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ABSTRACT

The problem of plane elasticity for a doubly connected body with inner and outer boundaries in a regular polygonal form
with a common centre and parallel sides has been studied. The sides of the polygon were exposed to external forces. The
nature of the force term was determined by application of complex variable theory. Kolosov’s method of solution was applied
to obtain the biharmonic equation of the forcing term. The forces on the particle were studied under 2-dimensions from which
the compatibility and equilibrium equations were derived. The compatibility and equilibrium equations were used to derive
the force—stress relations. The results shows that there is a significant relationship between the angle of the force term on the
plane of the particle and the stress state of the particle, which conforms with existing experimental results.
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INTRODUCTION

The theory of elasticity describes deformable materials such
as rubber, cloth, paper, and flexible metals. It is often used
to model the behavior of non-rigid curves, surfaces and
solids as a function of time. Elasticity deformable models
are active and respond naturally to applied forces,
constraints, ambient, media, and impenetrable obstacles,
Terzopoulos et al, (1987).

One of the most efficient and elegant techniques of solving
problems in the linear theory of elasticity is the method of
complex stress functions which is mainly associated with
Kolosov, (1909), Muskhelishvili (1966), Bock, and
Gurlebeck, (2009). In particular, application of complex
variable theory in solving elasticity problems resulted from
the complex potential, which is peculiar to analytic complex
functions. It is exceedingly fruitful for effective solution of
boundary value problems and general functions that relates
theoretically with Cauchy’s integral formula and conformal
mappings, Kapanadze and Gulna (2016). Chou and Pagano
(2001) opined that one of the major problems in the theory
of elasticity is that of determining the full strength of
surfaces which aid in controlling the stress concentration
both on the surface and at the boundaries of surfaces.

Recently, construction and engineering practices have
suffered major setbacks resulting from negligence, poor
analysis and examination of materials, and the stress strength
of surfaces and contours on which the load/stress is imposed.
Odishelidze and Kriado (2006) further established that the
investigation of stress concentration near the contour of
surfaces is one of the major problems in plane elasticity
theory, especially in plates with a hole where the tangential-
normal stresses and the tangential-normal moments can
reach such values that destroy plates or formation of plastic
zones near the hole at some points. In cases of infinite
domains, the minimum of maximum values of tangential-
normal stresses will be obtained on such holes, where these
values remain constant (full-strength holes).

A mixed problem of plane elasticity theory for a doubly-
connected domain with partially unknown boundary
conditions was solved in Odishelidze et al (2015). The
problem of plane elasticity theory for a doubly connected
domain with a partially unknown boundary was solved in
Odishelidze (2015) using the methods of the theory of
analytic complex functions. Boundary valued equation for
force term in non-homogeneous equation of statics in the
theory of elastic mixtures was solved in Udoh and Ndiwari,
(2018) using Kolosov-Muskhelishvili formula for a
displacement vector in an elastic mixture of homogeneous
body. A biharmonic solution for a force term in a non-
homogeneous equation of statics in the theory of elastic
mixtures was provided by Ndiwari and Ongodiebi. (2020)
using complex variable theory, where the constant
introduction of the force term at a fixed point on the plane
directly affected the stability of the particle.

In this work, we considered a problem of plane elasticity for
a doubly connected domain with inner and outer boundaries
in a regular polygonal form with common center and parallel
sides. The sides of the body were exposed to an external
unknown force and the boundary conditions were
determined at equilibrium to ascertain the impact of the
forcing term and its relationship with the stability of the
isotropic elastic material. We derived the forcing term from
the non-homogeneous equation of statics in the theory of
elastic mixture. The unknown forces were analyzed in two
dimensions from stress function to derive the equilibrium,
compatibility, and biharmonic equations. The basic equation
of elasticity was obtained using the compatibility equation
and the stress-strain relation. The boundary equation of the
unknown forcing term was derived and graphs were
generated to illustrate and explain the relationship between
the angle of the forcing term and the stress state of the
isotropic elastic material.

Mathematical Formulation

We considered a homogeneous isotropic elastic body in a
doubly connected domain D on the complex plane z = x +
iy. Its outer and inner boundaries are L, and L1 respectively
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and form a rectangle with a common center z = 0 and parallel
sides. The neighbourhood of the vertices of the inner
rectangle are equal smooth arcs which are symmetric angles
of equidistance from the centre as in Figure 1. We assumed
that the edges of the isotropic elastic body are exposed to the
external force in the form of load. We further assumed that
both boundaries, Lo of the elastic body and that of the hole
are smooth and free from frictional forces. Under these
assumptions, the normal displacements of the outer and
inner boundaries are constant respectively, while the
unknown arcs are exposed to external force. We aimed to
determine the equilibrium solution for the force term, F and
the relationship between the angle of the force term on the
plane of the particle and the stress state of the particle.

Y

o=

_—
[ -~

Figure 1. Isotropic elastic body

METHOD OF SOLUTION

To determine the force term F, we applied the non-
homogeneous equation in the theory of elastic mixtures as
our governing equation and adopted [Kolosov, (1909) and
Muskhelishvili. (1966)]. The displacement components of
the vector are represented in this theory using four arbitrary
analytic functions as in [Ndiwari and Ongodiebi (2020)].
The basic non-homogeneous equations governing the theory
of elastic mixture in 2-dimensions [Kapanadze and Gulna
(2016)] is given by

a;Au' + bygraddivu’ + cAu” + dgraddivu”

= pF'="
cAu'+ dgraddivu’ + a,Au’” +
b,graddivu” = p,F' =¥ 1

Where A is the 2-dimensional Laplacian, grad and div are
the principal operators of the field theory, p, and p, are the
partial densities (positive constants of the mixture), F' and
F'" are the mass forces, respectively; u' = (u1', uz) =w' and
u" = (ur", uz") = w" are the displacement vectors, ¥ and ¥"
denote the product of the partial density p and the mass force
F, respectively, ai,az bi, by, ¢ and dare combination of
constitutive constants characterizing the physical properties
of the mixtures specified as

a1 = p1 —As, a2 = l2— As,

b=z +Ae+ s+ plogpy, bi=pu +hat As+ plazpe,
c=p3+ A5, d=ps+ha—As— plazpip = p1+ pa, (2)
a2 =2 — A2 +hs + plazpy

02:7»3 7%4
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where Wi, (i = 1,2,3) is the mixture’s permeability constant
and A, (1=1,2,3,4,5) is the mixture’s thermal conductivity
constant.

Applying Complex Variables Theory
Applying complex variable theory, we solve Equation (1)
as follows:

Z=Xx1+ X2 3
And its conjugate as
zZ= X1 — IX2 (4)

Adding (3) and (4) gives

2x1=z+2z (5)
Subtracting (4) from (3) gives

2ixo=z-2 (6)
Expressing (5) in partial differential equation, gives

a o
Pyt i (7)

2i 2= 2_2 ®)

Adding (7) and (8) gives
2(2- +is0) = 22 )

0xq 0x, 0z

Subtracting (8) from (9) we obtain

a AN ]
Multiplying (9) and (10) we have
a2 a2 a2 . a2 a2
920z 4 (E + B_x%) +4i (axlaxz - 6x16x2)
(11)

Equating the two right terms of (11) to the right part of (7)
and (8) respectively, we obtain

92 92 a a
4(@ + @)— 4(5+5)

. 9? 9? . (0 d
45— = ai(2-2)
0x10x, 0x10x, dz 0z

Replacing the two right hand term of (11) by the two right
terms of (12) and (13) respectively, gives

tomr = 4Gt 5)- (-7

Let the displacement vectors u’and u' be represented in
their complex form [12] by
w' =uy +iu, W= uj-iuy

w' = uy +iuy, w'=uy- iuy

(12)

(13)

(14)

(15)
(16)

Operating (14) on (15) and (16) respectively, we have
obtained

%wr _ (awr aw> .(aw: 6W)
4 8z0z 4 oz T oz 4 9z 0z

(17)
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2wrr awrr oW . (Owrr OwWIT
46262_4(62 + 62‘)_41(62 N 62') (18)

where the displacement vectors w' and w'’ depend on the
elastic and plastic regions.

We adopt [12] in order to make (1) solvable.

Let
; 2w’ "o a2w"
Au' = 46262 and Au’ = 4azaz (19)
and
ow' aw' 9 (uytiup) a (ui—iuy) _ ,
9z + 9z 0 (xq+ixp) + 8 (x1—ixz) 2divu
=20 (20)
Substituting (19) and (20) for Au' and div u' in (1)
we obtain
a%w' a%w" , "
431;62 + 4CF62 + 2b,gradf' + 2dgradf
=y
and 4c2Y + 42,2 1 2dgradé’ + 2b,grado”
Coz0z 425202 gra 2gra
=" (21)
where our Laplacian here is defined as
_ -2 3
A= V.V= a% 3
V=grad = Py (22)
Substituting (22) in (21) we obtain
a%w' a%w" 26’ 20" .,
4a1ﬁ + 4C% +2b1£+2d5— v
2w’ a%w" 6" 26" 1
and4cE+ 432E + ZdE-I-ZbZE_ L4
(23)
a aw' awr' ' W) g
2 (40,25 + 4c 2"+ 25,6+ 246 )_ @
(24)
a owr ow" ' w "
2 (4022 + 40,2+ 246" + 2b,0 )_ @
(25)

From [13], Integrating (24) and (25) wrt Z we obtain
ow' ow" 1 " 1 = le*
4a, - + 4c—+2b,0'+2d0" = [¥'dZ = —
(26)
-

zZ

(27)

ow' ow" ' " "=
4C0_Z + 4ala—z+2d0 + 2b29 = fl}l dz =

Where qj;and WT are the analytic (non-homogeneous)

terms and ¥* = u + iv is the displacement function in the
transformed state as a result of contact with external force
and zZ = x; — ix,, is the complex conjugate function.

*

For the Non-Homogeneous Term (W—)

Comparing the non-homogeneous part of (26) and (1), we
have that
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— = pF' = p(F; + iF,) (28)
So that

Yo ut (29)
z x1—1 X3

Expressing the above in partial differential equation gives:

ov* _ d(u+iv) _ ou i ou + i av v
9z d(x1—ixpz)  9x; dx, x;  0xp
ou ov . ou . 0v .
=———+4+ i— +i— = pF ipF.
0x4q 0x, + 0xy + 0xq Pt + P2 (30)

Equating the real and imaginary parts of (30), gives

o = Ph (31)
ou ov
9%y + o PE; (32)

We adopt [12] by Introducing new variables ¢ and . Let
the new variables be given by

= %% , o0

u= o1 + o7 (33)
= _9% 4 On

v = % + 371 (34)

Substituting (33) and (34) in (32), we obtain

2 (2 Myl oy gy

0xq \0xq 0x, 0x, dxq
(35)
d [dg an ] dp on\ _
3+ ) Tam (o 5m) = PP
(36)
From (35) and (36) we have that
a2 a2
% + a—x‘g = Vip = pF, 37)
?n . n_ o
ax? + axz V'n = pF,
(38)
From (37) and (38),
VZp +iV?n = pF, + ipF, = pF
VZ(p+ in) = p(F, +iF;)
Vip = pF (Neglecting the imaginary part) (39)

Newtonian Gravitation and Gravitational Force

In the classical field theory, [5] describes the Newtonian
gravitation which describes the gravitational force F, as a
mutual interaction between two masses, Mi and M
expressed as:

GM1M
F= —1—12

~ (40)

In this context, M1 is the isotropic elastic body (Figurel), M2
is the object of our forcing term, G is the Earth gravitational
constant and r is the distance between the centre of the two
masses M1 and Mz respectively. The massive body M1 has a
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gravitational field g. Since the gravitational force F, is
conservative, the field g can be written as a gradient of a
gravitational scalar potential ¢ as
g=-Vo (41)
Gauss’ Law and Poisson Equation for Gravity
Gauss’ law of gravity is equivalent to Newton’s law of
universal gravitation. The differential form of Gauss’ law is
given as
V.g = 4nGp (42)
Where V. g is the divergence, G is the universal constant and
p is the mass density at each point. Gauss’ law is also given
in integral form as

$ g.dA = [ V.gdV (43)
where V is a closed region bounded by a simple closed
oriented surface dv which is the infinitesimal piece of the
volume and g is the gravitational field. Also, in the case of a
gravitational field due to attracting massive objects of
density p, Gauss’ law for gravity in differential form can be
used to obtain the corresponding Poisson equation for
gravity:

V.g = —4nGp (44)
Substituting (41) in (44), gives

V(=V¢) = —4nGp
Vi = 4nGp (45)

(45) is the Poisson equation for gravity [11]. Hence, (39) is
equivalent to (45) because it involves the mutual interaction
between the isotropic elastic body (M) in Figure 1 and the
object of our force term (M>).

That is
Vip = pF
Vip = 4nGp
pF = 4nGp
F = 4nG (46)

Hence, our forcing term is a gravitational force, and it is
Poisson in nature, as such it is restricted to a plane.

Equation of Equilibrium
We consider the surface area of Figure 1 as follows:
F=mg

AY
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where
F = mg is the gravitational force (mass x gravity)
S = Surface area (length (@) x breadth (B)).

h

Figure 4:- Stress distribution on a rectangular Plane

where:

Ox = Normal stress in the x-direction
oy = Normal stress in the y-direction
Txy = Shear stress in the x-direction
Tyx = Shear stress in the y-direction

[6] deduced that

9ox | Otxy _

ox + ay =0 }

99y 4 Oty _

3y + Pl 0 47

Tyx = Txy (Symmetric).

(48) is the Equation of balance or Equilibrium equation in 2-
dimensions.

Compatibility Equation

Equation (47) shows two equations in three unknowns, with
stress components g, o, and t,,. For compatibility, we
adopt [6] for the strain - displacement relation of the

deformation process by introducing
ou

€= 5% (48)
a

=2 (49)
ou | @

Yxy = ﬁ é (50)

Where u = u(x,y)and v = v(x,y)are  displacement

vectors in the transformed state (x, y — plane).
Differentiating (48), (49) and (50) twice with respecttoy, X,
and xy respectively, we obtain

ey _ 00 ou_ 2%
W T ay2iax | ay? (51)
d%ey, 9% gv _ 9%,
o = axioy ~ ow (52)
« N 0%y, 0% 0u N 0> dv 0%, 0%,
> T 3v2 ax T Ax2 9v  Av2 2
Figure 3 :- Surface area of Figurel and its force distribution dxdy dy* ox  0x* dy 0y 9x
(53)
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From (51), (52) and (53), we obtain
stx azfy _ az%cy
dy? ax2  axdy

(54)
(54) is the compatibility equation in 2-dimensions.

Biharmonic Equation
To solve (54), we apply the stress — strain relationship [11]
for plane stress to obtain

€x = E (Ux - Uay)
(55)
1
€ =+ (oy —voy) (56)
Yxy = %(1 + 1])":xy = %Txy = _TxTy (57)

where: v = Poisson ratio, E = Young modulus, G = Modulus
of rigidity.

Substituting (55), (56) and (57) into (54), we obtain

2[5 (0 v + 5oy = v (58)
=+ (59)
=21 +v) - z Txy (60)

We differentiate (47) with respect to x and y respectively to
eliminate the shearing stress, 7., and obtain

620x 621'xy _
dx2 axdy 0 (61)
%0y | 0%Txy _
dy? axdy 0 (62)
Adding (61) and (62), we obtain
8%, |, 020y %1y
dx? ay? 2 axdy 0 (63)
ey _ _ 1[0%ay | oy
axdy 2 | ax2? Oyz] (64)
Substltutlng (64) in (60), glves
02
dy 32 (Gx W’y) + Ox2 (Gy Vgx)
d%0, 0%0,
=(1 +V)(_a 2 ayz)
Such that
%y 0%y 0%y = 0%0 _ _ 9oy _
dy?2 - ay?2 ax? axz 0x2
Bzay 920y, Bzay
dy? -V axz v dy?
and
2 2 2 2
%0y | 970y 4 0%0x 070y _ (65)

dy?2 dx? dx2 ay?

To solve (65), we introduce a new function ¢ called Airy’s
stress function [6].
For the case under consideration, ¢ can be defined, such that:
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_ 9% _ %% _ ¢
Ox = W’ Oy = ax2’ Ty = 7 axdy (66)
Substituting (66) in (65), we have
% 9% % 9%¢ %2 d%¢ 92 9%¢ _
oy T T aay Tapae =0 (60
That is
2% %o % _
6x4+ 2 0x29y? +W =0
So that
V2. V29 =0
Vip = 0 (68)
(68) is called the Biharmonic Equation.
Comparing (46) and (68), our force term, F becomes
F = 4nG = V2¢p=0
Hence, F = 0 (69)

(69) shows that the force component is Biharmonic in nature.

Stress State of the Force Term on the Plane
We now consider our force (F), to act on a rectangular plane
of area afs.

o

Figure 5: Surface area and force distribution

Generally, stress is the force per unit area of a body/particle
and can be expressed as

F
g = E (70)

Where ¢ = stress, Force = force and aff = area.
Normal stress (fig. 4) in the x-direction is:

F

ox=a=_-, (71)
Shear stress in the x-direction is given as:
F
Tyy = b = E' (72)
While the normal stress in the y-direction is
F
oy =c=_2 (73)
From Airy’s stress function (p [6], we have
az
G=gr= 0=y =3y 4k (74)
62
Tyy = — axaq; = @ =Tyxy =bxy+k (75)
2
gy:%ﬁ(p:%x2+k
(76)
Adding (74), (75) and (76)
ga=§y2+ bxy + §x2+ K
(77)
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(77) is the solution that satisfies a typical Biharmonic
Equation in 2-dimensions [6].
Stress Distribution on the X and Y Coordinates

—>

4—
Figure 6: Stress distributions in a 2-dimensional rectangular
plane

A.TxyC0SO

Figure 7: Stress distribution on the x- direction

Fy

A.1%SINO A.cyC0sO

Figure 8: Stress distribution on the y — direction

Deducing from figure 7, the force impact (stress) on the
particle in the x-coordinate is obtained as

Fx = A(txyC0SO + 645inO)
—>

(78)
% = TyyC0s0 + oysind (79)

Similarly, from Figure 8, the force impact (stress) on the
particle in the y — coordinate is as

Fy = A(TxySin® + oycos6) (80)
—> FTY = Tyysin® + o,cosO (81)
Hence, we have the system:
Fx , Fy _F _ TxyCOSB 0,sind
4 a4\ Tyysind oycos®
(82)

(82) is the stress impact on the coordinates.

Boundary Condition of the Force/stress on the Plane
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The boundary condition is obtained from the requirement
that the total stress on the planes of the particle is zero when
no force was introduced. That is, the magnitude of the total

stress component, det (g) =0

TyyC0SO 0,sind

—> TyySINO  oy,cosO -
(83)
Then,  T4,c0s0.0,c0s0 — 0ysind. T4,sin6 = 0
oycos?0 = oysin’@
Y — tan?0
Ox
(84)

(84) is our third result showing the magnitude of the ratio of
the normal stressese on the particle.

RESULTS
From (68) and (69), the magnitude of the force components
on the particle is zero at equilibrium.

From [10], the magnitude of the force term is given by
F = 6 (cos?a. — sina. ).
From (84), our graph is given by:

16
14
12
10

Ratio of Normal Stresses

8
6
4
2
0

0 20 40 60 80 100 120
Angle of the force ©.

Figure 9: Graph of the ratio of normal stresses against the
angle .

Discussion of Results

The graph in Figure 9 above results from the relationship
between the ratio of the normal forces and the angle of the
force. The curve rises from the origin, 0 when no force term
was introduced and rises uniformly to the point when the
force acted at angle 60°and increases rapidly when the force
acted above 60°. The magnitude of the ratio of the normal
stresses on the particle attained its maximum value when the
force acted at angle 75° Beyond 75° the particle
demonstrates its elastic nature and the curve drops rapidly
downward to the origin, 0.When the force acted at 90%n the
plane of the particle, the body regains its elastic potential and
returns to its equilibrium state as the stress resolves itself to
zero due to the perfect angular formation which allows even
distribution of the stresses on both coordinates. When the
force acted beyond 90°, the magnitude of the ratio of the
normal stresses on the particle oscillates back to its
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maximum point, which shows that the elastic potential of the
particle has been weakened.

Conclusion

In this paper, the problem of the non-homogeneous equation
of statics in the theory of elastic mixture was considered
using complex variable theory. Our theoretical solution for
the stress state of the isotropic elastic body examined was
found to be consistent with the experimental existing result.
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