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ABSTRACT 

In this work, the study of mass spectra of mesons with extended Cornell potential coupled with spin-spin interaction has 

been carried out. This involves approximating the Gaussian function to harmonic term in radial Schrodinger wave equation 

with the help of Greene-Aldrich approximation to centrifugal term using parametric Nikiforov-Uvarov (NU) method. The 

addition of spin-spin interaction to the extended Cornell potential helped in determining the singlet (s = 0) and triplet (s = 1) 

state of mesons which cannot be determined with the absence of the spin. Using the minimization approach implemented 

using the Mathematica package, the potential free parameters (𝑎, 𝑏, 𝑐, 𝜎 𝑎𝑛𝑑 𝛼𝑠) were obtained by fitting the mesons mass 

spectra states with experimentally observed values of the Particle Data Group (PGD). The potential model was reduced to 

Pseudoharmonic, Kratzer and extended Cornell potential as special cases. The numerical energies of the Kratzer potential 

for selected diatomic molecules and for extended Cornell potential as applied to mass spectra of charmonium and 

bottomonium were in excellent agreement when compared to the work of existing literature. The total wave function for the 

proposed potential model was expressed in term of Jacobi polynomial. The wave function and probability density plots for 

charmonium were obtained using Mathematica package.  
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INTRODUCTION  

Elementary particles are sub-atomic particles which are not 

composed of any other particle. They are classified 

according to families, sub-families, and spin. Elementary 

particles are classified either as bosons or fermions. Bosons 

are particles with zero or integer spin while fermions are 

particles with half-integer spin. The study of elementary 

particles is significant with enormous applications in 

different field of study such as; Medicine, diagnosing, 

security, synchroton light source, nuclear weapons and 

Statistical Physics. Quarks are elementary particles and 

fundamental constituents of matter which are classified into 

up, down, top, bottom, strange and charm quarks. The theory 

of quantum chromodynamics (QCD) has been successfully 

used in describing the properties of these particles with some 

considerable potential models. Meanwhile, one of the 

interesting significant research questions is whether to 

consider hadrons as non-relativistic bound states of quarks 

(Omugbe et al., 2023a). 

 

Cornell and extended Cornell potential is the main focus 

potential used for the description of quarks, mesons and 

other elementary particles (Omugbe et al., 2022). The study 

of quark and antiquark which constitutes mesons and other 

subatomic 

particles held together by strong interaction is described by 

the theory of quantum chromodynamics (Omugbe et al., 

2020). The investigation of mass spectra of mesons under 

the spinless-Salpeter equation couple with Cornell potential 

has been carried out using semi-classical WKB 

approximation approach (Omugbe et al., 2021). The 

proposed potential was used to obtain the mass spectra of 

heavy and heavy-light mesons. Also, the non-relativistic 

energy of the Coulomb potential, mass spectrum free 

parameters of the meson systems were obtained by fitting 

analytical solution with experimental data and solve the 

resulting nonlinear equations simultaneously via numerical 

approach.  The masses of the mesons systems with the 

Salpeter equation for different quantum states which was in 

excellent agreement with available experimental data as 

reported in the existing literature. The electromagnetic 

spectrum transition of bottomonium as well as the new 

bottomonium state was determined by Wei-Jun et al., 2017. 

The author also calculated the mass spectra and adopted a 

nonrelativistic screened potential model. A lot of work has 

been done in determining bound state of heavy mesons. The 

radial Schrödinger equation (Schrodinger, 1926) was solved 

with a three-point difference central method, where the spin-

dependent potentials were solved using a non-perturbative 

method. With this treatment, the corrections of the spin 

dependent potentials to the wave functions were included 

successfully. Hulthén plus Hellmann potentials was adopted 

by (Akpan et al., 2021) using quark-antiquark interaction 

potential to study the mass spectra of heavy mesons and their 

present potential provides satisfying results when compared 

with experimental data. The mass spectra of charmonium 

using a Coulomb plus linear potential were studied by (Kher 

and Rai, 2018). The trajectories of the charmonium were 

basically nonlinear and exhibit nonlinear behaviour in the 

lower mass region. Edurado et al., 2003, studied the hadron 

spectra and other properties of quark systems in the 

framework of a non-relativistic spin independent 

phenomenological model. The chosen confining potential 

was harmonic, which allowed them to obtain analytical 

solutions for both meson and baryon (of equal constituent 

quarks) spectra.  

 

Many quarkonium potential is solved within the 

nonrelativistic regime, using the Nikiforov-Uvarov method. 

Inyang et., al 2022 studied the thermal properties and masses 

https://dx.doi.org/10.4314/wojast.v15i2.6


Open Access article published under the terms of a  

Creative Commons license (CC BY). 

http://wojast.org 

Abraham  et al: Application of Extended Cornell Potential with Spin-Spin 
             Interaction to Diatomic Molecules and Mass Spectra of Heavy  

                     Mesons https://dx.doi.org/10.4314/wojast.v15i2.6 

 

 

World Journal of Applied Science and Technology, Vol. 15 No. 2 (2023) 192 - 201    193 

of heavy mesons with quarkonium potential where they 

obtained the energy spectrum and the wave function in terms 

of Laguerre polynomials. The results were used in predicting 

the masses of heavy mesons which is (charmonium 𝑐𝑐  ) and 

(bottonium  𝑏𝑏 ) as well as studying thermal properties of 

the system such as mean energy, entropy, free energy, and 

specific heat capacity obtained from the partition function by 

setting Debye mass to zero. Correspondingly, using the 

nonrelativistic quark-antiquark Cornell potential model, 

Sonia et., al 2018, employed the numerical solution of 

Schrödinger equation of mass spectra and decay properties 

of heavy quarkonia only using four mass spectra parameters. 

Inyang et al., 2020 investigated the class of Yukawa 

potential as the quark-antiquark interaction potential for 

studying the mass spectra of heavy mesons. The potential 

was made to be temperature dependent by replacing the 

screening parameters with Debye mass. Kumar and Singh, 

2022 investigated analytical solutions to the Schrodinger 

equation for a generalized Cornell potential and its 

applications to diatomic molecules and heavy mesons where 

the analytical expressions of energy eigenvalues and eigen-

functions for a generalized or standard Cornell potential 

were obtained by solving the non-relativistic Schrodinger 

equation using the Nikiforov–Uvarov functional analysis 

method (Nikiforov and Uvarov ,1988) along with Greene–

Aldrich approximation. Using the energy eigenvalue spectra, 

diatomic molecules like CO, NO, O2, LiH and HCl were 

computed. The results obtained were in good agreement with 

the results of others researchers  
 

Omugbe et al., 2023a proposed a global spin-dependent 

potential energy function and described a nonrelativistic 

quark model. (Omugbe et al., 2023b) carried out similar 

research where they used the non-relativistic Schrödinger 

equation with a spin-spin, spin-orbit and tensor term to 

calculate root mean square radii of heavy mesons.  

The Cornell Potential, which is the sum of the Coulomb and 

linear potentials, is one of the most well-known QCD-

inspired potential models as exemplified by (Godfrey and 

Isgur, 1985). The Cornell Potential takes the form. 

                        𝑉(𝑟) =
−𝑎

𝑟
+ 𝑏𝑟   (1) 

Here, the first term is the Coulomb term which is responsible 

for the short-range gluon exchange interaction between a 

quark and its antiquark while the second term is responsible 

for the large-scale quark confinement. According to 

Kumar and Singh, 2022, the extended or generalized Corne

ll potential with radial distance-dependent functions is 

given as  

 𝑉𝐶(𝑟) = 𝑎𝑟2 + 𝑏𝑟 −
𝑐

𝑟
+

𝑑

𝑟2 + 𝑒,    (2) 

Also, Cornell potential with spin-spin interaction as studied 

by Omugbe et al., 2023a is given as  

  𝑉(𝑟) =
−4𝛼𝑠

3𝑟
+ 𝑏𝑟 +

16𝛼𝑠𝜋(
𝜎

√𝜋
)

3
𝑒−𝜎2𝑟2

(𝑠(𝑠+1)−
−3

2

9𝑚𝑞𝑚𝑞
   (3) 

In this work, we study energy spectra of Charmonium and 

bottomonium using extended Cornell potential coupled with 

spin -spin interaction which to the best of our knowledge has 

not been reported in any existing literature. We also obtain 

energy equation for special cases and applies it to study 

bound states of diatomic molecules. 
 

The Generalized Parametric Nikiforov-Uvarov (NU) 

Method 

The NU method was presented by Nikiforov and Uvarov in 

1988 and has been employed in solving second order linear 

differential equations to a generalized equation of hyper-

geometric-type. This method provides exact solutions in 

terms of special orthogonal functions as well as 

corresponding energy eigenvalues. This NU method applies 

to both relativistic and non-relativistic equations.  

With the appropriate coordinated transformation 𝑆 = 𝑠(𝑥) 

the equation can be written as; 

                 𝜓′′(𝑠) +
𝜏̌(𝑠)

𝜎(𝑠)
𝜓′(𝑠) +

𝜎 ̌(𝑠)

𝜎2(𝑠)
𝜓(𝑠) = 0   (4) 

Where 𝜏̌̌(𝑠) is a polynomial of degree one while 𝜎(𝑠) and 

𝜎̌(𝑠) are polynomial of at most degree of two.  

The parametric NU differential equation according to 

Tezcan and Sever in 2009 the wave function is given as;

                𝜓′′(𝑠) +
𝑐1−𝑐2𝑠

𝑠(1−𝑐3𝑠)
𝜓′(𝑠) +

1

𝑠2(1−𝑐3𝑠)
[−𝜉1𝑠2 + 𝜉2𝑠 − 𝜉3] 𝛹(𝑠) = 0         (5) 

 

The parametric constants are given as;  

𝑐4 =
1

2
(1 − 𝑐1), 𝑐5 =

1

2
(𝑐2 − 2𝑐3),    𝑐6 = 𝑐5

2 + 𝜉1,       𝑐7 = 2𝑐4𝑐5 − 𝜉2, 

𝑐8 = 𝑐4
2 + 𝜉3,    𝑐9 = 𝑐3𝑐7 + 𝑐3

2𝑐8 + 𝑐6,     𝑐10 = 𝑐1 + 2𝑐4 + 2√𝑐8, 𝑐11 = 𝑐2 − 2𝑐5 + 2(√𝑐9 + 𝑐3√𝑐8),     𝑐12

= 𝑐4 + √𝑐8,     𝑐13 = 𝑐5 − √𝑐9 + 𝑐3√𝑐8 

𝑐1,    𝑐2  , 𝑐3   𝑎𝑛𝑑    𝑐4 = 0            (6) 

 

The parametric energy-eigen equation is presented as;  

𝐶2𝑛 − (2𝑛 + 1)𝐶5 + (2𝑛 + 1)(√𝐶9 + 𝐶3√𝐶8) + 𝑛(𝑛 − 1)𝐶3 + 𝐶7 + 2𝐶3𝐶8 + 2√𝐶8𝐶9 = 0       (7)      

The wave function is given as;  

𝜓(𝑠) = 𝑁𝑛𝑙𝑆
𝐶12(1 − 𝑐3𝑆)

−𝐶12−
𝐶13
𝐶3 𝑃𝑛

[𝐶10−1;𝐶11
𝐶3

−𝐶10−1]

(1 − 2𝐶3𝑆)        (8) 
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Analytical Solutions of the Extended Cornell Potential with Spin-spin interaction  

In this section, we shall present the analytical solution of this system, which is necessary for obtaining the wave function 

and probability density needed for the analysis. The radial Schrodinger equation is given as (Greiner, 2000; Galindo, et al., 

1978 and Ita, et al., 2015) 

       
𝑑2𝑅(𝑟)

𝑑𝑟2 +
2𝜇

ℏ2  {(𝐸 − 𝑉(𝑟)) −
 ℏ2𝑙(𝑙+1)

2𝜇𝑟2 } 𝑅(𝑟) = 0,       (9) 

 The extended Cornell potential couple with Spin-spin is the combination of equation (2) and (3) and it is given as  

𝑉(𝑟) = 𝑎𝑟2 + 𝑏𝑟 −
𝑐

𝑟
+

𝑑

𝑟2 + 𝑒 + 𝑓 {
16𝜋𝛼𝑠

9𝑚𝑞𝑚𝑞
(

𝛿

√𝜋
)

3

𝑒−𝛿2𝑟2
(𝑠(𝑠 + 1) −

3

2
)}      (10) 

Where a, b, c, d and e are constant potential parameters for a system which should be fix approximately to achieve results 

comparable to experimental and theoretical values. 𝛼𝑠 is the coupling constant, 𝑚𝑞 is the mass of quark, 𝑚𝑞 is the mass of 

antiquark, 𝑠 is the spin number. f takes the value between zero and one.  

 

By substituting equation (10) into equation (9) and with the help of coordinate transformation reduces to equation (11) 

𝑑2𝑅(𝑠)

𝑑𝑠2 +
(1−𝑠)

𝑠(1−𝑠)

𝑑𝑅(𝑠)

𝑑𝑠
+

1

𝑠2(1−𝑠)2 {(
2𝜇𝐸𝑛𝑙

ℏ2𝛼2 −
12𝜇𝑎

ℏ2𝛼4 −
6𝜇𝑏

ℏ2𝛼3 −
2𝜇𝑐

ℏ2𝛼2 −
2𝜇𝐷1𝐷2𝑓

ℏ2𝛼2 +
12𝜇𝐷1𝐷2𝑓𝛿2

ℏ2𝛼4 ) 𝑠2 + (
−4𝜇𝐸𝑛𝑙

ℏ2𝛼2 +
8𝜇𝑎

ℏ2𝛼4 +
6𝜇𝑏

ℏ2𝛼3 −
2𝜇𝑐

ℏ2𝛼
+

4𝜇𝑒

ℏ2𝛼2 +
4𝜇𝐷1𝐷2𝑓

ℏ2𝛼2 −
8𝜇𝐷1𝐷2𝑓𝛿2

ℏ2𝛼4 ) 𝑠 + (
2𝜇𝐸𝑛𝑙

ℏ2𝛼2 −
2𝜇𝑎

ℏ2𝛼4 −
2𝜇𝑏

ℏ2𝛼3 +
2𝜇𝑐

ℏ2𝛼
−

2𝜇𝑑

ℏ2 −
2𝜇𝑒

ℏ2𝛼2 −
2𝜇𝐷1𝐷2𝑓

ℏ2𝛼2 +
2𝜇𝐷1𝐷2𝛿2𝑓

ℏ2𝛼4 − 𝑙(𝑙 + 1)) +

(
−2𝜇𝑎

ℏ2𝛼4 +
2𝜇𝐷1𝐷2𝑓𝛿2

ℏ2𝛼4 ) 𝑠4 + (
8𝜇𝑎

ℏ2𝛼4 +
2𝜇𝑏

ℏ2𝛼3 −
8𝜇𝐷1𝐷2𝑓𝛿2

ℏ2𝛼4 ) 𝑠3}                                                                                                 (11) 

By neglecting higher powers of s, equation (11) reduces to 

𝑑2𝑅(𝑠)

𝑑𝑠2 +
(1−𝑠)

𝑠(1−𝑠)

𝑑𝑅(𝑠)

𝑑𝑠
+

1

𝑠2(1−𝑠)2 {− (
12𝜇𝑎

ℏ2𝛼4 +
6𝜇𝑏

ℏ2𝛼3 +
2𝜇𝑐

ℏ2𝛼2 +
2𝜇𝐷1𝐷2𝑓

ℏ2𝛼2 −
2𝜇𝐸𝑛𝑙

ℏ2𝛼2 −
12𝜇𝐷1𝐷2𝑓𝛿2

ℏ2𝛼4 ) 𝑠2 + (
8𝜇𝑎

ℏ2𝛼4 −
4𝜇𝐸𝑛𝑙

ℏ2𝛼2 +
6𝜇𝑏

ℏ2𝛼3 −
2𝜇𝑐

ℏ2𝛼
+

4𝜇𝑒

ℏ2𝛼2 +
4𝜇𝐷1𝐷2𝑓

ℏ2𝛼2 −
8𝜇𝐷1𝐷2𝑓𝛿2

ℏ2𝛼4 ) 𝑠 + (
2𝜇𝑎

ℏ2𝛼4 −
2𝜇𝐸𝑛𝑙

ℏ2𝛼2 +
2𝜇𝑏

ℏ2𝛼3 −
2𝜇𝑐

ℏ2𝛼
+

2𝜇𝑑

ℏ2 +
2𝜇𝑒

ℏ2𝛼2 +
2𝜇𝐷1𝐷2𝑓

ℏ2𝛼2 −
2𝜇𝐷1𝐷2𝛿2𝑓

ℏ2𝛼4 + 𝑙(𝑙 + 1))} 𝑅(𝑠) = 0   

(12) 

Equation (12) is comparable to NU differential equation. Using equation (7), the energy eigen equation for extended 

Cornell potential coupled with spin-spin interaction is given as  

𝐸 =
ℏ2𝛼2𝑙(𝑙+1)

2𝜇
+

ℏ2𝛼2

2𝜇
(

2𝜇𝑎

ℏ2𝛼4 +
2𝜇𝑏

ℏ2𝛼3 −
2𝜇𝑐

ℏ2𝛼
 +

4𝜇𝑒

ℏ2𝛼2 +
4𝜇𝑑

ℏ2 +
2𝜇𝐷1𝐷2𝑓

ℏ2𝛼2 −
2𝜇𝐷1𝐷2𝑓𝛿2

ℏ2𝛼4  ) −

ℏ2𝛼2

2𝜇
{

(𝑛2+𝑛+
1

2
)+(𝑛+

1

2
)√24𝜇𝑎

ℏ2𝛼4−
24𝜇𝐷1𝐷2𝑓𝛿2

ℏ2𝛼4 +
8𝜇𝑏

ℏ2𝛼3+
8𝜇𝑑

ℏ2 +4𝑙(𝑙+1)+1 −
4𝜇𝑎

ℏ2𝛼4−
2𝜇𝑏

ℏ2𝛼3−
2𝜇𝑐

ℏ2𝛼
+

4𝜇𝐷1𝐷2𝑓𝑣2

ℏ2𝛼4 +
4𝜇𝑑

ℏ2 +2𝑙(𝑙+1) 

(2𝑛+1)+√24𝜇𝑎

ℏ2𝛼4−
24𝜇𝐷1𝐷2𝑓𝜎2

ℏ2𝛼4 +
8𝜇𝑏

ℏ2𝛼3+
8𝜇𝑑

ℏ2 +4𝑙(𝑙+1)+1

}

2

    (13) 

  Using equation (8), the total un-normalized wave function is given as                         

𝜓
𝑛

(𝑠) = 𝑁𝑛𝑙𝑆
𝛽(1 − 𝑠)

1

2
+𝜂𝑃𝑛

[2𝛽,2 𝜂]
(1 − 2𝑠)                  (14) 

Where 

 𝛽 = √
−2𝜇𝐸𝑛𝑙

ℏ2𝛼2 + 𝑙(𝑙 + 1) + 𝜒1 1,        𝜂 =
1

2
√4𝜒2 + 4𝑙(𝑙 + 1) + 1                              (15) 

 

Normalisation of the wave function 

The Normalization constant can be obtained using the expression   

 ∫
∞

0
|𝑅𝑛𝑙(𝑟)|2𝑑𝑟 = 1 ⇒ ∫

∞

0
[𝑁𝑛𝑙𝑠

𝛽1(1 − 𝑠)𝜂1𝑃𝑛
(2𝛽1,𝜂1−1)

(1 − 2𝑠)]
2

𝑑𝑠 = 1                  (16) 

𝛽
1

= √
−2𝜇𝐸𝑛𝑙

ℏ2𝛼2 + 𝑙(𝑙 + 1) + 𝜒1,  𝜂1 =
1

2
+

1

2
√4𝜒2 + 4𝑙(𝑙 + 1),  

𝜒
1

=
2𝜇𝑎

ℏ2𝛼4 +
2𝜇𝑏

ℏ2𝛼3 −
2𝜇𝑐

ℏ2𝛼
+

2𝜇𝑑

ℏ2 +
2𝜇𝑒

ℏ2𝛼2 +
2𝜇𝐷1𝐷2𝑓

ℏ2𝛼2 −
2𝜇𝐷1𝐷2𝛿2𝑓

ℏ2𝛼4 , 𝜒
2

=
6𝜇𝑎

ℏ2𝛼4 −
6𝜇𝐷1𝐷2𝑓𝛿2

ℏ2𝛼4 +
2𝜇𝑏

ℏ2𝛼3 +
2𝜇𝑑

ℏ2      (17) 

 

The wave function is assumed to be in bounded at 𝑟𝜖(0, ∞) and 𝑠𝑒−𝛼𝑟𝜖(1,0).  

Using Mathematica package, the total normalized wave function for ground state (n = 0), first excited state (n = 1) and 

second excited state (n = 2) is showing in Equations (18),  (19) and  (20) 
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𝑅𝑛𝑙(𝑠) = √
𝛼𝛤(2𝛽1+2𝜂1+2)

𝛤(2𝛽1)𝛤(2+2𝜂1)
(1 − 𝑒−𝛼𝑟)𝜂1+

1

2(𝑒−𝛼𝑟)𝛽1                    (18) 

𝑅𝑛𝑙(𝑠) = √
2𝛼𝛽1(3+2𝛽1+2𝜂1)𝛤(2𝛽1+2𝜂1+2)

(3+2𝜂1)𝛤(2+2𝛽1)𝛤(2+2𝜂1)
(1 − 𝑒−𝛼𝑟)𝜂1+

1

2(𝑒−𝛼𝑟)𝛽1𝑃1
(2𝛽1,𝜂1)

(1 − 2𝑒−𝛼𝑟)    (19) 

𝑅𝑛𝑙(𝑠) = √
4𝛼𝛽1(5+2𝛽1+2𝜂1)𝛤(2𝛽1+2𝜂1+3)

(3+2𝜂1)𝛤(2+2𝛽1)𝛤(2+2𝜂1)
(1 − 𝑒−𝛼𝑟)𝜂1+

1

2(𝑒−𝛼𝑟)𝛽1𝑃1
(2,2𝛽1,2𝜂1)

(1 − 2𝑒−𝛼𝑟)    (20) 

 

Special Cases from the Proposed Potential  

The special cases of the potential were obtained after making a suitable adjustment of the parameters of the general potential 

in Equation (10). Some of the important forms of these potentials such are:  Kratzer, the Pseudoharmonic and the Coulomb 

perturbed potentials. These potentials are very useful in describing interactions of diatomic molecules and had been 

successfully use by many authors in different areas of physical and chemical sciences. 

(a) Pseudoharmonic Potential  

This form of potential had been successfully employed in the past to study the eigenvalue spectra of various diatomic 

molecules. By adjusting the potential parameters.  

Substituting 𝑎 =
𝐷𝑒

𝑟𝑒
2 , 𝑏 = 𝑐 = 0, 𝑑 = 𝐷𝑒𝑟𝑒

2, 𝑒 = −2𝐷𝑒 , 𝑓 = 0 in Equation (10) gives the Pseudoharmonic potential as; 

𝑉(𝑟) = 𝑎𝑟2 +
𝑑

𝑟2 + 𝑒 =
𝐷𝑒𝑟2

𝑟𝑒
2 +

𝐷𝑒𝑟𝑒
2

𝑟2 − 2𝐷𝑒          (21) 

Substituting the same boundary condition into Equation (13) gives the energy equation for Pseudoharmonic potential as; 

𝐸 =
ℏ2𝛼2

2𝜇
(

2𝜇𝐷𝑒

ℏ2𝛼4𝑟𝑒
2 −

4𝐷𝑒𝜇

ℏ2𝛼2 +
2𝜇𝐷𝑒𝑟𝑒

2

ℏ2 + 𝑙(𝑙 + 1)) −
ℏ2𝛼2

2𝜇
{

(𝑛2+𝑛+
1

2
)+(𝑛+

1

2
)√

24𝜇𝑎

ℏ2𝛼4+
8𝜇𝑑

ℏ2 +4𝑙(𝑙+1)+1−
4𝜇𝑎

ℏ2𝛼4+
4𝜇𝐷𝑒𝑟𝑒

2

ℏ2 +2𝑙(𝑙+1)

(2𝑛+1)+√
24𝜇𝑎

ℏ2𝛼4+
8𝜇𝑏

ℏ2𝛼3+4𝑙(𝑙+1)+1

}

2

 (22)

   

(b) Standard Kratzer Potential  

This is one of the most important potentials of the molecular spectroscopy.   

Substituting 𝑎 =  𝑏 = 𝑒 = 𝑓 = 0, 𝛼 = 0, 𝑑 = 𝐷𝑒𝑟𝑒
2, 𝑒 = 𝐷𝑒 , 𝑐 = 2𝐷𝑒𝑟𝑒  into Equation (10) and carry out some 

simplifications gives the energy equation of standard Kratzer potential as; 

𝑉(𝑟) =
−𝑐

𝑟
+

𝑑

𝑟2 =
𝐷𝑒𝑟𝑒

𝑟
+

𝐷𝑒𝑟𝑒
2

𝑟2           (23) 

The energy for standard Kratzer potential is given as;  

𝐸𝑛𝑙 =
−ℏ2

2𝜇
{

4𝜇𝐷𝑒𝑟𝑒
ℏ2

(2𝑛+1)+√
8𝜇𝑑

ℏ2 +4𝑙(𝑙+1)+1

}

2

         (24) 

(c) Perturb Cornell Potential 

This form of potential has a very useful applications in calculating the mass spectra of quark and antiquark pairs. 

By substituting 𝑑 = 𝑒 = 𝑓 = 0 in Equation (10) gives the perturb Cornell potential as; 

𝑉(𝑟) = 𝑎𝑟2 + 𝑏𝑟 −
𝑐

𝑟
           (25) 

The energy of perturbed Cornell potential is given below using the same condition  

 
ℏ

2
𝛼2𝑙(𝑙+1)

2𝜇
+

ℏ2𝛼2

2𝜇
(

2𝜇𝑎

ℏ2𝛼4 +
2𝜇𝑏

ℏ2𝛼3 −
2𝜇𝑐

ℏ2𝛼
) −

ℏ2𝛼2

2𝜇
{

(𝑛2+𝑛+
1

2
)+(𝑛+

1

2
)√

24𝜇𝑎

ℏ2𝛼4+
8𝜇𝑑

ℏ2 +4𝑙(𝑙+1)+1−
4𝜇𝑎

ℏ2𝛼4+
2𝜇𝑏

ℏ2𝛼3−
4𝜇𝑐

ℏ2𝛼
+2𝑙(𝑙+1)

(2𝑛+1)+√
24𝜇𝑎

ℏ2𝛼4+
8𝜇𝑏

ℏ2𝛼3+4𝑙(𝑙+1)+1

}

2

   (26) 

 

Perturbed Cornell potential with Spin-spin interaction 

Substituting 𝑑 = 𝑒 = 0, 𝑓 = 1 into Equation (10) gives the perturbed Cornell potential with spin-spin interaction as; 

𝑉(𝑟) = 𝑎𝑟2 + 𝑏𝑟 −
𝑐

𝑟
+ 𝐷1𝐷2(1 − 𝛿2𝑟2)         (27) 

The energy corresponding energy is given as; 

𝐸 =
ℏ2𝛼2𝑙(𝑙+1)

2𝜇
+

ℏ2𝛼2

2𝜇
(

2𝜇𝑎

ℏ2𝛼4 +
2𝜇𝑏

ℏ2𝛼3 −
2𝜇𝐷1𝐷2

ℏ2𝛼2 −
2𝜇𝐷1𝐷2𝛿2𝑓

ℏ2𝛼4 ) −

ℏ2𝛼2

2𝜇
{

(𝑛2+𝑛+
1

2
)+(𝑛+

1

2
)√24𝜇𝑎

ℏ2𝛼4+
24𝜇𝐷1𝐷2𝛿2

ℏ2𝛼4 +
8𝜇𝑏

ℏ2𝛼3+4𝑙(𝑙+1)+1−
4𝜇𝑎

ℏ2𝛼4 −
2𝜇𝑏

ℏ2𝛼3+
4𝜇𝑐

ℏ2𝛼
+

4𝜇𝐷1𝐷2𝛿2

ℏ2𝛼4 +2𝑙(𝑙+1) 

(2𝑛+1)+√24𝜇𝑎

ℏ2𝛼4+
24𝜇𝐷1𝐷2𝛿2

ℏ2𝛼4 +
8𝜇𝑏

ℏ2𝛼3+4𝑙(𝑙+1)+1

}

2

    (28) 

NUMERICAL RESULTS 

Table 1:  Spectroscopic parameters for various diatomic molecules 

Molecules  𝐷𝑒(𝑒𝑉) 𝜇(𝑎. 𝑚. 𝑢) 𝑟𝑒(𝐴0) 

LiH 2.155283695 0.8801221 1.5956 

HCl 4.619061175 0.9801045 1.2746 
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O2 5.156658828 7.9974575 1.2080 

(Vinod and Ram, 2022) 

𝐷𝑒  is the disassociation Energy  

𝜇 is the reduce mass measured in atomic mass unit (a.m.u) 

𝑟𝑒  is the equilibrium bond length  

Now using the data of Table 1 in Equation (21), the energy eigenvalue spectra of the three diatomic molecules are computed 

and presented in Tables 2 to Table 6. A close observation of the data of Tables 2 to Table 6 reveals that the present results 

are in excellent agreement to work of an existing literature.  

 

Table 2:   Numerical Solutions of Mass spectra of Charmonium in GeV (a = 0.0297 GeV3, b = 0.7609 GeV2, c = 60.586 

and mc = 1.317 GeV, = 0.6585, 𝛼 = 0.0959 ). 

State  Present   

Work 
Kumar and 

Singh, 2022 

Sonia et al., 

(2018) 

Richa et 

al., 

(2018)  

Wei-Jun   

et al., 

(2017)   

Ramesh 

and Fakir 

(2012) 

 Bai-Qing, 

and 

Kuang-Ta.  

(2009) 

 Beringer 

et al., 

        (2012) 

Ebert et al.,  

(2003)     

1S 3.09129 3.091 3.094 3.096 3.097 3.078 3.097 3.096 3.096  

2S 3.62773 3.627 3.681 3.265 3.679 3.581 3.673 3.686 3.686 

3S 4.12091 4.121 4.129 3.328 4.078 4.085 4.022 4.040 4.088 

4S 4.57373 4.573 4.514 3.737 4.412 4.589 4.273  4.236 - 

5S 4.98880 4.988 4.863 -  4.711 - 4.463 - - 

6S 5.36852 5.368 5.185 - - - 4.608 - - 

1P 3.11638 3.123 3.468 3.216 3.516 3.415 4.608   - 3.510 

2P 3.65192 3.658 3.938 3.362 3.937 3.917 3.510 3.773 3.686 

3P 4.14428 4.150    4.338 - 4.284 - 3.901 - - 

4P 4.59632 4.602 4.696 - - - 4.178 - - 

5P 5.01066 5.016 5.026 - - - 3.787  - - 

 1D 3.15936 3.187 3.775 3.440 3.787 3.749   - - 3.798 

2D 3.69365 3.819 4.188 - 4.144 - 4.089 - - 

3D 4.18485   4.209 4.555 - 4.456 - 4.137 - - 

4D 4.63582   4.658 4.891 - - - - - - 

 

Table 3:   Numerical Solutions of Mass spectra of Bottomonium in GeV (a = 0.0297 GeV3, b = 1.378 GeV2, c = 10.473 

and mb = 4.584 GeV). 
State  Present   

Work 
Kumar 

and Singh, 

2022 

Sonia et al., 

(2018)  

 Richa et al., 

(2018)   

 Stephen 

and 

Kenneth, 2015 

Ikhdair 

and Sever, 

2009 

Bai-Qing 

and Kuang-

Ta, 2009 

Beringer 

et al., 

2012 

Ebert et 

al., 2003 

1S 9.46093 9.460 9.463 9.460 90465 9.510 9.463 9.460 9.460 

2S 9.98182 9.981 9.979 10.023 10.003 10.038 9.979 10.023 10.023 

3S 10.40181 10.401 10.359 10.585 10.354 10.566 10.359 10.355 10.355 

4S 10.73647 10.736 10.683 11.148 10.635 11.094 10.683 10.580 - 

5S 10.99819 10.998 10.975 - 10.878 - 10.975 - - 

6S 11.19697 11.196 11.243 - 11.102 - 11.243 - - 

1P 9.52601 9.544 9.819 9.492 9.876 9.862 9.819 - 9.982 

2P 10.04106 10.056 10.217 10.038 10.246 10.390 10.217 - 10.255 

3P 10.45615 10.468 10.553 - 10.538 - 10.553 - - 

4P 10.78662 10.796 10.853 - 10.788 - 10.853 - - 

5P 11.04475 11.052 11.127 - 11.014 - 11.127 - - 

 1D 9.63687 9.808 10.074 9.551 10.138 10.214   - - 10.153 

2D 10.14368              10.202 10.423 - 10.441 - 4.089 - - 

3D 10.55191    10.599 10.731 - 10.698 - 4.137 - - 

   4D    10.87662    10.915 11.013     - 10.928 - - - - 
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Energy Spectra of Some Diatomic Molecules 

 In this section, we shall obtain the energy eigenvalue spectra of three (3) diatomic molecules, which shall be LiH, HCl and 

O2 by using the Kratzer potential which is given in Equation (24). For this purpose, we fixed various spectroscopic parameters 

for the three diatomic molecules showing below with the use of Maple Mathematical application as listed in Table 1.  

Table 4:   Energy spectra of LiH 

No. L LiH (Present Study) Kumar and 

Singh, 2022 

Purohit et al., 

2020 

Ikot et al., 2019 Ikhdair and 

Sever, 2009 

1 0 -2.375802636 -2.375958478 -2.375802634 -2.375802636  -2.375819921 

 1 -2.374091378 -2.374249269 -2.374091378 -2.374091378  -2.374107972 

2 0 -2.289307673 -2.291120943 -2.289307672   -2.289307674 -2.289324266 

 1 -2.287688995 -2.289500771 -2.287689000  -2.287688996 -2.287705602 

 2 -2.284458584 -2.286267374 -2.284458585  -2.284458584 -2.284475515 

3 0 -2.207451626 -2.210834101 -2.207451625  -2.207451626 -2.207468200 

 1 -2.205918968 -2.209299462 -2.205918969  -2.205918968 -2.205935555 

 2 -2.202860140 -2.206236677 -2.202860142  -2.202860140 -2.202876749 

 3 -2.198288038 -2.201658657 -2.198288039  -2.198288040 -2.198304679 

4 0 -2.129908603 -2.134778267 -2.129908601  -2.129908602 -2.129925128 

 1 -2.128455978 -2.133323227 -2.128455977  -2.128455976 -2.128472514 

 2 -2.125556793 -2.130419223 -2.125556794  -2.125556792 -2.125733505 

 3 -2.121223115 -2.126078336 -2.121223116  -2.121223116 -2.121239701 

 4 -2.115472884 -2.120318526 -2.115472882  -2.115472884 -2.115489505 

5 0 -2.056380833 -2.062661341 -2.056380832 -2.0563808834 -2.056397256 

 1 -2.055002762 -2.061280475 -2.055002760 -2.055002762 -2.055019226 

 2 -2.052252304 -2.058524429 -2.052252305 -2.052252304 -2.052268786 

 3 -2.048140758 -2.054404523 -2.048140758 -2.048140758 -2.048157264 

 4 -2.042684927 -2.048937588 -2.042684926 -2.042684928 -2.042701466 

 5 -2.035906942 -2.042175782 -2.035906942 -2.035906942 -2.035923525 

 

Table 5:   Energy spectra of HCl for different state of quantum number l 

No. l HCl (Present Study) Kumar and 

Singh, 2022 

Purohit et al., 

2020 

Okorie et al., 

2021 

Ikhdair and 

Sever, 2009 

1 0 - 4.393727022 - 4.393713794 - 4.393727026 - 4.393727024 - 4.393727956 

 1 - 4.391292902 - 4.393713794  - 4.393727026 - 4.393727024 - 4.393727956 

2 0 - 4.252735635 - 4.260091578  - 4.252735268 - 4.252735636 - 4.252737112 

 1 - 4.250417718 - 4.257768847  - 4.250417710 - 4.250417718 - 4.250419208 

 2 - 4.245789525 - 4.253131060  - 4.245789523 - 4.245789526 - 4.245791052 

3 0 - 4.118423404 - 4.132810777  - 4.118423405 - 4.118423404 - 4.118425371 

 1 - 4.116214408 - 4.130595364 - 4.116214406 - 4.116214408 - 4.116216289 

 2 - 4.111803615 - 4.126171764 - 4.111803613 - 4.111803616 - 4.111805631 

 3 - 4.105205380 - 4.119554377 - 4.105205379 - 4.105205380 - 4.105207449 

4 0 - 3.990375014 - 4.011476907  - 3.990375014 - 3.990375014 - 3.990377425 

 1 - 3.988268221 - 4.009362246 - 3.988268219 - 3.988268222 - 3.998270645 

 2 - 3.984061423 - 4.005139724  -3.9804061421 - 3.984061424 - 3.984063879 

 3 - 3.977768153 - 3.998822947  - 3 .977768151 - 3.977765152 - 3.977770657 

 4 - 3.969408570 - 3.990432148  - 3.969408569 - 3.969408570 - 3.969411138 

5 0 - 3.868206936 - 3.895725694  - 3.868206938 - 3.862806938 - 3.868209749 

 1 - 3.866196139 - 3.893705709  - 3.866196137 - 3.866196140 - 3.866198963 

 2 - 3.8621826949 - 3.889672170  - 3.862180946 - 3.862180950 - 3.862183802 

 3 - 3.856174133 - 3.883637909 - 3.856174132 - 3.856174134 - 3.856177032 

 4 - 3.848194719 - 3.875622042 - 3.848194720 - 3.848194720 -3.848197679 

 5 - 3.838267838 - 3.865649819 - 3.83827839 - 3.838267840 - 3.838270870 
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Table 6:    Energy spectra of O2 

No. l O2 (Present 

Study) 

Kumar and 

Singh, 2022 

Purohit et al., 

2020 

Okorie et al., 

2021 

Ikhdair and 

Sever, 2009 

1 0 - 5.066640766 - 5.066607135 −5.0666407663  −5.0666411467 −5.066641151 

 1 - 5.066291938 - 5.066258133 −5.0662919381  −5.0662923214 −5.066292323 

2 0 - 5.007960489 −5.011267857  −5.0079604870 −5.0079611102 −5.007961116 

 1 - 5.007617701 −5.010924782  −5.0076177016 −5.0076183271 −5.007618329 

 2 - 5.006932271 -5.010238777  −5.0069322711 −5.0069329023 −5.006932904 

3 0 - 4.950293764 −4.956885574  −4.9502937621 −4.9502946186 −4.950294624 

 1 - 4.949956878 −4.956548293  −4.9499568798 −4.9499577391 −4.949957740 

 2 - 4.949283256 −4.955873878  −4.9492832534 −4.9492841183 −4.949284119 

 3 - 4.948273160 −4.984862598  −4.9482731590 −4.9482740326 −4.948274034 

4 0 - 4.893617381 −4.903438377  −4.8936173815 −4.8936184638 −4.893618469 

 1 - 4.893286266 −4.903106760  −4.8932862680 −4.8932873530 −4.893287355 

 2 - 4.892624177 −4.902443673  −4.8926241763 −4.8926252668 −4.892625268 

 3 - 4.891631377 −4.901449374  −4.8916313768 −4.8916324755 −4.891632476 

 4 - 4.890308274 −4.901242074  −4.8903082749 −4.8903093844 −4.890309388 

5 0 - 4.837908798 −4.850904987  −4.8379087980 −4.8379100982 −4.837910103 

 1 - 4.837583322 −4.8505718911  −4.8375833223 −4.8375846252 −4.837584627 

 2 - 4.836932502 −4.849926891  −4.8369325034 −4.8369338116 −4.836933812 

 3 - 4.833956605 −4.848949193  −4.8359566060 −4.8359579221 −4.835957923 

 4 - 4.834656026 −4.847646214  −4.8346560268 −4.8346573535 −4.834657357 

 5 - 4.833031293 −4.846018483  −4.8330312942 −4.8330326341 −4.833032637 

 

Table 7:    Mass Spectrum of Charmonium meson in GeV under spin-spin interaction potential 
S/N State 

𝑛2𝑠+1𝐿𝑗 

Present Omugbe et al, 

2023a 

Sonia et 

al., 

2018 

Wei-Jun  et al, 

2017 LP(SP) 

Kher and 

Rai, 2018 

Ebert et 

al., 

2011 

Manso

ur et al, 

2020 

EXP. (Workman 

et al., 2022) 

1 11S0 3.43401 3.081 (3.097) 3.094 3.097 (3.097) 3.094 3.096 3.126 2.984  0.0004 

2 13S0 3.51148 3.061 (2.979) 2.989 2.983 (2.984) 2.995 2.981 3.033 3.097  (6 x 10-6) 

3 21S0 3.43429 3.717 (3.736) 3.681 3.679 (3.679) 3.649 3.685 3.701 3.638  (1.1 x 10-3) 

4 23S0 3.56593 3.696 (3.640) 3.602 3.635 (3.637) 3.606 3.635 3.666 3.686  (6 x 10-5) 

5 31S0 3.51123 4.003 (4.039) 4.129 4.078 (4.030) 4.036 4.039 4.055 - 

6 33S0 3.58363 3.983 (3.937) 4.058 4.048 (4.004) 4.000 3.989 4.158 4.039  10-3 

 

Table 8:    Theoretically Calculated Parameter with Spin-spin interaction 

Parameters Charmonium  

mass (GeV) 𝑀𝑐  =  𝑀𝑐  =  1.317  

a (GeV3) 0.00909316 

b (GeV2) 2.55864 x 10-7 

C 0.799991 

 𝜎 (GeV) 0.0833493 

𝛼𝑠  0.998458 

Discussion 

Table 1 is spectroscopic parameters for various diatomic 

molecules used in calculating the bound state energies for 

the diatomic molecules. Table 2 shows the numerical 

solutions of mass spectra of charmonium. This table 

composes the present calculation with work reported in 

existing literature. It can be observed that the numerical 

calculation is in excellent agreement to authenticate the 

Mathematical accuracy of our present analytical calculation. 

Table 3 shows the mass spectra of bottomonium using 

extended Cornell potential. Our result is also in excellent 

agreement to work of existing literature.  Tables 4, 5 and 6 

are numerical bound state solutions of Kratzer potential for 

LiTH, HCL, and 02 molecules for some quantum state. Our 

numerical calculation is also consistent when compared to 

work of existing literature for the selected diatomic 

molecules. Table 7 is the numerical bound state solution of 

extended Cornell potential coupled with spin-spin 

interaction for singlet and triplet state of charmonium in s-

orbital. The numerical bound state energies obtained for 

singlet and triplet are in consistent with experimental values 

to ascertain the high level of Mathematical accuracy of 

analytical and computational calculations.  

 

Table 8 is the theoretical calculated values of free potential 

parameters using minimization approach. The parameters of 

Table 8 are used to obtained numerical solutions in Table 7
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Figure 1: Wave Function Plot for Extended Cornell 

Potential of Charmonium without Spin-spin 

interaction for  
 

Figure 4:   Probability Density Wave Function Plot 

for Extended Cornell Potential of Charmonium 

without Spin-spin interaction for   
 

Figure 3: Wave Function Plot for Extended 

Cornell Potential of Charmonium without Spin-

spin interaction for  
 

Figure 5:   Wave Function Plot for Extended Cornell 

Potential of Charmonium Singlet state with Spin-

spin interaction for  
 

Figure 6: Probability Density Wave Function Plot 

for Extended Cornell Potential of Charmonium 

Singlet state with Spin-spin interaction for  

Figure 7: Wave Function Plot for Extended Cornell 

Potential of  Charmonium Triplet state with Spin – spin 

interaction for (s = 1) 
 

Figure 8: Probability Density Function Plot for 

Extended Cornell Potential of  Charmonium Triplet 

state with Spin – spin interaction for (s = 1) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:   Probability Density Wave Function 

Plot for Extended Cornell Potential of 

Charmonium without Spin-spin interaction for  
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Figure 1 is a wave function plot for extended Cornell 

potential of Charmonium without spin-spin interaction for 

orbital angular quantum number 𝑙 = 0. Here the wave 

function is periodic with different maximum and minimum 

turning point which increases periodically with a radial 

distance. The probability density for  𝑙 = 0 which follows 

normal distribution is presented in figure 2. Figures 3 and 4 

are respectively wave functions and probability density plots 

for extended Cornell potential without spin-spin interactions 

for orbital angular quantum number (𝑙 = 1). Hence, the 

wave function is also periodic while the probability density 

follows normal distribution curse. In Figure 5, we considered 

wave function plot for Charmonium singlet state (𝑆 = 0) 

using extended Cornell potential with spin-spin interaction. 

Here, the periodicity of the wave function is also established. 

That is the addition of the spin does not change the periodic 

nature of that wave function. The probability density for the 

singlet state follows Gaussian distribution function which 

makes the particle that is the singlet state more localized as 

presented in figure 6. The same explanation is applicable to 

Charmonium wave function triplet state (𝑆 = 1) and 

Chormonium probability density triplet state (𝑆 = 1) as 

shown in Figures 7 and 8 respectively.  

 

CONCLUSION 

In this research work, we have determined bound state 

solution of charmonium mesons with extended Cornell 

potential coupled with spin-spin interaction through 

parametric Nikiforov-Uvarov method. The addition of the 

spin-spin interaction helps in determining the singlet and 

triplet state of charmonium. Numerical bound state solutions 

for Charmonium and Bottomonium using extended Cornell 

potential are in excellent agreement with work of existing 

literature as well as Kratzer potential as applied to diatomic 

molecules, which form special cases of the main potential. 

This study has application in particle and high energy 

physics. 
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