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ABSTRACT 

Generalized ordinary differential equations can be used to tackle the setback of the everywhere requirement of the existence 

of the integral of some functions of the dynamic equations on a time-scale. In this study, we investigated the variational 

stability and variational asymptotic stability of the zero solution of the dynamic equation on time-scale using the established 

results of the variational stability and variational asymptotic stability of the zero solution of the generalized ordinary 

differential equations as presented in this work. The regulated and rd-continuous assumptions on the integral function of the 

 -integral of the dynamic equation on the time-scale equation enhanced the compatibility of the results. An example is used 

to illustrate the suitability of the results 

KEYWORDS: dynamic equations on time-scale, generalized ordinary differential equations, variational stability, Kurzweil 

integral, regulated functions. 

1.0 INTRODUCTION 

The occurrence of natural events is sometimes entirely continuous and at other times lying dormant until the next surge 

forward. Hence the domain of occurrence is either continuous or discrete and the model equations to describe such 

occurrences are differential equations or difference equations respectively. However, introducing of the calculus of dynamic 

equations on time-scales unified the differential equations and the difference equations calculus (Hilger, 1988). The has been 

growing research interest in this area (Bohner and Peterson, 2001; Slavik, 2012; Souahi et al., 2016; Abbas, 2018; Igobi and 

Abasiekwere, 2019; Igobi et al., 2021; Igobi and Ineh, 2024). The setback in the qualitative theory of time-scale calculus is 

the non-absolutely convergent integral of some functions of the dynamic equations and therefore failed the requirement of 

everywhere existence of the integral of the functions. This challenge is overcome by treating the dynamic equations on time-

scale in the framework of the generalized ordinary differential equations (Slavik, 2012). 
 

In this work, we developed results on variational stability and variational asymptotic stability of the dynamic equations on 

time-scale within the framework of the generalized ordinary differential equation using established results from previous 

studies (Schwabik, 1984; Igobi and Abasiekwere, 2019; Igobi et al., 2021, Igobi and Ineh, 2024), by assuming that the 

function of the  -integral of the dynamic equation on time-scale is regulated and rd-continuous. This ensures that the setback 

of everywhere existing of the integral function is addressed 
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is known as the Kurzweil integral, and the corresponding differential equation of equation (1.2) is known as the generalized 

ordinary differential equation, which is expressed as  
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 The function cBbax →],[:  is a solution of the generalized ordinary differential equation (1.3) such that 
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for every ],[, 21 batt  .   
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Remark 1.0  

Consider a regulated function nRWA →:  for which 
cBbaW = ],[  such that 
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2.0 PRELIMINARY RESULTS 

Let 
nRWf →:  be a regulated function, and Rbag →],[:  a strictly increasing function on ],[ ba , then for every 
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is known as the Kurzweil-Stieltjes integral. 

Let nRWf →:  be a regulated function and Rbag →],[:  a strictly non-decreasing real-valued function on the dense set 
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is known as the Riemann-Stieltjes integral.  

Specifically, considering that Tt  is a dense point such that    supt  and there exists },inf{ tsst =
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Theorem 2.0 (Corresponding theorem I) 

Let 
Tbat ],[  be a dense point and Rbag T →],[:  be a real-valued function that is non-decreasing on 

Tba ],[ . Let 
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Proof 

Given that
nRWf →:  is a regulated function and Rbag →],[:  be a non-decreasing real value function on ],[ ba , 

then the Kurzweil-Stieltjes integral of f  with respect to the function g  on ],[ ba  is well defined as in equation (2.4). Let 
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Hence the theorem is proved. 

Definition 2.0 

Let 
n

cT RBbaf →],[:   be an rd-continuous function which is Lebesgue integrable on ,],[ Tba   for   being a time-

scale domain and Tn batttP ],[}...,,,{ 10 =  a partition, then the initial-value problem of the dynamic equation on 
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Remark 2.0 
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Proposition 2.0 

Let  ),( nRWBVf   be a Caratheodory function and Rbag →],[: a non-decreasing function. Then, the Kurzweil 

integrated function 
nRWA →:   defined as 
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Definition 2.1 Let 
nRWA →:  be a regulated function on ],[ ba , if the solution function cBbatx →],[:)( is a step 

function on the partition ]),([ baP  such that ,)( ictx = for ),( 1 ii ttt − , then 
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Lemma 2.0 

Let n
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Comparing equation (2.19) and (2.20) term by term, its observed that 
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Hence, equation (2.18) holds and the theorem is proved. 
 

Theorem 2.1 (Corresponding theorem II) 

If n

cT RBbaf →],[:  is defined and satisfies remark (2.0) on 
],[ ba , and cT Bbax →],[: is a solution of  
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Thus, by theorem hypothesis tttg == )(  and by equation (2.6) we have +=
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Since y is regulated and bounded on ],,[  there exists a bounded set 
cBV  such that Vty )( for ],[ t . Also, 

the function f  satisfies remark (2.0) on VT ],[   and by preposition (2.0), the function A  satisfies remark (1.0) on 
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defined the trivial solution of the dynamic equation (2.12).  

Definition 2.3 The trivial solution ( 0x ) of equation (1.3) is variationally stable if for every 0 there exists 0)(   
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Definition 2.4 The trivial solution ( 0x ) of equation (1.3) is variationally asymptotically stable if it is variationally stable 

and variationally attracting 

3.0 MAIN RESULT AND DISCUSSION 

Theorem 3.0 (Scwabik, 1984; Igobi et al., 2021) 

Let +→ RBV c),0[:  be such that )),0([),(  BVxtV  is continuous from the left. Assume we have a 

)),,0([)( RCrb  which is a continuous increasing function such that 0)0( =b  and 0)( rb  for 0r  satisfying 
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holds. Then the trivial solution 0x  of equation (1.3) is variationally stable.  

We formulate the theorems on the variational stability and variational asymptotic stability of the trivial solution of the 

dynamic equation (2.12) as a consequence of the theorem (3.0). 

Theorem 3.1 

Let n

cT RBbaf →],[:  satisfies remark (2.0). Assume there exist an open ball B , and function ],),0[[ + RBCV T 

, which is locally Lipschitzian in x ,  for }0,:{ cxRxB n =  , and a Hahn class function 

),],0([)( + RCrb T
 such that 0)0( =b  and 0)( rb  for 0r  satisfies 

  
BxtxbxtV  ),0[),(),(),(        (3.5) 

  ),0[.0)0,( = ttV          (3.6) 

  0),( + xtVD  .         (3.7) 

If there exists any Bbay →],[:  such that 0y  which satisfies equations (2.24) and (2.25),  then  the trivial solution 

)0( x  of equation (2.12) is variationally stable 
 

Proof 

We make the following assumptions:  

i.  n

cT RBbaf →],[:   satisfies the local existence theory, 

ii. nRWA →:  satisfies remark (1.0), 

iii. lemma (2.0), theorems (2.0 & 2.1), and equation (2.5) all hold. 

Then we present the prove of theorem (3.1) as follow: 

Let there exists Btty →],[: 10  which satisfies equation (2.12) such that )()(  xy =  for btta  10  . If there 

is 0)(1   such that we have T)](,0[ 1  , and for Btttx T →],[:)( 10  we have  
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for 0))(,())(,())(,( ++=−++ +  xVDxVxV . 

We expressed the first term on the right of equation (3.9) as 
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Using proposition (2.0), equation (2.11) and remark (2.0), We estimate the second term on the right of equation (3.9) as 
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By the assumption of Btty →],[: 10  satisfying equation (2.12) such that )()(  xy =   
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so that 
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Hence equation (3.11) is rewritten  ( )))(()())]()(,([ +−+−
+
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Then equation (3.12) implies 
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Choosing   arbitrary, we have  
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Assume there exists ],[ 10 ttt  such that )(ty , then we have )()(inf))(())(,( = tbtybtytV ,(3.18) 

this contradicts equation (3.17). Hence )(ty  for all ],[ 10 ttt  , and the trivial solution ( 0x ) of equation (2.12) is 

variationally stable. 

Theorem 3.2  

Let n

cT RBbaf →],[:  satisfies remark (2.0). Assume there exists a function ],),0[[ + RBCV cT
  which is locally 

Lipschitzian in x  and a Hahn class function ),],0([)( + RCrb T
 such that 0)0( =b , 0)( rb  for 0r  satisfying 
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Assume for any solution Btty T →],[: 10 there exists a strictly monotone increasing function 
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0)0( = and )0(0)(  xx  such that  ))((),( txxtVD −+ ,     (3.21) 
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Proof 

We have shown that the trivial solution 0x  of equation (2.12) is variationally stable in theorem (3.1). Hence we have a 
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Putting equation (3.24) and (3.25) into equation (3.23) we obtain 
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So that 
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This is a contradiction of equation (3.18), hence we have )(, 0 Ttt +  such that 
00 )( ty  so that 
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and the trivial solution 0x  of equation (2.12) is variationally attracting. Thus, system solution is variationally 

asymptotically stable.  

 

3.1 Illustration 

We consider the Lyapunov function for the dynamic equation (2.12) of the form   =
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Also, for any btta  10  , there is an 0)(  , Tttt ],[ 100 +  , and by theorem (3.1) we have  
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Also considering the second term on the right of the equation, we have 
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So that equation (3.27) implies  
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Also following the contradictory argument of equation (3.18), and choosing   arbitrary, the system solution is stable in the 

Lyapunov sense. 

Conclusion 

In this work, we established the results on variational stability and variational asymptotic stability of the dynamic equation 

on time-scale in the framework of the generalized ordinary equations. Theorems and proof of the concept were presented. 

An illustration was used to confirm the suitability of the idea. 
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