lesser extent, with Ca2+, SO4

2−, and 
alkalinity can be associated with ion exchange by clay minerals, 
abundant in the Rio da Batateira formation.

	 The 3rd factor, responsible for 16% of the total variance, 
shows high correlations with EC, Mg2+, K+, Cl− and inverse cor-
relation with alkalinity, and so it could represent  contamination 
of waters by domestic sewage.

Q-mode

As in the R-mode case, Q-mode factor analysis also needs to 
define the dimensionality of factor score space. Table 3 defines 
space dimensionality and shows the information carried by each 
factor and total accumulated information as space dimensional-
ity increases. When factors number 6, 93% of the information is 
accumulated; information is more uniformly distributed among 
factors from the second one on. The information for Factor 7, in 
7 dimensions, and for Factors 7 and 8, in 8 dimensions, has low 
importance and can be discarded.
	 Results from varimax rotated factor-loading matrix calcula-
tion are given in Table 4 (next page) together with object (well) 
identification. 
	 Application of the selection criteria (described above at the 
end of Q-mode factor analysis description) to the 56 elements 
in factor space resulted in 11 groups (Table 5 – next page). In 
order to interpret groups’ characteristics, parameter means for 
each group were calculated (Table 6 – next page). As dimen-
sionality is greater than 3, it is impossible to visualise the results 
from this procedure graphically in our three-dimensional visual 
space. Instead of grouping objects by visual inspection, they 
were analysed with respect to their angular and scalar distance 
between each member of the set, represented by vectors in a six-
dimensional space, and from the group’s centroid (defined by the 
mean vector, with unitary modulus, calculated considering all 
the elements in the group). If the angular separation and scalar 
distance between a given vector (object) and the group centroid 
in this factor score space is less than or equal to a respective 
predefined cut-off value, then the analysed element becomes an 
element of this group.
	 In our analysis, a cut off angle (θc) of 45o and a cut-off scalar 
distance (dc) equal to the equivalent distance between unitary 
vectors separated by the cut-off angle, i.e. dc = 2[1 – cos(θc)] were 
chosen.
	 Figure 3 shows bi-dimensional plots of elements’ factor 
score space positions, marked by geometric symbols according 
to groups. All graphs have Factor 1 as abscissa. To avoid over-
loading the graphs, only group centroids are shown. Ordinates, 
representing the 2nd dimension, are Factors 2 to 6, respectively. 
Values approaching ±1 imply increasing importance.
	 Table 6 shows that Group 1 (star) waters are only slightly 
saline and have a  δ18O mean value of  –3.10/00, very close to the 
rainwater value (≈–3.20/00; Santiago et al., 1997) . These waters 
represent recent recharge derived directly from rainfall. The fact 
that this group is the most numerous is not surprising, because 
its member wells exploit the uppermost unconfined aquifer in 
the Cariri valley. Factor 1 is the most important one to discrimi-
nate this group.

TABLE 2
 Factor-loading matrix and variance 
(only factors with modulus greater 

than 0.24 are represented)
Variables Factor-loading matrix

1 2 3
CE 0.54 0.61 0.56
Ca++ 0.79 0.40
Mg++ 0.75 0.43
Na+ 0.30 0.79
K+ 0.57
Cl- 0.41
SO4

-- 0.51 0.38
Alka 0.69 0.36 -0.63
O18 -0.59
Variance explained by factor (%)

26.09 20.17 15.68
Cumulative variance (%)

26.09 46.26 61.94

 

TABLE 3
Factor information and accumulated information by factors

Factors Accumulated 
information (%)

Number of 
factors1 2 3 4 5 6 7 8

Information by 
factor (%)

23.9 18.0 17.9 15.1 11.5 – – – 86.4 5
31.1 14.4 12.6 12.6 11.9 10.6 – – 93.2 6
26.5 17.3 14.1 13.6 12.3 9.2 3.8 – 96.8 7
25.1 17.7 13.6 13.5 12.3 9.1 3.8 3.7 98.9 8

Figure 2
Bar diagram showing factor-
loading vectors (F1, F2, and 
F3) and relative parameter 

contribution
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	 Group 2 water samples (circle) have high salinity and the 
lowest values of δ18O (–3.90/00). High concentration values of 
Ca2+, SO4

2− and alkalinity imply that gypsum and limestone 
dissolution/precipitation processes are involved. These miner-
als are characteristic of the Santana formation lithology. Thus, 
this group was interpreted as recharge waters from the top of 

TABLE 4
Identification label, factor-loading matrix

Ident Factor-loading matrix
1 2 3 4 5 6

PBb01 –0.59 0.27 0.29 –0.64
PBb02 0.76 0.49
PBb03 0.68 –0.26 –0.27 0.53
PBb04 0.67 0.38 0.55
PBb05 0.59 –0.26 0.25 0.68
PBb09 –0.55 –0.70 0.35
PBb10 0.74 –0.44 –0.46
PBb11 –0.61 0.43 –0.53
PBb12 0.57 0.72
PBb13 0.50 –0.39 0.49 0.53
PBbF1 –0.60 0.40 –0.42 –0.32 0.38
PBbF2 0.82 0.51
PBbF3 –0.31 0.74
PBbF4 0.76 0.27 0.49
PBbF5 –0.37 0.69 –0.43 0.37
PCt01 –0.92
PCt03 –0.70 –0.63
PCt04 –0.75 –0.47 –0.29 0.27
PCt05 –0.88 –0.25
PCt06 –0.78 –0.34 –0.34
PCt07 –0.79 0.33 –0.41
PCt08 0.58 0.68 0.33
PCt09 –0.92
PCt10 –0.55 0.28 –0.39 –0.31 –0.51 –0.26
PCt11 0.30 –0.87 –0.26
PCt12 –0.96
PCt13 –0.34 –0.64 0.48 –0.31
PCt14 0.85 –0.30 –0.35
PCt15 –0.62 0.46 –0.51 0.31
PCtF1 0.42 0.89
PCtF2 –0.76 0.29 –0.50
PCtF3 –0.56 –0.75 0.26
PCtF4 0.41 –0.72 –0.37 –0.25
PCtF5 0.94
PCtF6 –0.39 0.84
PCtF7 –0.52 –0.52 –0.50
PJN01 –0.84 –0.34
PJN02 –0.91 –0.36
PJN03 0.92
PJN04 0.32 0.27 0.49 0.65
PJN05 –0.38 0.59 0.57
PJN06 0.40 0.33 0.69 –0.34 0.36
PJN07 0.27 0.79
PJN08 0.84 0.38 0.25
PJN09 –0.90 –0.28
PJN10 0.32 0.87 0.26
PJN11 –0.45 0.84
PJN14 –0.93
PJN15 0.34 –0.82 0.29
PJN16 0.34 –0.88
PJN17 –0.77 0.41 –0.31
PJN18 0.75 0.30 0.40 –0.29 –0.28
PJNF1 0.91
PJNF2 0.51
PJNF4 0.55 0.44 0.49 0.29 –0.26
PJNF5 0.84   0.37      

Explained information (%)
31.1 14.4 12.6 12.6 11.9 10.6

Accumulated explained information (%)
31.1 45.6 58.2 70.8 82.6 93.2

TABLE 5
Groups selected, number of elements (N), 

identification labels
Group N Identification

1 13 PBb09 PBb11 PBbF1 PCt03 PCt05 PCt06 PCt07
PCt09 PCt10 PCtF2 PJN01 PJN02 PJN09

2 9 PJNF5 PBb04 PJN08 PJN18 PBb12 PBbF4 
PJNF4 PJN07 PJN06 

3 7 PBb13 PCtF1 PBb05 PBbF2 PBb03 PBb02 
4 5 PCt01 PCt11 PCt13 PCtF4 PCt12 
5 5 PJN17 PJN14 PJN16 PJN15 PCt15 
6 4 PJN04 PCtF5 PJN03 PJN05 
7 4 PBb10 PJNF2 PJNF1 PBbF5 
8 3 PCtF7 PCt04 PCtF3 
9 3 PJN11 PCt08 PJN10 
10 2 PCtF6 PBbF3 
11 1 PBb01 

TABLE 6
Mean parameter values by group (N = number of elements)
Group N CE 

µS/
cm

Ca++ Mg++ Na+ K+ Cl– SO4
-

–
Alka 

(CaCO3)

18O 
δ0/00

mg/ℓ
1 13 151.3 11.8 6.2 5.9 4.9 16.4 4.6 41.4 –3.1
2 9 443.1 32.3 16.8 44.3 5.0 28.5 41.2 148.5 –3.9
3 7 408.9 34.4 23.0 13.2 5.2 40.3 22.4 113.8 –3.0
4 5 228.2 17.5 15.4 7.0 3.1 22.1 7.2 68.8 –2.9
5 5 553.6 27.6 28.2 17.7 19.0 83.2 3.5 25.8 –3.5
6 4 272.3 28.1 9.2 11.8 6.6 26.2 2.2 100.1 –3.2
7 4 210.3 21.8 10.0 11.6 3.0 5.3 3.4 104.9 –3.1
8 3 182.3 14.2 7.3 11.7 10.0 33.9 8.4 25.5 –2.7
9 3 213.3 28.4 10.7 6.1 7.2 16.6 12.0 114.0 –3.3
10 2 271.0 20.6 15.6 11.3 11.1 24.0 16.2 70.0 –2.8
11 1 226.0 16.0 9.7 8.0 5.9 28.4 17.1 60.0 –3.2

 

Figure 3
 Two- dimensional factor-loading plots for group centroids: 

factors 1x2, 1x3, 1x4, 1x5 and 1x6
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the Araripe plateau that percolated the Santana formation, and 
the low δ18O could be due to altitude effect on rainfall and/or to 
the presence of palaeo-waters because of the long transit time 
through that aquitard.
	 Water samples in Group 3 (diamond) show high EC combined 
with very high Ca2+ and high Mg2+ and SO4

2− concentrations as 
well as high alkalinity. Major ions’ mean values are similar to 
those of Group 2, indicating the same geochemical environment. 
δ18O, however, is slightly higher (–3.00/00), pointing to an origin 
from rainfall in lower altitude and/or slightly enriched by evapo-
ration during runoff. We interpret these waters as recharge that 
leached Araripe plateau cliff matter.
	 Group 4 (square) waters  have as principal characteristics 
high δ18O values (–2.90/00) and low Ca2+, Na+, K+ concentrations 
and EC, implying fast infiltration to the aquifer. The elevated 
δ18O indicates slightly evaporated water. Factor 3 is important in 
discriminating this group.
	 Group 5 (triangle) waters are characterised by very high EC and 
Cl−, high K+ but low Ca2+ and SO4

2− concentrations. As Cariri val-
ley natural waters have low Cl− concentration, these waters, from 
urban areas, are associated with chlorine pollution through resi-
dential wastewater, which is a major source of Cl−. δ18O = –3.50/00 
shows that these waters are mixed with palaeo-waters (uprising due 
to a reduction of hydraulic heads in the superior aquifer, caused by 
excessive pumping in well-fields for public supply). Factor 2 is of 
high importance in this group’s discrimination.
	 The water samples in Group 6 (triangle) have mean param-
eter values near the universal mean. However, SO4

2− concen-
trations are the smallest of all groups. δ18O = –3.20/00 indicates 
recent, fast recharge without evaporation. Factor 6 better dis-
criminates this water type.
	 Group 7 waters (arrows to the right) show very low concen-
tration of K+ and the lowest one for Cl−. The mean value of δ18O 
= –3.10/00 indicates rainfall-derived recent recharge waters. Like 
Group 5, Factor 2 discriminates this group, but with negative 
values near –1. In this sense, it is the opposite of Group 5.
	 Water samples in Group 8 (arrows to the right) have very low 
alkalinity, low Ca2+, Mg2+ concentrations, and EC. The high δ18O 
value (–2.70/00) reveals recent recharge waters that suffer evapo-
ration before infiltration. Factors 1 and 4 (with positive correla-
tion) best discriminate this group.
	 Group 9 waters (asterisk) have high alkalinity and close to 
rainfall δ18O (–3.30/00). Factor 4 (with negative correlation) best 
discriminates this group.
	 Group 10, with 2 elements, and Group 11, with only 1, could 
not be interpreted hydrogeologically, but one can see that Group 
9 is near Group 10, and Group 11 is near Groups 1 and 8. If a 
larger cut-off angle had been adopted and the ’discrimination 
power’ reduced that way, these groups would have been inte-
grated into their respective groups.  

Conclusions 

Multivariate statistical methods of factor analysis are shown to 
be an important tool for characterising hydrogeochemical proc-
esses and clustering groundwaters according to their shared 
hydrochemical characteristics. The 3 principal factors identified 
by R-mode factor analysis correspond to 3 principal processes 
taking place in the study area: precipitation/dissolution proc-
esses of calcium carbonate and gypsum, cation exchange proc-
esses occurring in clay layers, and processes related to anthro-
pogenic contamination with chlorine. Q-modal analysis grouped 
all 56 samples collected in the study area  into 11 groups, detect-
ing similarities. 

    The relatively high number of groups found shows the wide 
variety of these groundwaters. In spite of it the methodology 
applied was efficient enough to permit association of factors 
and groups with hydrogeological environmental features of the 
research area.
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