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ABSTRACT 

In the recent past, there has been a tremendous growth of the solution of differential equations using algorithmic methods. 

This work deploys Newton’s interpolation polynomial method (NIPM) and Lagrange interpolation polynomial method 

(LIPM) to create cubic polynomials for solving initial value problems of the first order. The results obtained show greater 

accuracy for the investigated method when compared with some known methods in literature. Illustrative examples are 

presented to demonstrate the validity and applicability of the technique. 
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INTRODUCTION 

Many mathematical models in science and engineering 

fields can be formulated in the form of linear and nonlinear 

ordinary differential equations which need an analytical 

method to solve the exact equations (Raza et al, 2020; 

Arqub, 2016; Singh and Singh (2019); Khan, 2022; 

Alkasassbeh et al., 2019). However, in some problems, we 

cannot obtain the exact solutions by the analytical method. 

Therefore, numerical methods such as Euler’s method, 

Runge-Kutta method and Runge-Kutta-Fehlberg method are 

important tools used to solve these kinds of problems. Many 

methods have been widely developed by a lot of researchers 

to solve these problems. Some problems in form of partial 

differential equations can even be converted to ordinary 

differential equations and solved computationally. 

In this study, we consider only the first order ordinary 

differential equations with an initial condition (initial value 

problems) in the form 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦);        𝑦(𝑥0) = 𝑦0,        

where 𝑓(𝑥, 𝑦) is a known function and the value of initial 

conditions 𝑥0, 𝑦0 are also known values. 

The goal of this study is to estimate approximated solutions 

and absolute errors by comparing the results of our new 

method with other methods such as Euler’s method. 

 

First-order ODEs can be solved analytically, graphically, 

and also using numerical methods.  

Numerical methods are methods used to 

find numerical approximations to the solutions of ordinary 

differential equations (ODEs). Their use is also known as 

"numerical integration", although this term can also refer to 

the computation of integrals.  Many differential equations 

cannot be solved in closed forms using analytical methods. 

For practical purposes, however, such as in engineering; a 

numeric approximation to the solution is often sufficient. 

The algorithms studied here can be used to compute such an 

approximation. An alternative method is to use techniques 

from calculus to obtain a series expansion of the solution. 

In our study, we use both Newton’s interpolation and 

Lagrange polynomial to create cubic polynomials for 

solving initial value problems. By this method, it is simple 

to solve linear and nonlinear first order ordinary differential 

equations. Some numerical examples are provided to test the 

performance and illustrate the efficiency of this method. 

Research has also proven that these methods have been used 

to solve differential equations but we’ve not really thought 

of combining these two methods to solve problems. 

We use numerical method as a tool to solve numerical 

problems. For instance, a differential equation 

 

𝑢′(𝑥)  =  cos 𝑥,  0 < 𝑥 <  3,       

written, as an equation involving some derivative of an 

unknown function u. 

There is also a set of values allowed into the function of the 

differential equation (for the example; 0 <x< 3). In reality, a 

differential equation is then an infinite number of equations, 

one for each x in the domain. The analytic or exact solution 

is the functional expression of u or for the example case  

 

𝑢(𝑥)  =  𝑠𝑖𝑛𝑥 +  𝑐,        

where c is an arbitrary constant, because of this non 

uniqueness which is inherent in differential equations we 

typically include some additional equations.  

 

Statement of the Problem 

Research has proved that there are quite a number of 

numerical methods used in solving initial value problems for 

ordinary differential equations such as the Euler’s method, 

the Runge-Kutta family of methods, the Taylor’s series 

method etc.  

We observe that most of the researches on numerical 

approach to the solution of ordinary differential equation 

tend to adopt the aforementioned methods in their traditional 

sense. A great deal of work has also been done using 

Newton’s method and Lagrange methods separately to solve 

initial value problems. However, there is dearth of research 

in this area of combining the Newton’s interpolation and 

Lagrange’s interpolation methods to solve a first order initial 

value problem 

 

The aim of this work is to formulate an iterative scheme that 

uses a combination of the Newton and the Lagrange 

https://dx.doi.org/10.4314/wojast.v15i2.34
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Calculus
https://en.wikipedia.org/wiki/Series_expansion


Open Access article published under the terms of a  

Creative Commons license (CC BY). 

http://wojast.org 

Udoh et el. On Newton and Lagrange Interpolation Method for First 
Order Ordinary Differential Equations 

https://dx.doi.org/10.4314/wojast.v15i2.34 

  
 

World Journal of Applied Science and Technology, Vol. 15 No. 2(2) (2023), 385 - 389    386 

interpolation methods to solve initial value problems for 

ordinary differential equation of the first order. 

 

Main Formulations 

Newton's Interpolation Polynomial Method  

Isaac Newton (1641–1727) was one of the most brilliant 

scientists of all time. The late 17th century was a vibrant 

period for science and mathematics and Newton’s work 

touched nearly every aspect of mathematics. His method for 

solving was introduced to find a root of the equation 

 

𝑦3 −  2𝑦 −  5 =  0               

 

Although he demonstrated the method only for polynomials, 

it is clear that he realized its broader applications. 

Newton interpolation is a quadratic interpolation 

methodology used in numerical methods and outcomes. The 

interpolation formula in most classic procedures is particular 

to the data. This work discusses single and multivariable 

generalized Newton type polynomial interpolation 

approaches.  

 

The forward difference formula and the backward difference 

formula are used in Newton polynomial interpolation.  

𝑦0(𝑥) =  𝑎0,                  (1)  

𝑦1(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑥0),                (2) 

𝑦2(𝑥) = 𝑎0 +  𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)(𝑥 − 𝑥1),      (3) 

𝑦𝑛(𝑥)=𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0) + ⋯ … + 𝑎𝑛(𝑥 −
𝑥0)(𝑥 − 𝑥1) … … … … (𝑥 − 𝑥𝑛−1),   (4)

                  

where 

𝑎𝑜 =  𝑦0                       (5)

              

 

𝑎1 =  
𝑓(𝑥1)− 𝑓(𝑥0)

(𝑥1− 𝑥0)
     (6)             

 

𝑎2 =  

𝑓(𝑥2)−𝑓(𝑥1)

(𝑥2−𝑥1)
−

𝑓(𝑥1)−𝑓(𝑥0)

(𝑥1−𝑥0)

(𝑥2− 𝑥0)
     (7)                           

 

𝑎3 =  

𝑓(𝑥3)−𝑓(𝑥2)
(𝑥3−𝑥2) −

𝑓(𝑥2)−𝑓(𝑥1)
(𝑥2−𝑥1)

(𝑥3−𝑥1)
−

𝑓(𝑥2)−𝑓(𝑥1)
(𝑥2−𝑥1) −

𝑓(𝑥1)−𝑓(𝑥0)
(𝑥1−𝑥0)

(𝑥2−𝑥0)

(𝑥3−𝑥0)
      (8)  

𝑎𝑛 = 𝑓[𝑥𝑘 , 𝑥𝑘−1 … 𝑥1, 𝑥0] =
𝑓[𝑥𝑘,𝑥𝑘−1…𝑥1,𝑥0]−𝑓[𝑥𝑘−1,𝑥𝑘−2,…𝑥1,𝑥0]

𝑥𝑘−𝑥0
          (9)

          

Lagrange Interpolation Polynomial Method 

Lagrange Interpolation is a way of finding the value of any 

function at any given point when the function is not given. 

We use other points on the function to get the value of the 

function at any required point. 

Suppose we have a function 𝑦 =  𝑓(𝑥) in which substituting 

the values of 𝑥 gives different values of 𝑦. And we are given 

two points (𝑥1,  𝑦1) and (𝑥2,  𝑦2) on the curve then the value 

of y at x = a(constant) is calculated using Lagrange 

Interpolation Formula. 

 

Lagrange Interpolation Formula 

Given few real values 

𝑥1,  𝑥2, 𝑥3, … ,  𝑥𝑛 and𝑦1,  𝑦2,  𝑦3, … ,  𝑦𝑛 and there will be a 

polynomial 𝑃 with real coefficients satisfying the conditions 

𝑃(𝑥𝑖)  =  𝑦𝑖 , ∀ 𝑖 = (1, 2, 3, … , 𝑛) and degree of polynomial 

P must be less than the count of real values i.e., degree(𝑃)  <
 𝑛.  
 

Lagrange Interpolation Formula for nth Order 

The Lagrange Interpolation formula for nth degree 

polynomial is given below: 

Lagrange Interpolation Formula for the nth order is, 

 

𝑃(𝑥) =
(𝑥−𝑥1)(𝑥−𝑥2)…(𝑥−𝑥𝑛)

(𝑥0−𝑥1)(𝑥0−𝑥2)…(𝑥0−𝑥𝑛)
𝑦0 +

(𝑥−𝑥0)(𝑥−𝑥2)…(𝑥−𝑥𝑛)

(𝑥1−𝑥0)(𝑥1−𝑥2)…(𝑥1−𝑥𝑛)
𝑦1 +

(𝑥−𝑥0)(𝑥−𝑥1)…(𝑥−𝑥𝑛)

(𝑥2−𝑥0)(𝑥2−𝑥1)…(𝑥2−𝑥𝑛)
𝑦2 + ⋯ +

(𝑥−𝑥1)(𝑥−𝑥2)…(𝑥−𝑥𝑛−1)

(𝑥𝑛−𝑥0)(𝑥𝑛−𝑥1)(𝑥𝑛−𝑥𝑛−1)
𝑦𝑛             (10) 

            

Lagrange First Order Interpolation Formula 

If the Degree of the polynomial is 1 then it is called the First 

Order Polynomial. Lagrange Interpolation Formula for 

1st order polynomials is, 

𝑓(𝑥) =  
(𝑥−𝑥1)

(𝑥0−𝑥1)
× 𝑦0 +

(𝑥−𝑥1)

(𝑥1−𝑥0)
× 𝑦1               

 

Lagrange Second Order Interpolation Formula 

If the Degree of the polynomial is 2 then it is called Second 

Order Polynomial. Lagrange Interpolation Formula for 2nd 

order polynomials is, 

𝑓(𝑥) =
(𝑥−𝑥1)(𝑥−𝑥2)

(𝑥0−𝑥1)(𝑥0−𝑥2)
× 𝑦0 +

(𝑥−𝑥0)(𝑥−𝑥2)

(𝑥1−𝑥0)(𝑥1−𝑥2)
× 𝑦1 +

(𝑥−𝑥0)(𝑥−𝑥1)

(𝑥2−𝑥0)(𝑥2−𝑥1)
× 𝑦2                 

 

Proof of Lagrange Theorem 

Let’s consider a nth-degree polynomial of the given form, 

𝑓(𝑥)  =  𝐴0(𝑥 –  𝑥1)(𝑥 –  𝑥2)(𝑥 – 𝑥3) … (𝑥 – 𝑥𝑛)  + 𝐴1

          

(𝑥 – 𝑥1)(𝑥 –  𝑥2)(𝑥 – 𝑥3) … (𝑥 –  𝑥𝑛)  + … +
 𝐴(𝑛−1)(𝑥 – 𝑥1)(𝑥 – 𝑥2)(𝑥 – 𝑥3) … (𝑥 – 𝑥𝑛)               

Substituting observations 𝑥𝑖 to get 𝐴𝑖 

with 𝑥 =  𝑥0 then we get 𝐴0 

𝑓(𝑥0)  =  𝑦0 =
 𝐴0(𝑥0 –  𝑥1)(𝑥0 –  𝑥2)(𝑥0 – 𝑥3) … (𝑥0 – 𝑥𝑛)               

𝐴0 =  
𝑦0

(𝑥0 – 𝑥1 )(𝑥0 – 𝑥2)(𝑥0 – 𝑥3)…(𝑥0 – 𝑥𝑛)
                         

 

By substituting 𝑥 = 𝑥1  we get 𝐴1 

𝑓(𝑥1)  =  𝑦1 =
 𝐴1(𝑥1 –  𝑥0)(𝑥1 –  𝑥2)(𝑥1 – 𝑥3) … (𝑥1 – 𝑥𝑛)             

𝐴1 =  
𝑦1

(𝑥1 – 𝑥0 )(𝑥1 – 𝑥1)(𝑥1 – 𝑥2)…(𝑥1 – 𝑥𝑛)
  

            
Similarly, by substituting 𝑥 = 𝑥𝑛we get 𝐴𝑛 

𝑓(𝑥𝑛)  =  𝑦𝑛 =
 𝐴𝑛(𝑥𝑛 –  𝑥0)(𝑥𝑛 –  𝑥1)(𝑥𝑛 – 𝑥2) … (𝑥𝑛 – 𝑥𝑛−1) 

       

𝐴𝑛 =  
𝑦𝑛

(𝑥𝑛 – 𝑥0 )(𝑥𝑛 – 𝑥1)(𝑥𝑛 – 𝑥2)…(𝑥𝑛 – 𝑥𝑛−1)
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If we substitute all values of 𝐴𝑖 in function 𝑓(𝑥) where 𝑖 =
 1, 2, 3, … 𝑛 then we get Lagrange Interpolation Formula as, 

𝑃(𝑥) =
(𝑥−𝑥1)(𝑥−𝑥2)…(𝑥−𝑥𝑛)

(𝑥0−𝑥1)(𝑥0−𝑥2)…(𝑥0−𝑥𝑛)
𝑦0 +

(𝑥−𝑥0)(𝑥−𝑥2)…(𝑥−𝑥𝑛)

(𝑥1−𝑥0)(𝑥1−𝑥2)…(𝑥1−𝑥𝑛)
𝑦1 +

(𝑥−𝑥0)(𝑥−𝑥1)…(𝑥−𝑥𝑛)

(𝑥2−𝑥0)(𝑥2−𝑥1)…(𝑥2−𝑥𝑛)
𝑦2 + ⋯ +

(𝑥−𝑥1)(𝑥−𝑥2)…(𝑥−𝑥𝑛−1)

(𝑥𝑛−𝑥0)(𝑥𝑛−𝑥1)(𝑥𝑛−𝑥𝑛−1)
𝑦𝑛         

  

Problems and Numerical Results  

We now apply Newton and Lagrange interpolation 

polynomial method to solve sample initial value problems of 

the first order ordinary differential equations. 

 

Problem 1: 

 

Solve 
𝑑𝑦

𝑑𝑥
= 1 − 𝑦                                                    

    𝑦(0) = 0 

 

Taking step ℎ = 0.1 

Using Newton’s interpolation, 

𝑎0 = 0 = 𝑦0     

       

𝑎1 =
𝑓(𝑥1)−𝑓(𝑥0)

(𝑥1−𝑥0)
= [

𝑑𝑦

𝑑𝑥
]

0,0
= 1  

 

Using eqn. (2)     

   

𝑦1 = 0 + 1(0.1 − 0) = 0.1    

Using eqn. (7)      

𝑎2 =

𝑓(𝑥2) − 𝑓(𝑥1)
(𝑥2 − 𝑥1)

−
𝑓(𝑥1 − 𝑥0)

𝑥1 − 𝑥0

(𝑥2 − 𝑥0)
=

[
𝑑𝑦
𝑑𝑥

]
0.1,0.1

− [
𝑑𝑦
𝑑𝑥

]
0,0

0.2 − 0
=  0.549999 

Using eqn. (3)      

𝑦2 = 0 + 1(0.2 − 0) + 0.49999(0.2 − 0)(0.2 − 0.1)
= 0.1998 

 

By Eqn. (8), we have     

𝑎3 =

𝑓(𝑥3) − 𝑓(𝑥2)
(𝑥3 − 𝑥2)

−
𝑓(𝑥2) − 𝑓(𝑥1)

(𝑥2 − 𝑥1)
(𝑥3 − 𝑥1)

−

𝑓(𝑥2) − 𝑓(𝑥1)
(𝑥2 − 𝑥1)

−
𝑓(𝑥1) − 𝑓(𝑥0)

(𝑥1 − 𝑥0)
(𝑥2 − 𝑥0)

(𝑥3 − 𝑥0)
 

=

[
𝑑𝑦
𝑑𝑥]

0.2,0.199
−[

𝑑𝑦
𝑑𝑥]

0.1,0.1
0.3−0.1

−

[
𝑑𝑦
𝑑𝑥]

0.1,0.1
−[

𝑑𝑦
𝑑𝑥]

0,0
0.2−0

0.3−0
 =0.16667  

𝑦3 = 0 + 1(0.3 − 0) + 0.49999(0.3 − 0)(0.3 − 0.1)
+ 0.16667(0.3 − 0)(0.3 − 0.1)(0.3
− 0.2) = 0.0271 

 

Applying (0,1), (0.1, 0.100000), (0.2, 0.199000), and (0.3, 

0.271000) to find the cubic polynomial by Eqn. (10).  

 

Forming quadratic equation using Lagrange polynomial  

 

𝑃(𝑥) =
(𝑥−0.1)(𝑥−0.2)(𝑥−0.3)

(0−0.1)(0−0.2)(0−0.3)
× 0 +

(𝑥−0)(𝑥−0.2)(𝑥−0.3)

(0.1−0)(0.1−0.2)(0.1−0.3)
×

0.1 +
(𝑥−0)(𝑥−0.1)(𝑥−0.3)

(0.2−0)(0.2−0.1)(0.2−0.3)
× 0.1998 +

(𝑥−0)(𝑥−0.1)(𝑥−0.2)

(0.3−0)(0.3−0.1)(0.3−0.2)
× 0.0271    

𝑃3 = 0.16667𝑥3 − 0.549997𝑥2 + 1.053333𝑥 

      

The equation is used to get the values for 𝑦 at any given value 

of 𝑥 

 

Table 1: The table showing results of the equation  
𝑑𝑦

𝑑𝑥
= 1 − 𝑦  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 2 

Consider the differential equation 
𝑑𝑦

𝑑𝑥
= 𝑥2 − 𝑦       

with initial conditions 𝑦(0) = 1 

we will take step size ℎ = 0.1 

Using Newton Interpolation: 

𝑎0 = 1      

   

𝑦0 = 1      

   

𝑎1 = [
𝑑𝑦

𝑑𝑥
]

0,1
= −1   

      

𝑦1 = 1 − 1(0.1 − 0) = 0.9    

    

𝑎2 =

𝑓(𝑥2)−𝑓(𝑥1)

(𝑥2−𝑥1)
−

𝑓(𝑥1−𝑥0)

𝑥1−𝑥0

(𝑥2−𝑥0)
=

[
𝑑𝑦

𝑑𝑥
]
0.1,0.9

−[
𝑑𝑦

𝑑𝑥
]
0,1

0.2−0
=

 0.549999      

𝑦2 = 1 − 1(0.2 − 0) −  0.549999(0.2 − 0)(0.2 −
0.1) = 0.811  

    
𝑎3

=

𝑓(𝑥3) − 𝑓(𝑥2)
(𝑥3 − 𝑥2)

−
𝑓(𝑥2) − 𝑓(𝑥1)

(𝑥2 − 𝑥1)
(𝑥3 − 𝑥1)

−

𝑓(𝑥2) − 𝑓(𝑥1)
(𝑥2 − 𝑥1)

−
𝑓(𝑥1) − 𝑓(𝑥0)

(𝑥1 − 𝑥0)
(𝑥2 − 𝑥0)

(𝑥3 − 𝑥0)
 

=

[
𝑑𝑦
𝑑𝑥

]
0.2,0.811

−[
𝑑𝑦
𝑑𝑥

]
0.1,0.9

0.3−0.1
−

[
𝑑𝑦
𝑑𝑥

]
0.1,0.9

−[
𝑑𝑦
𝑑𝑥

]
0,1

0.2−0

0.3−0
 = 0.149999 

   

𝑦3 = 1 − 1(0.3 − 0) − 0.549999(0.3 − 0)(0.3 −
0.1) + 0.149999(0.3 − 0)(0.3 − 0.1)(0.3 − 0.2) =
 0.7339      

X NIPM and 

LIPM Method 

Exact 

values 

Percentage 

Error 

0 0 0 0% 

0.1 0.100000 0.095163 5.082858% 

0.2 0.199000 0.181282 9.773723% 

0.3 0.271000 0.259215 4.546419% 

0.4 0.344000 0.329717 4.331897% 

0.5 0.410000 0.393490 4.195786% 

0.6 0.470000 0.451186 4.169899% 

0.7 0.525002 0.503399 4.291427% 

0.8 0.576003 0.550681 4.598307% 

0.9 0.624004 0.593488 5.141806% 

1.0 0.670006 0.632211 5.978226% 
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Applying (0, 1), (0.1, 0.900000), (0.2, 0.811000), and 

(0.3, 0.733900) to find the cubic polynomial by Eqn. 

(10).  

 

Forming quadratic using Lagrange 

𝑃(𝑥) =
(𝑥−0.1)(𝑥−0.2)(𝑥−0.3)

(0−0.1)(0−0.2)(0−0.3)
× 1 +

(𝑥−0)(𝑥−0.2)(𝑥−0.3)

(0.1−0)(0.1−0.2)(0.1−0.3)
× 0.9 +

(𝑥−0)(𝑥−0.1)(𝑥−0.3)

(0.2−0)(0.2−0.1)(0.2−0.3)
×

0.811 +
(𝑥−0)(𝑥−0.1)(𝑥−0.2)

(0.2−0)(0.2−0.1)(0.2−0.3)
× 0.7339  

      

𝑦𝑛 = 0.149999𝑥3 + 0.505𝑥2 + 1.052𝑥 + 1  

 

Table 2: The table showing results of the equation: 
𝒅𝒚

𝒅𝒙
=  𝒙𝟐 − 𝒚   

x NIPM and 

LIPM 

Method 

Exact 

values 

Percentage 

Error 

0 1.000000 1.000000 0% 

0.1 0.900000 0.905163 -0.570395% 

0.2 0.811000 0.821212 -1.243528% 

0.3 0.733900 0.749005 -2.016675% 

0.4 0.669599 0.689391 -2.870940% 

0.5 0.618999 0.643129 -3.751969% 

0.6 0.582999 0.610887 -4.565165% 

0.7 0.562499 0.593241 -5.182042% 

0.8 0.558399 0.590676 -5.464417% 

0.9 0.571599 0.603586 -5.299493% 

1.0 0.602999 0.632280 -4.631017% 

 

Problem 3: 

Consider the differential equation 
𝑑𝑦

𝑑𝑥
=

𝑥 − 𝑦

𝑒𝑥+𝑦
 

with initial  𝑦(0) = 1. 

we will take step size ℎ = 0.1 

Using Newton interpolation:   

  𝑎0 = 1    

     

𝑦0 = 1      

   

𝑎1 = [
𝑑𝑦

𝑑𝑥
]

0,1
= −0.367    

    

𝑦1 = 1 − 0.367(0.1 − 0) = 0.963212   

Eqn. 3.21;    

𝑎2 =

𝑓(𝑥2)−𝑓(𝑥1)

(𝑥2−𝑥1)
−

𝑓(𝑥1−𝑥0)

𝑥1−𝑥0

(𝑥2−𝑥0)
=

[
𝑑𝑦

𝑑𝑥
]
0.1,0.963212

−[
𝑑𝑦

𝑑𝑥
]
0,1

0.2−0
=

 0.344504    

   

𝑦2 = 1 − 0.367(0.2 − 0) +  0.344504(0.2 −
0)(0.2 − 0.1) = 0.933401  

 

    

𝑎3

=

𝑓(𝑥3) − 𝑓(𝑥2)
(𝑥3 − 𝑥2)

−
𝑓(𝑥2) − 𝑓(𝑥1)

(𝑥2 − 𝑥1)
(𝑥3 − 𝑥1)

−

𝑓(𝑥2) − 𝑓(𝑥1)
(𝑥2 − 𝑥1)

−
𝑓(𝑥1) − 𝑓(𝑥0)

(𝑥1 − 𝑥0)
(𝑥2 − 𝑥0)

(𝑥3 − 𝑥0)
 

=

[
𝑑𝑦
𝑑𝑥]

0.2,0.9334901
−[

𝑑𝑦
𝑑𝑥]

0.1,0.963212
0.3−0.1

−

[
𝑑𝑦
𝑑𝑥]

0.1,0.963212
−[

𝑑𝑦
𝑑𝑥]

0,1
0.2−0

0.3−0
 =  

0.16665        

𝑦3 = 1 − 0.367(0.3 − 0)
+  0.344504(0.3 − 0)(0.3 − 0.1)
+ 0.0115180(0.3 − 0)(0.3 − 0.1) 

(0.3 − 0.2) = 0.909791 

 

Applying (0,1), (0.1, 963212), (0.2, 0.933401), and 

(0.3, 0.909791) to find the cubic polynomial by Eqn. 

(10) 

 

Forming quadratic using Lagrange 

𝑃(𝑥) =
(𝑥−0.1)(𝑥−0.2)(𝑥−0.3)

(0−0.1)(0−0.2)(0−0.3)
× 1 +

(𝑥−0)(𝑥−0.2)(𝑥−0.3)

(0.1−0)(0.1−0.2)(0.1−0.3)
× 0.963212 +

(𝑥−0)(𝑥−0.1)(𝑥−0.3)

(0.2−0)(0.2−0.1)(0.2−0.3)
× 0.933401 +

(𝑥−0)(𝑥−0.1)(𝑥−0.2)

(0.3−0)(0.3−0.1)(0.3−0.2)
× 0.909791  

       

𝑦𝑛 = −0.129608𝑥3 + 0.387751𝑥2 − 0.405358𝑥 +
1       

 

Table 3: The table showing results of the equation: 
𝒅𝒚

𝒅𝒙
=  

𝒙−𝒚

𝒆𝒙+𝒚  

x NIPM and 

LIPM Method 

Exact 

values 

Percentage 

Error 

0 1.000000 1.000000 0% 

0.1 0.963212 0.966759 -0.366895% 

0.2 0.933401 0.940092 -0.711738% 

0.3 0.909791 0.919197 -1.023284% 

0.4 0.891602 0.903288 -1.293718% 

0.5 0.878057 0.891643 -1.523703% 

0.6 0.868380 0.883609 -1.723499% 

0.7 0.861791 0.878595 -1.912599% 

0.8 0.857514 0.876075 -2.118654% 

0.9 0.854771 0.875591 -2.377822% 

1.0 0.852784 0.876747 -2.733172% 

 

In this study, Newton and Lagrange interpolation 

polynomial method are used to solve initial value 

problems for first order ordinary differential equation 

and we constructed cubic polynomials from the method 

as the solutions of linear and non-linear ordinary 

differential equations. We compared our numerical 

results with the results of exact solutions for the 

problems considered.  

The initial value problems and tables above of problem 

1 and 2, helps to compare the numerical results with 

analytical method. Our method gives numerical 
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approximate solutions which is also closer to the exact 

solutions as expressed in Tables 1 and 2.  

While finding solution, we observe that this method 

aids faster convergence even as we repeat the 

calculations for larger step sizes. Also, this proposed 

method can capture the local curvature of the function 

allowing it to fit better between data points. 

 

This method gives results very close to the exact value. 

This is noted by the percentage error that is very minor. 

The method is very accurate and easy to use after 

getting the cubic polynomial equation. Hence, one can 

get the value of y at any value of x without necessarily 

getting preceding values of y. Numerical results show 

that our proposed method has greater accuracy and 

remarkable performance as seen in the tables above. 

When observed closely, that the percentage error is 

small with respect to the exact values. 

 

CONCLUSION 

In conclusion, our approach represents a step forward in the 

field of numerical methods for solving differential equations. 

It addresses the time-consuming and cumbersome nature of 

traditional techniques by introducing adaptability, 

efficiency, and enhanced accuracy. With its broad 

applicability, we provide a valuable tool that can be 

employed to solve various systems of differential equations, 

making it particularly useful in scientific research and 

engineering projects. 
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