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ABSTRACT

Generalized ordinary differential equations can be used to tackle the setback of the everywhere requirement of the existence
of the integral of some functions of the dynamic equations on a time-scale. In this study, we investigated the variational
stability and variational asymptotic stability of the zero solution of the dynamic equation on time-scale using the established
results of the variational stability and variational asymptotic stability of the zero solution of the generalized ordinary
differential equations as presented in this work. The regulated and rd-continuous assumptions on the integral function of the
A -integral of the dynamic equation on the time-scale equation enhanced the compatibility of the results. An example is used
to illustrate the suitability of the results
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1.0 INTRODUCTION

The occurrence of natural events is sometimes entirely continuous and at other times lying dormant until the next surge
forward. Hence the domain of occurrence is either continuous or discrete and the model equations to describe such
occurrences are differential equations or difference equations respectively. However, introducing of the calculus of dynamic
equations on time-scales unified the differential equations and the difference equations calculus (Hilger, 1988). The has been
growing research interest in this area (Bohner and Peterson, 2001; Slavik, 2012; Souahi et al., 2016; Abbas, 2018; Igobi and
Abasiekwere, 2019; Igobi et al., 2021; Igobi and Ineh, 2024). The setback in the qualitative theory of time-scale calculus is
the non-absolutely convergent integral of some functions of the dynamic equations and therefore failed the requirement of
everywhere existence of the integral of the functions. This challenge is overcome by treating the dynamic equations on time-
scale in the framework of the generalized ordinary differential equations (Slavik, 2012).

In this work, we developed results on variational stability and variational asymptotic stability of the dynamic equations on
time-scale within the framework of the generalized ordinary differential equation using established results from previous
studies (Schwabik, 1984; Igobi and Abasiekwere, 2019; Igobi et al., 2021, Igobi and Ineh, 2024), by assuming that the
function of the A -integral of the dynamic equation on time-scale is regulated and rd-continuous. This ensures that the setback
of everywhere existing of the integral function is addressed

Let A:[a,b]xB, - R" for B, ={x e R”;||X|| <¢,Cc >0} be aregulated function with |A| zsupmA(t,x(t))‘ o te[a,b]},

n(p)
ar? A1) = s A X)L

which is of bounded variation on [a, b] such that var? A(t, x(t)) <o where

. Given a unique element | ew and any value ¢ >0, with a gauge (positive function) s:[a,b]— R, defined on a finite
partition {a=t,, a, t,, @, t,,... ., t, =b} suchthat [t t]1c (e - (e;), & +0(e;)) and |1 —S(DA,P,)| <& (1.0)
is satisfied for all & — fine partition P,(q, [t ,,t]) c[a,b].

where S(DA, P&) = Z(A(ti X(t))— A, X(ti—l))) ! 1.
i=1
is the integral sum corresponding to the function A(t, X(t)) and the & — fine partition P(g; [t ,, t]) Then

I = ['DA @t () (1.2)

is known as the Kurzweil integral, and the corresponding differential equation of equation (1.2) is known as the generalized
ordinary differential equation, which is expressed as

ax_ DA(t, X) (1.3)
dt
The function X :[@,b] — B, is a solution of the generalized ordinary differential equation (1.3) such that
x(t,) — X(t,) = j:z DA(t, (1)) (1.4)
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forevery t,,t, [a,b].

e ——————
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Remark 1.0

Consider a regulated function A:W — R" for which W =[a,b]x B, such that J"Z DA(t, x(t)) exists for t,,t, e[a,b]. Presume
Lt
there exists a non-decreasing function h :[a,b] — R such that rz Dh(t) = h(t,) - h(t,) and a continuous increasing function

w:[0,00) — Rwith w(0) =0, then the solution function F : 3 —» R" for QW satisfies the following assumptions:
a |F (62, %))~ F (6 x@))]| = [ DA x(1)
= || At x(t)) — Alty, x(t,))] < h(t,) —h(ty) <

b, [F (6 X(0)) = F (X)) - F(tz, y(t) + F(t, y(@))] = |[}* DIAG X(®) + A, y©)]

=[ Atz x(t)) — Aty X(4) + Altz, y (1)) — Alty, y(1)))

<wx(ty) - y(t))h(tz) - h(ty)
2.0 PRELIMINARY RESULTS
Let f:W — R" be a regulated function, and ¢ :[a,b] — R a strictly increasing function on [a,b], then for every

& > 0 there exists a guage function 0 :[a,b] = R™ such that IS(f,Dg,P,) -1 <e (2.0)
forall & — fine partitions P,(a, [t ,,t]) c[a,b] on [a,b], where
n(p)
S(f,Dg,P;) = z f(t, x(t))9(ai..) — 9(a)] (2.1)
and = j" f(t, x(t))Dg (t) (2.2)

is known as the Kurzweil-Stieltjes integral.
Let f:w — R" be aregulated function and g :[a,b], — R astrictly non-decreasing real-valued function on the dense set

of the time-scale [a,b],, then for every & > O there exists a guage function J :[a,b]; — R™ such that
IS(f,Ag,Py) -1 ||<e (2.3)
forall 5 — fine partitions p,(a, [t ,t]) c[a,b] on [@, 0], where

a

n(p b
S(1,40,P)= 3 1t xt Daan) - gl @0 1r = [ FEXO)AG(), (24)
is known as the Riemann—StieItjeI; integral.

Specifically, considering that t € T is a dense point such that t <supT and there exists t* = inf{s € T,s < t}, then
g(t)=t" =t, and equation (2.4) approximate the A — integral (Delta integral) Jb f(t, x(t))At - That is

[0 ftxag) = [ £t xepat. (2.5)

Theorem 2.0 (Corresponding theorem 1)
Let t e[a,b], be a dense point and g:[a,b], — R be a real-valued function that is non-decreasing on [a,b], . Let

f ‘W — R" a regulated function such that fT and J are restriction of f and g to the time-scale T . Assume that t T
is right dense and t < Sup T such that there exists t* = sup{s € T,s <t}. Then g(t) =t* =t and

[ x®pg®) =[ f, ¢ x@)Aw) (2.6)
Proof
Given that f :W — R" is a regulated function and g :[a,b] — R be a non-decreasing real value function on [a,b],
then the Kurzweil-Stieltjes integral of f with respect to the function g on [a,b] is well defined as in equation (2.4). Let
partition P([a,b],) be defined such thatP ={a =t, <t, <...<t, =Db}. Then by equation (2.1)

[ Ftx®)Dg® <> M., Ag, ) =U, (f,.Ag,. P)’ 27)
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where M . = sup f(t,x(t)). If we take the infimum of the right-hand side of equation (2.7) across all partition of
telti_y ]

P(abl;) «Wehave inf U (1, (tx(1).Ag,(0).P) = [ 6,6 x©)Ag, O

Hence, _[: f(t, x(t))Dg(t) < _[: f (6 x(1))Ag (1) - (2.8)
Also
[ £t x©)Dg®) = Y. myAg, () = L, (f,,Ag,, P). 29)
where My = inf | f(t,x(t)). If we take the supremum of the right hand side of equation (2.9) across all partition of
P([a,b],)  we have sup L, (f;(t,x(t)),Ag; (t),P)= Ifb f1 (t, x(1)Ag (1)
te[a,b]; a
Hence, jb f (¢, x(t))Dg(t) > jb £ (t X(0)Ag 1) (2.10)

Combining equations (2.8) and (2.10), we have J:’ fr (t, x(1))Ag, () < I: f(t, x(t))Dg(t) < J: f1 (6, x(t))Ag, (1)
Hence

[ & x®)Dg®) = [ 1,6 x(1)Ag- 1),

b b
for j f(t, X(t))Ag = L f (t, X(t))Ag satisfied.
In particular, given that t € T is a dense point such that t <supT and there exists t* =inf{s € T,s <t}, so that

g(t)=t" =t and J, T xO)IDg) = [} £, ¢ XA (211

Hence the theorem is proved.
Definition 2.0

Let f :[a, b]T X BC — R" be an rd-continuous function which is Lebesgue integrable on [a, b]T , for T being atime-
scale domain and P ={t,t,,....,t,} = [&,b]; a partition, then the initial-value problem of the dynamic equation on
XA (t) = f(x1)

(a0l s X(t) = X(t,), t,.t<[a,b],, (232

which has the solution form
X(0) = x(t;)+ [ F(5.2)4s, to,tefab) (2.13)

for x:[a,b], - B,-
Remark 2.0
We make the following Caratheodory assumptions on the regulated function f :[a,b}; x B, — R":

t

AL We assume that f (t, X) is rd-continuous and the integral function t — .[ f (S, X)ASs s rd-continuous for all
a

X:[a,b]; — B, being a continuous function.

As. There exists a Lebesgue integrable function My : T— R, such that

[ " £ (s, X)As

As. there exists a Lebesgue integrable function m 1R, such that HI'

sflmo(s)As, for t,,t,eT, xeG(T,B,).

f(s,x— y)AsH < J: m, (s)|x — y|as, for t;,t,eT, x,yeG(T,B,)
Proposition 2.0

Let feBVW, R") be a Caratheodory function and g :[@,b] — R a non-decreasing function. Then, the Kurzweil
integrated function A:W — R" defined as
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At )= [ 1(s,X)Dg(s) (2.14)
satisfies remark (1.0) if there exists a non-decreasing function h(t) : [@,b] — R that satisfied

h(t) = [} (Mg (s) + my ()) Dg (5)

(2.15)
Proof

Let the  non-decreasing  functiong :[a,b] > R be given such  that 0=0,-0., and
IR fDg :J‘R fDg, — J'R fDg_ , so that by equation (2.14) we can have that

A*(t,X) = J'tt f(s,x)Dg, (s)and A-(t,x) =jt‘ f(s,x)Dg_(s) respectively. Also, by remark (2.0), we have

A o0 - A @) =] f s, x)Dg,(s)H =" fex0m @) <[ my(o)as |
and

A" (%) - A" (6, )] =‘ e, x)Dg+(s)H =‘ I £ 50 (s)H <[\ mo(s)ds* |
so that

[ACt, %) = At )] = A" (€, %) = A" (4, %)+ A (4, X) = A (8, X))
< _EZ m, (s)ds™ + J:z m, (s)ds™
- fz M, (S)As.
We defined hy(®) = [ (my(s))as, tefab], (2.16)
where h :[a,b] >R is a non-decreasing function, and M, a nonnegative function on [a, b], then
A )= At )] < [ mo (s)as <y (1) =y ()]

Also

A ()= A (004 A ()~ A ()= [ 0dg. () - [ (s, y)dg. ()

- J:Z f(s,x—y)A's| < wlx - yH.[:2 m, (s)As”,

and

[A (0 = A" (40 + A (6) = A ()] = [ Hs0dg(9) - [ 15, )dg (5]

= J': f(s,x— y)A’sH <wx— yHJ:Z m, (s)As”,

so that

|At,. X) — Aty X) + Aty y) — At,, y)| < wix - yHJ:Z m, (S)A™s + WX + yHJ‘: m, (s)A"s

= w[x— yHJ:2 m, (S)As.

We defined

h, (1) = [ m,(s)as, t,t; <[a,b]; (2.17)

where h2 . [a, b] — R isanon-decreasing function, and M, a nonnegative function on [a, b], so that
1A, X) — Aty, X) + Alty, Y) — Alt, y)| = wx — y||h, (t,) —h, (t,)]-
Then for N(t) = h, (t) +h, (t), the theory is proved.
Definition 2.1 Let A:W — R" be a regulated function on [a,b], if the solution function X(t) :[a,b] — B, is a step
function on the partition P([a,b]) such that X(t) =cC,,for t € (, ;,t;), then
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jb DA, x(t))

= 2 (A 0= A0+ (AL X))~ A XD+ (A X)) - A X))

Lemma 2.0
Let f :[a,b]; x B, — R" be Kurzweil-Stieltjes integrable with a non-decreasing function g :[a,b] — R, which is of

bounded variation on [a,b]. Given any step function X :[&,b] — B, and a regulated function A(t, X) such that
A(t, x) = f f(s,x)Dg(s) then j" DA(t, x) = jb f (x,t)Dg(t) (2.18)

Proof
By definition (2.1) for A(t, X) being a regulated function on [a,b]and X(t) :[@,b] — B, step function on the partition

P([a,b]) , then forany & >0 and X(t) =cC,,for t € (t, ;,t,), we have

[/ DA X(®) = 1im S (Gt + £.x(t, 1))~ Al x(4,)))
2 e20" 1% (2.19)

+lim S (A —6,6) ~ All +£,¢)+ lim 3 (A, X(6)) ~ A, —,x(1)
Also, for f(x,t) be{ng a regulated function, we have 7
[ 1€00g0) =Y [ f(.x(s)Dg)
0 e " (2.20)
=lim>[" s, x(s)Dy(s) + lim 3 [ f(s,x(s)Dy(s)
+lim S f(sx)Dg(s)
Comparing equation (2.19) a;d (2.20) term by term, its observed that
lim g((Aail +2,X(t)) = At X(t))) = im [ £ (5,x(5)Dg(s)
= f(t,, x(t,))A gt )
Jim 2 (A - £.¢) = Al +2.6) = lim J. . fsx()Dg(s)

=tim [ f(x( 6 ))AT G )

eo0" i +e

im S (A, x(t))~ At e x(t))) = lim [ (5, x(5))Dg(s)

- t| —
= lim [ £t x(t)A g(t)
Hence, equation (2.18) holds and the theorem is proved.

Theorem 2.1 (Corresponding theorem I1)
If f:[a,b], xB, = R" is defined and satisfies remark (2.0) on [a,b],, and X:[a,b]; — B is a solution of

x*(t) = f(t, %), te[a,b]; (2.21)

then x:[a,b], — B, is also a solution of generalized differential equation % - DA®tx) - telab], (2.22)

for t aright dense point, such that t* = sup{s € T,s <t}, and g(t) =t =t. Also, every solution y:[a,b], — B, of
(2.22) can be expressed as Yy = X.

Proof
Let v e[a,b], . If X:[a,b]; — B, isasolution of equation (2.21), then x(s) = x(v) +J'S f(t, X)AL, sefab]
v T
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Thus, by theorem hypothesis g(t) =t" =t and by equation (2.6) we have y() - X+ [ F(x DV,
Let S,V e[a,b]; be acompact interval and A(t, X) a regulated function. Since f satisfies remark (2.0), then by lemma
(2.0), we have that X(s) = X(v) + LS DA(t, X),

which satisfies the generalized ordinary differential equation (2.22).
Toshow that Y = X, we let Y :[a,b] — B, satisfy (2.22), so that y(s) = y(a) +J‘S DA(t, y(z)), se[ab]-

If [, ], =[a,b]; isatime-scale interval and 7 € [e, A; , then

V() = lim{y() - A, () + Az, y() = lim| y(w) - [' DAGs,y()

= Jim(y(u) -['f6s, y(r))Dg(S)j
= Iin](y(u)—f f(, y(r))Ag(r)j = limy(u) for all ze[a, )

and therefore limy(u) exists. Likewise, for every 7 € (&, 5], we have
u—7
Y(e) = lim(y(w) - A, y(2) + Az, y() = lim| y(w) - [ DAGs,y()) )
= lim(y@) - [ (5. )Py (o))
= lim{y@ - [ 1y 9(0) ) = lim y(w),

Since Y is regulated and bounded on [er, 5], there exists a bounded set V < B, such that y(t) €V for t € [a, ]. Also,
the function f satisfies remark (2.0) on [a, Bl xV and by preposition (2.0), the function A satisfies remark (1.0) on
[, B]. Then by lemma (2.0), we obtain that y(s)=y(a)+ J: f(t,y(t)Dg(t)  seT

Thus y = X, where X:[a,b]; — B, is the restriction of y to [a,b]; .

Definition 2.2 Let f :[t;,t,]; xB, — R" be rd-continuous and x:[t,,t,]; — B_be of bounded variation on

[t,.t,]. <[a,b], . then x(t) = f f(t,0)At = f(t,,0)— f(t,,0)=0 (2.23)

defined the trivial solution of the dynamic equation (2.12).
Definition 2.3 The trivial solution ( X = O) of equation (1.3) is variationally stable if for every & > O there exists 5(g) > 0

and if y:[a,b] > B, is a function of bounded variation on [a,b], and for all t € [a,b], HYOH <0 and

ver?( y() - [ DAGs, y(9))) < (e): (2.24)
then ly(t,y,)| <&, forte[a,b]. (2.25)
Definition 2.3 The trivial solution (X = O) of equation (1.3) is variationally attracting if there is a ¢, >0, and for every

&>0 thereexistsa 7 = 7(¢) = 0 and & = 5(&) > Osuch that if y:[&,b] — B, is a function of bounded variation on
[a,b], and for all t € [a,b]such that HyOH < J, and var:(y(t)fr DAG, y(s))) <5 (2.26)

then Hy(t,yO)H<5, for te[a,blna+7(e). (2.27)
Definition 2.4 The trivial solution ( X = Q) of equation (1.3) is variationally asymptotically stable if it is variationally stable
and variationally attracting

3.0 MAIN RESULT AND DISCUSSION
Theorem 3.0 (Scwabik, 1984; Igobi et al., 2021)

Let V:[0,0)xB, >R, be such that V(t,x) € BV ([0,0)) is continuous from the left. Assume we have a
b(r) € C(]0, ), R) which is a continuous increasing function such that b(0) =0 and b(r) > 0 for r # O satisfying
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V(t, x) = b(x)), (3.0)
V(t,0) = 0. (3.1)
VtX) -Vt y)| <K[x-y] xyeB,, te[0), (3.2)
where K >0. Also assume that
Iirg]SupV(t+77,x(t+77))—V(t,x(t)) <0, (3.3)
n—>0+ 77

along every solution path of equation (1.3), so that for any left continuous function y:[a,b] - B,

Vit Y0) <V (b y6) + Kverd () - [ DIA® y()]) (3.4)

holds. Then the trivial solution X =0 of equation (1.3) is variationally stable.
We formulate the theorems on the variational stability and variational asymptotic stability of the trivial solution of the
dynamic equation (2.12) as a consequence of the theorem (3.0).

Theorem 3.1
Let f :[a,b], x B, — R" satisfies remark (2.0). Assume there exist an open ball Bp , and function V € C[[0, «0), x Bp, R.]

, which is locally Lipschitzian in X, for §p ={xeR" :||X||£p, 0< p<c}, and a Hahn class function
b(r) e C([0,];,R,) suchthat b(0) =0 and b(r) > 0 for r =0 satisfies

V (t,x) = b(|x]), (t,x)[0,0)xB, (3.5)
V(t,0) =0. t €[0, ) (3.6)
DV(t,x) <0 . (3.7)

If there exists any y:[a,b] > B_p such that HyOH < 0 which satisfies equations (2.24) and (2.25), then the trivial solution
(x = 0) of equation (2.12) is variationally stable

Proof
We make the following assumptions:
i. f:[ab], xB, —» R" satisfies the local existence theory,

ii. A:wW — R" satisfies remark (1.0),
iii. lemma (2.0), theorems (2.0 & 2.1), and equation (2.5) all hold.
Then we present the prove of theorem (3.1) as follow:

Let there exists Y :[t,,t,] — B, which satisfies equation (2.12) such that Y(0) = X(0) for a<t, <o <t <b_ifthere

is 77,() > 0 such that we have 77 € [0, 77, (o)];, and for x(t) : [t,,t, ], — §p we have

V(o +n,y(o+n)-V(c,y(0)=V(c+nYy(o+n)-V(c+nxX(o+n))
+ V(o +n,x(c+n))-V(o,x(o))

<Ky +m -y - e yo]

K[y - x| (39)

for V(o +n,x(c+1))-V(o,x(c))=D"V(§+n, x(§ +1))<0.
We expressed the first term on the right of equation (3.9) as

Iv(o+m)-y(@)- [t y)at =y + m - y@)- [ 1 €.y©)Pg)]
<y(o+n)- [ DAL Y(s)-y(o)- [ DAGs.y(s)

—var ;’*”(y(t) - [/ DAGs, y(s))) (3.10)
Using proposition (2.0), equation (2.11) and remark (2.0), We estimate the second term on the right of equation (3.9) as
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[t @ y©-xoa< [ myo)-x0l0a0
i [ m@lyo) -xwae) + (I)lmf" ONOEOING

<wly@)-x@)tim [“m a0+ sw_wlly(p)-x(p)

)lim j” m, (t)A(t)

707

By the assumption of y : [t,,t,] —> §p satisfying equation (2.12) such that Y(o) = X(o)

\ . T ey@-x@ags sup wlly(o)-x(e)int+m -hie) (311
Also for p €[o,0 + 1], we have

lim (y(p) = x(p) = lim( y(e) - y(@)~ [ 1 (L x(O)AL

= Y(e) - y(@) - lim( "t x(©)Dg(V)
=Y(o+) - ¥(0) - f(0,x(0))(g(o+) + 9(o))
= y(e) - y(@)- lim( 't y©)Dg()
But
tim( 71 y®)dg@® )= tim| [ 1(5.y(&)Pg(s) - [ (s, ¥(s)Dg(s)

~ lim| [ DAGs, y(9)) [ DAGs. ¥(5)) ).
S0 that
(¥(0)~x(p)) = Y(o+) - y(o) + lim| [ DA(s,y(s)) - | DAs. ()

= y(o+) - lim( [ DAGs, () | - y() - [ DAGs. ()

lim
p—oo+

—var(y(p) - [ DAG.Y(5) | =7

Hence equation (3.11) is rewritten HJ':M[ f(t, y(t) - x(@))]At < w(y)(h(o +7 —h(c+))) - (3.12)

Assume lim h(o +77) = h(o+) , then there exists an @ > 0 such that 775 (c) < 77,(0) , and for 17 €[0, 775(0)]; we
n—0"

have h(O'+77)—h(O'+)<a[(6+77)_5+]’
()

and setting

& >0, fort>o .

a=1K(@+n-0")
0 , fort<o
Then equation (3.12) implies
H [ @ y® - x| < £ (3.13)

By Lemma (2.1) and for o €[ty,t,];, 7 €[0,77(c)]; and g(t) € BV[t,,t,], we have

Vit y(t) -Vt y(t)) < g(t) - g(t,) = K var E,(Y(to) - _[: DA(s, V(S))j +e -

Choosing & arbitrary, we have v/t y(t,)) <V (t,, y(t,))+ K\fdrl:)()/(to)—j; DA, y(s))J. (3.16)
By definition (2.2), we set 2KJ (&) < y(¢) for y(&) = inf b(t) and glchn y(€) =0 for & > O we have

V(6 Y(0) 2V (6, v+ Kvar (y(6) - [ DAG. ()|

< Kly()| + K ver  yet) - [ DAG. y(s)
<2KS(€) < y(e) 3.17)
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Assume there exists t* € [t;,t, ] such that ||y(t=)| > &, then we have V (t, y(t*)) > b(|y(t=)[) > inf b(t) = »(¢) (3.18)

this contradicts equation (3.17). Hence [[y(t)]| < & forall t € [t,,t,], and the trivial solution ( X = 0) of equation (2.12) is

variationally stable.

Theorem 3.2

Let f:[a,b], xB, — R" satisfies remark (2.0). Assume there exists a function V eC[[0,»), xB;,R,] which is locally

Lipschitzian in X and a Hahn class function b(r) e C([0, ], , R, ) suchthat b(0) = 0, b(r) > 0 for r O satisfying
V (t, x) > b([x), (3.19)
V(t,0) =0. (3.20)

Assume for any solution y:[t,,t;]; — Ep there exists a strictly monotone increasing function g(x(t)) :W — R, for

#(0) =0 and ¢(x) >0 (x = 0) such that DV (t, x) < —g(x(t)), (3.21)

holds for M = sup(—¢(x(t)). Then the trivial solution (X = 0) of equation (2.12) is variationally asymptotically stable for

(9(£)SHXH<6
all t>t,+T(¢)-

Proof
We have shown that the trivial solution X =0 of equation (2.12) is variationally stable in theorem (3.1). Hence we have a

y:lt,.tl, = B which is of a bounded variation, continuous from the left on [t,,t,]; and for every & > 0 there exists

&" (&) > 0 such that | y(t,)| < 5" (¢) and Vaft‘;(y(t)ff DA, y(s))j<5*(8)’

then Iyt yo)| <&, teltytl -
We assume the converse that Y(t) > &, t <t, +T (&) and defined
K (3, +25)
T(e)= Mmoo b (3.22)
0, t<t,
so that var! (¥ - [/ DAG.y(5))) < 5(6)

Using the hypothesis of equation (3.21), we have
V(L y(1) -V (ty, y(t,)) <V Y1) -V (t +T(e), y(t, +T(£)))
+ V(t, +T(e), y(t, +T(€))) -V (t, y(t)) - MT ()

<KV -yt + T (D) + K(ylto +T(e) - ylto))- MT(e) (3239
But
YO- Yt +TE) S YO -t +TEN-[ | f(sy(s)as

SYO = [ FYENAS Yt + T~ [ f(sy(9)As

<y(0)~ [ DAGY(S) - y(t +T ()~ [ DASY(s))

<varl o YO - [ DAGY(S)) (3.24)

Ylto +T (€)= Y(t) < Vlto +T(e)) = ¥lto) - [ F(s-y(9)As

And

FEy()AS - y(t) - [ f(sy(s))as

DA(5.¥(5)) - ¥(t;) - [ DA(s.¥(5))

+T (&)

<Y+ T ()= [
<Y(t, +T (&)~ |, :M)
< var“um(s)(y(to) - DA(s.y(s))) (3.25)
Putting equation (3.24) and (3.25) into equation (3.23) we obtain
V(LYO)-V (oY) = Kl (YO - [ DAGY(S))

+T (&)
K T y(,) - [ DAGY(S) |- MT ()
K8,

IN

e ——————
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So that
V(L y(t) <V (L, y(ty)) — Ko,
< K|y(t,)]|- K&, < K3, — K8, =0.

This is a contradiction of equation (3.18), hence we have t >,t, + T (&) such that y(t,) < &, so that
var;;(y(t) - [ DAG, y(s))) <o) and [y <e, t2t+T (),

and the trivial solution X=0 of equation (2.12) is variationally attracting. Thus, system solution is variationally
asymptotically stable.

3.1 llustration
We consider the Lyapunov function for the dynamic equation (2.12) of the form /(¢ x(t)) :I‘ | f (s,x(s))|As » (3.26)

which is locally Lipschitz. That is
V(& y0) -V x@)= [ | (. yeNjas - [ s, xsn]as]

<[ (s,y(s) - X(S))HASH
<wly(® - x®)[[, m(s)as
<wly(®) - x®)(h(t) - h(t,)). telab]
Also, forany a<t, <o <t, <Db, thereisan 7(c) >0, t, +77 €[t,, t,]; . and by theorem (3.1) we have
\Y (to +1, y(to + 77)) -V (tov y(to)) = J.:D“]H f (S, y(S))HAS — J.:D H f (Sv y(S))HAS
< J‘l:w/ f(s,y(s)))As - |y(t) - y(t,))
<[ mE)as- |y - y(t,)|

<[htto +7) = hto)] |y () - y(to)] 3.27)
Assume Iirrgh(to +17) = h(t,) . then there exists an & > O such that |n(t, +7) - h(t,)| <&
n—

Also considering the second term on the right of the equation, we have
tim(y() - y(t)) = lim{ v - y(t) - [ £ y(s)s)
= ¥(t.) - y(t) - lim | (s, y(s))as
=y = [ T yENas - y(t) - [ F(sy(s)as
= ¥(t.) - | DAGs.X(s)) - ¥(t,) - [ DAGs.y(5))
war (v - [ DA, y(s))
V(t, + 1) X( + 1) <V (6, X(1,) + var® (x(t) - [/ IpAGs, x(9))+
<|xt)|+ () + &
<26(e)+e

Also following the contradictory argument of equation (3.18), and choosing & arbitrary, the system solution is stable in the
Lyapunov sense.

So that equation (3.27) implies

Conclusion

In this work, we established the results on variational stability and variational asymptotic stability of the dynamic equation
on time-scale in the framework of the generalized ordinary equations. Theorems and proof of the concept were presented.
An illustration was used to confirm the suitability of the idea.
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