
Open Access article published under the terms of a  

Creative Commons license (CC BY). 

http://wojast.org 

Udo-Utun, et. al: Nearness of Fractional Operators for 
Solvability of Natural Perturbations of Fractional Dynamic 

Operators. https://dx.doi.org/10.4314/wojast.v15i2.18 

 

World Journal of Applied Science and Technology, Vol. 15 No. 2(1) (2023) 275 - 278   275 

NEARNESS OF FRACTIONAL OPERATORS FOR SOLVABILITY  

OF NATURAL PERTURBATIONS OF FRACTIONAL  

DYNAMIC OPERATORS 

 

UDO-UTUN, X*., EDET, U.  

AND JOHNSON, U. 

*Correspondence: xavierudoutun@gmail.com 

 

ABSTRACT 

Variation of parameters is obtained on the application of nearness properties of operators to a natural perturbation of 

nonlinear fractional operators. The nearness principle yields solvability of difficult perturbed nonlinear fractional integral 

equations via variation of parameters. 
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INTRODUCTION 

The nearness concept in operator theory (Barbagallo et al, 

2019) generalizes the concept of contracting mappings by 

identifying small perturbations of bijective mappings to 

obtain fixed points, zeros and solutions of associated 

problems. The introduction of the principle of nearness of 

operators by Campanato, (1994) and Annamaria et al 

(2019).  in the nineties turned out a tremendous unifier of 

several existence methods. In this praxis, we have applied 

properties of the nearness of functions to obtain hitherto 

unresolved natural perturbation problems in fractional are 

dynamic problems that used to defy the methods of variation 

of parameters. Here, we undertake investigations of the 

solvability of fractional Volterra integral equations of the 

form: 

 

(1) 𝑢(𝑡) = ℎ(𝑡) − ∫ 𝑎(𝑡 − 𝑠) − 𝑔(𝑡, 𝑢(𝑠))𝑑𝑠
𝑡

0
 

 

where the kernel 𝑎(𝑡 − 𝑠)  is singular and completely 

monotone and the nonlinearity 𝑔(𝑡, 𝑢(𝑡))  needs not be 

contractive nor a perturbation of identity by a contraction 

mapping. The cases when 𝑔(𝑡, 𝑢(𝑡))  is perturbation 

𝑔(𝑡, 𝑢)  =  𝜂𝑢 + 𝑔0(𝑡, 𝑢(𝑡))  of identity by a contraction 

mappings 𝑔0(𝑡, 𝑢(𝑡))  have been investigated by (Burton-

Zhang, 2009), (Burton, 2011) and many others in the 

references therein; all of them circumventing the case of the 

most natural perturbation 𝑔(𝑡, 𝑢)  =  𝜂𝑢 + 𝑔0(𝑡, 𝑢(𝑡)) , 

where 𝑔0(𝑡, 𝑢(𝑡))  =  𝑔(𝑡, 𝑢(𝑡))  ±  𝑢(𝑡). 

 

This type of perturbation in an equation defies so many 

solvability techniques in that neither Schauder fixed point 

theorem Granas-Dugundj, (2003)) nor the popular 

contraction mapping principle is applicable. Worst still, due 

to the fact that the nonlinearity 𝑔(𝑡, 𝑢)  is not the 

usualsmallperturbation of identity the Miller‘s  variation of 

parameters method (Miller, 1971) fails to be useful. But on 

application the of nearness principle, the method of variation 

of parameters can be recovered if the nonlinearity 𝑔(𝑡, 𝑢) is 

near to identity in the sense of (Companato, 1994). In this 

case, following the methodology of R. K. Miller, we obtain 

variation of parameters in the following steps:  

 

(A) We use the natural perturbation to separate the integral 

non-linearnon-linearequations into linear and non-linear 

parts.  

(B) We use the nearness properties of the nonlinearity to 

nonself-contractionobtain a nonself contraction mapping.   

(C) We apply Rothe’s fixed point theorem to the associated 

operator. 

 

It is important to observe that since the nonlinearity is not a 

contraction mapping, it may be difficult to apply 

(Krasnoselskii, 1958) fixed point theorem for sum of two 

mappings in this instance. But it will be of advantage to 

formulate conditions under which the problem can be 

adapted to conform with applicability of Krasnoselskii fixed 

point theorem. For the rich development on Krasnoselskii-

type fixed point theorem we make reference to (Demling, 

1985), (Edelstein, 1966), (Garcia and Latrach, 2012). Other 

related important works can be found in (Granas and 

Dugundj, 2003), (Oregan, 1996) and (Smart, 1974). Due to 

the recurrent and cyclic nature of this natural perturbation, 

investigations of solvability via this case still remain shallow 

or fallow. In this work we apply certain types of nearness to 

identity function to obtain a desirable variation of 

parameters for associated fractional integral equations. 

 

As remarked in (Burton, 2009, 2011) when the kernel 𝑎(𝑡 −
𝑠) in (1) is singular and completely monotone its resolvent 

𝑟(𝑡 − 𝑠) is also completely monotone and ∫ 𝑟(𝑡)𝑑𝑠 = 1
∞

0
 if 

the integral of the kernel 𝑎(𝑡) diverges  (i.e. ∫ 𝑎(𝑡)𝑑𝑡 =
∞

0

∞ ) which is the case with kernels  𝑎(𝑡 − 𝑠) = (𝑡 −
𝑠)𝛼−1;  𝛼 ∈ (0,1)   of fractional dynamic problems of the 

form given below: 

(2) 𝑢(𝑡) = ℎ(𝑡) −
1

𝛾(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑔(𝑡, 𝑢(𝑠))𝑑𝑠

𝑡

0
 

 

Here, the fractional integral above is defined in the sense of 

Riemann-Liouville. Though there are many variant 

definitions of fractional calculus, that of Riemann-Liouville 

remains a very generic definition. But, in general, no 

definition of fractional derivative is optimal since each is 

customized to specific problems at hand. In this study we 

restrict our investigations with respect to the Riemann 

Liouville definition because the Riemann-Liouville 

derivative is popularly used by physicists and engineers in 
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automation, control theory and signal processing especially 

for image enhancement and texture analysis. Secondly, we 

prefer formulation our investigations in terms of Riemann 

Liouville fractional integral because its theory is more well 

developed than that of its derivative. The Riemann 

derivative poses generic problems in its fractional 

differential equations due to presence of not well-defined 

initial conditions. Lastly, after converting Riemann-

Liouville differential equation into its equivalent fractional 

integral equation this drawback disappears. 

 

For 𝑢 ∈ 𝐿1[𝑎, 𝑏] and 𝛼 ∈ (0,1), we define the left Riemann-

Liouville fractional integral by 

 

𝐽𝑎+
𝛼 𝑢(𝑡) =

1

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑢(𝑠)

𝑡

0

𝑑𝑠 

 

Where Γ(𝛼)  denotes the gamma function; and the left 

Riemann-Liouville fractional integral is given by 

𝐼𝑏−
𝛼 𝑢(𝑡) =

1

Γ(𝛼)
∫ (𝑠 − 𝑡)𝛼−1𝑢(𝑠)

𝑏

𝑡

𝑑𝑠 

 

METHODS 

Our methodology requires application of the following 

proposition 

 

Theorem 1: 

For 𝛼 ∈ (0,1) we have  

(i)  𝐽𝑎+
𝑠  is a continuous operator from 𝐿𝑝(𝑎, 𝑏) into 𝐿𝑟(𝑎, 𝑏) 

for 𝑝 ∈ [1,
1

𝛼
) and 𝑟 ∈ [1,

𝑝

1−𝛼𝑝
) 

 

(ii)  For 𝑝 >
1

𝛼
, 𝐽𝑎+

𝑠  is a continuous operator from 𝐿𝑝(𝑎, 𝑏) 

into 𝐿𝑟(𝑎, 𝑏) with 𝑟 ∈ [0, ∞) 

 

(iii) The fractional integral 𝐽𝑎+
𝛼 𝑢(𝑡) is a continuous operator 

from 𝐿∞(𝑎, 𝑏) into 𝐶𝛼(𝑎, 𝑏). Where 𝐶𝛼  denotes the space 

of Holder’s continuous function of order 𝛼. 

 

Note  

𝐽𝑎+
𝛼 (𝐵𝑉[𝑎, 𝑏]) ⊂ 𝐶𝛼(𝑎, 𝑏) 

 

Hence, 𝐽𝑎+
𝛼 (𝐴𝐶[𝑎, 𝑏]) ⊂ 𝐶𝛼(𝑎, 𝑏) 

Given the nonlinearity 𝑔(𝑡, 𝑢) our methodology consists in 

obtaining the linear part 𝑢0(𝑡) = ℎ(𝑡) −
1

𝛾(𝛼)
∫ (𝑡 −

𝑡

0

𝑠)𝛼−1𝑢(𝑠)𝑑𝑠  and the nonlinear part −
1

𝛾(𝛼)
∫ (𝑡 −

𝑡

0

𝑠)𝛼−1[𝑢(𝑠) − 𝑔(𝑡, 𝑢(𝑠))]𝑑𝑠  which yields the desired 

variation of parameters below provided 𝑔(𝑡, 𝑢)  is near 

identity function:  

 

𝑢(𝑡) = 𝑢0(𝑡) + ∫ 𝑟(𝑡 − 𝑠)
𝑡

0

(𝑔(𝑠, 𝑢(𝑡) − 𝑢(𝑠))𝑑𝑠 

 = 𝑢0(𝑡) − ∫ 𝑟(𝑡 − 𝑠)[𝑢(𝑠) − 𝑔(𝑠, 𝑢(𝑠))𝑑𝑠
𝑡

0
 

 

where 𝑢0(𝑡) = ℎ(𝑡) + ∫ 𝑟(𝑡 − 𝑠)ℎ(𝑠)
𝑡

0
𝑑𝑠  is the well-

known solution of the linear part  𝑢0(𝑡) = ℎ(𝑡) −

1

𝛾(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑢(𝑠)𝑑𝑠

𝑡

0
 and the resolvent 𝑟(𝑡 − 𝑠)  is 

defined by 𝑟(𝑡) = 𝑎(𝑡) − ∫ 𝑎(𝑡 − 𝑠)𝑟(𝑠)𝑑𝑠
𝑡

0
. 

 

Many problems of this nature often defy application of the 

Krasnoselskii fixed point theorem which informs research 

for newer principles like perturbation and nearness 

properties introduced by (Campanato, 1994) studied herein.  

 

Theorem 2.  

Krasnoselskii fixed point theorem. 

Let 𝑀 be a closed convex non-empty subset of a Banach 

space 𝑋. Suppose that 𝐴 and 𝐵  
map 𝑀 into 𝑋 and that 

 

(i) 𝐴𝑥 + 𝐵𝑦 ∈ 𝑀 (∀𝑥, 𝑦 ∈  𝑀), 

 

(ii) 𝐴 is compact and continuous. 

 

(iii) 𝐵 is a contraction mapping. 

 

Then there exists 𝑦 ∈ 𝑀 such that 𝐴𝑦 + 𝐵𝑦 = 𝑦. 

The nearness principle follows from the following 

generalization of Neuman’s lemma by Campanato 

 

Theorem 3: Campanato, 1994) 

Let 𝐸  ba a real Banach space. 𝑇: 𝐸 → 𝐸  a nonlinear 

mapping such that there exist 𝜆 > 0 and 𝛼 ∈ [0,1) and  

 

(3)  ||(𝑢 − 𝑣) − 𝜆(𝑇𝑢 − 𝑇𝑣)|| ≤ 𝑐||𝑢 − 𝑣||  then 𝐿𝑖𝑝(𝐼 −

𝜆𝐴) ≤ 𝑐 and 𝐿𝑖𝑝(𝐴−1) ≤
𝜆

1−𝑐
 .  

 

Where 𝐿𝑖𝑝(𝑇) is the Lipchitz norm of 𝑇. 

We recall a mapping 𝐴: 𝑋 → 𝐸 of a subset 𝑋 of a Banach 

space 𝐸 is said to be near a mapping 𝐵: 𝑋 → 𝐸 if there exist 

two constants 𝜆 > 0 and 𝑐 ∈ [0,1) such that the following 

property holds: 

 

(4)   ||(𝐵𝑢 − 𝐵𝑣) − 𝜆(𝐴𝑢 − 𝐴𝑣)|| ≤ 𝑐||𝐵𝑢 − 𝐵𝑣||  

 

It follows from (4) that when 𝐵 is the identity mapping i.e. 

𝐵 = 𝐼  then 𝐴  is said to be near identity mapping 𝐼 . Our 

investigation is limited to the property of nearness of 𝐴 to 

identity mapping given below: 

 

(5) ||(𝑢 − 𝑣) − 𝜆(𝐴𝑢 − 𝐴𝑣)|| ≤ 𝑐||𝑢 − 𝑣|| 

Our main result is an application of Rothe’s fixed point 

theorem below. 

 

Theorem 4: (Smart 1974) 

Let 𝐸  be a Banach space, 𝑋  a closed unit ball in 𝐸  with 

boundary 𝜕𝑋. Let 𝑇 be a countable compact mapping of 𝑋 

into 𝐸 such that 𝑇(𝜕𝑋) ⊂ 𝑋, then 𝑇 has a fixed point. 

 

MAIN RESULT 

Theorem 5: 

Let 𝑢(𝑡) = ℎ(𝑡) + ∫ 𝑎(𝑡 − 𝑠)𝑔(𝑠, 𝑢(𝑠))𝑑𝑠
𝑡

0
 be a given 

integral equation with singular kernel 𝑎(𝑡 − 𝑠)  which is 
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completely monotone with ∫ 𝑎(𝑡)𝑑𝑡
𝑡

0
= ∞ . If the 

nonlinearity 𝑔(𝑡, 𝑢(𝑡))  is near identity operator, then the 

integral equation has a unique solution provided 𝑔(𝑡, 0) =
0. 
 

Proof 

We start by rewriting the nonlinearity 𝑔(𝑡, 𝑢(𝑡)) as 

 

(6) 𝑔(𝑡, 𝑢(𝑡)) = 𝑢(𝑡) + 𝑔0(𝑡, 𝑢(𝑡)); where 𝑔0(𝑡, 𝑢(𝑡)) =

𝑔(𝑡, 𝑢(𝑡)) − 𝑢(𝑡)
    

Then by variation of parameters, we obtain the solution of 

the equation as  

𝑢(𝑡) = 𝑢0(𝑡) + ∫ 𝑟(𝑡 − 𝑠)
𝑡

0

(𝑔(𝑠, 𝑢(𝑡) − 𝑢(𝑠))𝑑𝑠 

(7) = 𝑢0(𝑡) − ∫ 𝑟(𝑡 − 𝑠)[𝑢(𝑠) − 𝑔(𝑠, 𝑢(𝑠))𝑑𝑠
𝑡

0
 

(8) where 𝑢0(𝑡) = ℎ(𝑡) + ∫ 𝑟(𝑡 − 𝑠)ℎ(𝑠)
𝑡

0
𝑑𝑠 

Let (𝑇𝑧)(𝑡) = 𝑢0(𝑡) − ∫ 𝑟(𝑡 − 𝑠)[𝑧(𝑠) − 𝑔(𝑠, 𝑧(𝑠))𝑑𝑠
𝑡

0
 

 

Then 𝑇: 𝐵1(𝑢0) → 𝐸 is a contraction mapping and to apply 

Rothe’s Theorem 4, we need to prove that 𝑇: 𝜕𝐵1(𝑢0) →

𝐵1(𝑢0) that is in particular, ||𝑇𝑧 − 𝑢0|| < 1. 

 

But, ||𝑇𝑢 − 𝑢0||
𝐿1 = ∫ | ∫ 𝑟(𝑡 − 𝑠)[(𝑔(𝑠, 𝑢(𝑠)) −

𝑡

0

∞

0

𝑔(𝑠, 0)]𝑑𝑠 |𝑑𝑡 

≤ 𝑐 ∫ ∫ 𝑟(𝑡 − 𝑠)𝑑𝑡|𝑢(𝑠)|𝑑𝑠
∞

𝑠

∞

0

 

= 𝑐 ∫ |𝑢(𝑠)|𝑑𝑠
∞

0

= 𝑐||𝑢||
𝐿1 

 

Therefore, 𝑇𝑢 ∈ 𝐵(𝑢0)  whenever 𝑢 ∈ 𝜕𝐵(𝑢0)  and by 

Rothe’s Theorem 4, there is a unique solution. Hence, the 

integral equation has a unique solution. End of proof □ 

 

APPLICATIONS 

The next theorem illustrates applications of nearness 

principle to resolution of hitherto difficult solvability of 

fractional dynamic problems with degenerate perturbation 

of identity by nonlinearities which are neither small nor 

contractive. 

Theorem 6: 

Let 𝑢(𝑡) = ℎ(𝑡) −
1

𝛾(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑔(𝑠, 𝑢(𝑠))𝑑𝑠

𝑡

0
; 𝛼 ∈

(0,1) be a given fractional integral equation such that  

 

(HI) The nonlinearity 𝑔(𝑡, 𝑢(𝑡)) is near identity mapping.  

(HII) 𝑔(𝑡, 0) = 0. 

(HIII) ℎ ∈ 𝐿1[0, ∞) 

Then the fractional integral equation has a unique solution 

in the space 𝐿1[0, ∞).  

 

Proof 

As mentioned above, the fractional integral equation can be 

decomposed into the linear part  𝑢0(𝑡) = ℎ(𝑡) −
1

𝛾(𝛼)
∫ (𝑡 −

𝑡

0

𝑠)𝛼−1𝑢(𝑠)𝑑𝑠 with the well known solution 𝑢0(𝑡) = ℎ(𝑡) +

∫ 𝑎(𝑡 − 𝑠)ℎ(𝑠)
𝑡

0
𝑑𝑠 where the resolvent 𝑟(𝑡 − 𝑠) is defined 

by 𝑟(𝑡) = 𝑎(𝑡) − ∫ 𝑎(𝑡 − 𝑠)𝑟(𝑠)𝑑𝑠
𝑡

0
 followed with the 

nonlinear part −
1

𝛾(𝛼)
∫ (𝑡 − 𝑠)𝛼−1[𝑢(𝑠) − 𝑔(𝑠, 𝑢(𝑠))]𝑑𝑠

𝑡

0
.  

 

These two parts are combined into one formulation via 

variation of parameters since It is well known that the kernel 

𝑎(𝑡 − 𝑠) = (𝑡 − 𝑠)𝛼−1  is completely monotone with 

∫ 𝑡𝛼−1∞

0
𝑑𝑡 = ∞ . Hence by R. K. Miller’s results 

((Miller,1971) -see (Burton-Zhang, 2009) and (Burton, 

1998, 2011)) it follows that the resolvent 𝑟(𝑡 − 𝑠) is also 

completely monotone with ∫ 𝑟(𝑡)
∞

0
𝑑𝑡 = 1.  

 

Therefore, by Theorem 5, the associated operator (𝑇𝑧)(𝑡) =

𝑢0(𝑡) − ∫ 𝑟(𝑡 − 𝑠)[𝑧(𝑠) − 𝑔(𝑠, 𝑧(𝑠))𝑑𝑠
𝑡

0
 satisfies the 

contraction mapping condition: 

 

||𝑇𝑢 − 𝑇𝑣|| = ∫ | ∫ 𝑟(𝑡 − 𝑠)[{𝑢(𝑠) − 𝑣(𝑠)}
𝑡

0

∞

0

− (𝑔(𝑠 , 𝑢(𝑠)) − 𝑔(𝑠, 𝑣(𝑠))]𝑑𝑠| 𝑑𝑡 

                             ≤ 𝑐 ∫ | ∫ 𝑟(𝑡 − 𝑠)(𝑣(𝑠) − 𝑢(𝑠))𝑑𝑠
𝑡

0
|

∞

0
𝑑𝑡 

since 𝑔 is near identity. 

                                                 ≤ 𝑐||𝑢 − 𝑣||. 
 

From Theorem 5 above, we know that 𝑇 is a mapping from 

the ball 𝐵1(𝑢0) into the Banach space 𝐿1[0, ∞] such that the 

boundary 𝜕𝐵1(𝑢0) satisfies 𝑇(𝜕𝐵) ⊂ 𝐿1[0, ∞]. So 𝑇 has a 

unique fixed point which is a solution of the integral 

equation. End of proof. □ 

 

Example: 

The versatility of the nearness principle of operators is that, 

given any two functions 𝐴 and 𝐵 in a given Banach space, 

we have the following alternatives either:  

 

(a)  𝐴 is near 𝐵 

(b) Or −𝐴 is near 𝐵 

(c) Or 𝐴 is orthogonal to 𝐵.  

 

So, this informs the motivation of various researches into 

diverse connections between the nearness property and 

orthogonality property. These connections yield many 

positive possibilities leading to various generalizations of 

the concept of orthogonality in very general spaces like 

locally convex spaces and arbitrary metric spaces. Next, 

using the fact that it either 𝑒−𝑢 is near identity or −𝑒−𝑢 is 

near identity, we attempt solvability of the fractional integral 

equation below. 

 

The equation  
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(9) 𝑢(𝑡) = ℎ(𝑡) −
1

𝛾(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑒−𝑢(𝑠)𝑡

0
𝑑𝑠  

has a unique solution.  

 

 

 

Solution 

It is straight forward to verify that −𝑒−𝑢  is near identity 

map. Hence by theorem 6, the integral equation (9) has 

unique solution.  

Remark  

The advantage of Riemann-Liouville definition of fractional 

derivative is that it yields a pointwise definition of derivative 

using fractional integral unlike certain definitions used in 

formulations of fractional Sobolev spaces defined by 

interpolations and global approach. The disadvantage is that 

it is difficult to formulate fractional Sobolev space theory 

with respect to Riemann-Liouville fractional derivative 

while the interpolation and global approach seems more 

suitable to application. The Riemann-Liouville derivative is 

used by physicists in automation, control theory and signal 

processing for image enhancement and texture analysis.  

 

It is important to mention that there are many unresolved 

questions in the theory of fractional calculus top among 

which are initialization problems and the connection 

between fractional Sobolev spaces and classical space of 

functions of bounded variation. Fractional Sobolev spaces 

are not yet well developed with respect to Riemann-

Liouville fractional calculus very much in use in 

engineering. Some open problems are concerned questions 

of properties of fractional spaces between 𝐿1 −spaces and 

the Sobolev space 𝑊1,1  and the relationship between 

fractional Sobolev spaces and the classical space of 

functions of bounded variations. Already, it is well known 

that the space of absolutely continuous functions 𝐴𝐶[𝑎, 𝑏] 
coincide with the Sobolev space 𝑊1,1 . Given that 

𝑊1,1(𝑎, 𝑏) = {𝑢 ∈ 𝐿1(𝑎, 𝑏): 𝑢′ ∈ 𝐿1(𝑎, 𝑏)} (Bergounioux et 

al, 2017). 
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