Main Article Content
Sensitivity analysis for water quality monitoring frequency in the application of a water quality index for the uMngeni River and its tributaries, KwaZulu-Natal, South Africa
Abstract
Water quality indices are commonly used to provide summary information from water quality monitoring programmes to stakeholders. However, declining funding and changing mandates often result in reduced monitoring frequencies which could affect the accuracy of information provided. Thus, this study aimed to assess the effect of water sampling frequency on water quality index reporting using the the upper uMngeni catchment as a study site. A 28-year time series of water quality data from 11 sampling stations was assessed for pH, electrical conductivity, temperature, turbidity, total suspended solids, Escherichia coli counts, NH4-N, NO3-N, PO4-P and total phosphorus. Statistical packages were used to process the data and water quality indices (WQIs) for eutrophication and recreational water were calculated and their sensitivity to input parameters analysed. It was found that the higher the monitoring frequency, the lower the WQI calculated at all sites. This suggests that water quality, due to a declining monitoring frequency, is poorer than reported in the uMngeni catchment. The findings showed that Escherichia coli and turbidity are the most influential variables affecting the recreational and eutrophication WQIs, respectively. Although WQIs are considered a useful tool for monitoring the changes in water quality across space and over time in the uMngeni Catchment, their use should complement, and not substitute for, other, more comprehensive, water quality management tools.
Keywords: monitoring frequency, sensitivity analysis, uMngeni catchment, water quality guidelines, water quality index