Open Access article published under the terms of a Creative Commons license (CC BY). http://wojast.org



#### ABSTRACT

In this research article, the influence of magnetic and Aharonov-Bohm flux fields on Shannon entropy with improved Kratzer potential for Scandium fluoride (ScF) and hydrogen (H<sub>2</sub>) molecules are studied analytically and numerically for three low-lying states. The wave function and probability density which controls the chemical and physical properties of atomic and molecular systems have been obtained by solving the Schrodinger wave equation coupled with charged particle Hamiltonian via the Nikiforov-Uvarov functional analysis method. The total normalized wave function was expressed in terms of the hypergeometric function of Jacobi polynomials and then utilized to evaluate the Shannon entropy for two diatomic molecules in position and momentum spaces. The wave function and electronic densities were graphically analyzed. Our numerical results of Shannon entropies sum as applied to ScF and H<sub>2</sub> were verified to obey the Shannon-entropy-based uncertainty relation. Observations from our results also reveal negative values of Shannon entropies in the position coordinates depicting high localization of particles and stability. In Addition, the effects of the external fields on the quantum systems were observed to influence the quantum information-theoretic measure by small decrements in the Shannon entropy values when compared to the case of the absence of the external fields, indicating a further improvement in the localization of particles and system's stability. This work has applications in atomic and molecular dynamic, molecular drug design, nanostructure processes, information technology, amongst others.

KEYWORDS: Shannon entropy; Schrödinger equation; improved Kratzer potential, Aharonov-Bohm.

# INTRODUCTION

Shannon information entropy is a global quantum information-theoretic measure which describes the uncertainty and localization of the electronic charge density in both position and momentum coordinates. Nanostructure processes are better understood with the psyche of the electron densities (Shannon, 1948; Sears, 1980; Nalewajski, 2005; Okon, *et al.*, 2018; Olendski, 2021). Since its inception, this information theoretic tool has been beneficial in several fields including atomic ionization properties, molecular drug design, quantum communication, computation and information technology, electronic devices among others (Nalewajski, 2006; Nielson and Chuang, 2001; Gadre and Pathak, 1991; Gassi, 2011). The uncertainty relation of this information entropy is known to be more precise than the Heisenberg uncertainty relation because it does not refer to a particular location in the Hilbert space (Edet and Ikot 2021; Bialynicki-Birula and Mycieski, 1975). Beckner *et al* were the first to develop the Shannon entropy uncertainty in 1975 as (Shannon, 1948; Beckner, 1975; Bialynicki-Birula and Mycieski, 1975; Yahya, *et al.*, 2014; Najafizade, *et al.*, 2016; Isonguyo, *et al.*, 2018, Okon, *et al.*, 2020; Ikot, *et al.*, 2020)

 $\operatorname{Sh}_{\mathrm{T}} = \operatorname{Sh}_{\mathrm{r}} + \operatorname{Sh}_{\mathrm{p}} \ge \mathrm{d}(1 + \operatorname{In}\pi),$ 

where Sh<sub>T</sub> is the Shannon entropy sum, Sh<sub>r</sub> represent the position coordinate Shannon entropy written as  $Sh_r = -\int_b^a |\psi(r)|^2 In |\psi(r)|^2 dr$ ,

(2)

(1)

and the momentum coordinate Shannon entropy is expressed as  $Sh_p = -\int_b^a |\psi(p)|^2 \ln |\psi(p)|^2 dp.$ 

The position space wave function is  $\psi(r)$ , while the momentum space wave function is represented as  $\psi(p)$  and d is the spatial dimension. Lower values of this entropy depict high localization and uncertainty of particles and the more stability of the system studied (Dehesa, *et al.*, 2006; Isonguyo, *et al.*, 2018; Okon, *et al.*, 2020, Olendski, 2021).

Aharonov-Bohm (AB) flux fields as well as magnetic fields are external fields in which any quantum systems subjected to these external fields experience behavioral changes in certain properties caused and controlled by these fields. The existence of Aharonov-Bohm flux is felt when the moving charge particle of a system is affected by an external electromagnetic field when placed in the region where electric and magnetic fields are negligible (Aharonov and Bohm 1959; Hiley 2013).

Recently, a lot of research have been carried out in literature on the influence of magnetic and Aharonov-Bohm flux fields on information theoretic measures with quantum mechanical systems (Olendski, 2019; Olenski, 2021; Edet and Ikot 2021; Edet, *et al.*, 2022, *Okon, et al.*, 2023; Omugbe, *et al.*, 2023). Few articles have extended this study to diatomic molecules, hence our motivation to undergo this research work.

The aim of this study was to obtain the bound state solution of Schrodinger wave equation with improved Kratzer potential in the presence of magnetic and Aharonov-Bohm fields, there after utilize the wave function to obtain the Shannon entropy for the physical model and then apply to Scandium fluoride and hydrogen molecules. Rampho and his co-authors proposed the improved Kratzer potential as (Rampho, *et al.*, 2021).

$$V(r) = -4D_e \left(\frac{a}{r} - \frac{b}{r^2}\right) \times \left(e^{-\frac{(\alpha+\delta)r}{2}} \cosh\left(\frac{\alpha+\delta}{2}\right)r + \bar{c}\right).$$
(3)

Where  $\alpha$  and  $\delta$  denotes the screening parameters,  $a = r_e$ , while  $b = r_e^2$  and  $\bar{c}$  is the control parameter with the range  $\bar{c}$  {0,1}.

This article is organized as follows: In the next Section, the bound state solution of improved Kratzer potential is presented. Section three displays the analytical solution of Shannon entropy under the influence of magnetic and Aharonov-Bohm flux fields. The numerical results of the Shannon entropy under the influence of the external fields as applied to two diatomic molecules are also given in section four. Finally, the discussion and conclusion follow.

# IMPROVED KRATZER POTENTIAL AND ITS ANALYTICAL SOLUTION

The Schrodinger wave equation under the influence of magnetic and Aharonov-Bohm flux fields is expressed as (Greiner, 2000; Okon, *et al.*, 2022)

$$\left\{\frac{1}{2\mu}\left(i\hbar\nabla - \frac{e}{c}\vec{A}\right) + V(r)\right\}\psi_{nm}(r,\phi) = E_{nm}\,\psi_{nm}(r,\phi) \tag{4}$$

where  $E_{nm}$  is the energy eigenvalue,  $\psi_{nm}(r, \phi)$  is the wave function,  $\mu$  represents the reduced mass, *n* denotes the principal quantum number, m represents the magnetic quantum number, *r* is the inter-nuclear separation,  $\vec{A}$  is the vector potential, e is the electronic charge and c is the speed of light. On substituting equation (3) into equation (4) leads to equation (5) according to Rampho *et al.* (2021).

$$\left\{\frac{1}{2\mu}\left(i\hbar\nabla -\frac{e}{c}\vec{A}\right) - 4D_e\left(\frac{a}{r} - \frac{b}{r^2}\right) \times \left(e^{-\frac{(a+\delta)r}{2}} \cosh\left(\frac{a+\delta}{2}\right)r + \bar{c}\right)\right\}\psi_{nm}(r,\phi) = E_{nm}\,\psi_{nm}(r,\phi).$$
(5)

By using the Nikiforov-Uvarov functional analysis method to solve equation (5) gives the two-dimensional wave function and energy eigenvalue equation for the improved Kratzer potential respectively as (Rampho, *et al.*, 2021)

$$\psi_{nm}(r,\phi) = N_{nm} \, z^{\sqrt{\lambda_{nm} - \theta_1 + \theta_2 + \gamma}} \, (1 - z)^{\frac{1}{2} + \sqrt{\frac{1}{4} - \epsilon_1 + \epsilon_2 + \epsilon_3 + \theta_4 + \theta_2 + \gamma}}_{2F_1(a,b,c;s)} \, {}_2F_1(a,b,c;s) = N_{nm} \, z^k \, (1 - z)^Q P_n^{(2k, 2Q-1)}(1 - 2z) \, , \ z = e^{-(\alpha + \delta)r}$$
(6)

and

$$E_{nm} = -\frac{\hbar^2 (\alpha + \delta)^2 \lambda_{nm}}{2\mu},\tag{7}$$

where

$$\begin{aligned} \lambda_{nm} &= \theta_1 - \theta_2 - \gamma + \frac{1}{4} \left( \frac{\theta_1 - \theta_2 + \theta_3 - \gamma + \epsilon_2 - \varepsilon^2}{\varepsilon} \right)^2, \theta_1 = \frac{2\mu\beta_1}{\hbar^2(\alpha+\delta)}, \ \theta_2 = \frac{2\mu\beta_2}{\hbar^2}, \theta_3 = \frac{2\mu\beta_3}{\hbar^2(\alpha+\delta)}, \theta_4 = \frac{2\mu\beta_2}{\hbar^2}, \\ \epsilon_1 &= \frac{2n\eta\vec{B}}{\hbar(\alpha+\delta)}, \ \epsilon_2 = \frac{\eta^2\vec{B}^2}{\hbar^2(\alpha+\delta)^2}, \epsilon_3 = \frac{\eta\vec{B}\phi_{AB}}{\hbar^2(\alpha+\delta)^2}, \gamma = (m+\varepsilon)^2 - \frac{1}{4}, \ \beta_1 = 2D_ea + 2D_ea\bar{c}, \ \beta_2 = 2D_eb + 2D_eb\bar{c}, \\ \beta_3 &= 2D_ea, \ \beta_{41} = 2D_eb, \ \eta = -\frac{e}{c}, \ \phi_0 = \frac{\hbar c}{e}, \ \xi = \frac{\phi_{AB}}{\phi_0}, \ \varepsilon = n + \frac{1}{2} + \sqrt{\frac{1}{4} - \epsilon_1 + \epsilon_2 + \epsilon_3 + \theta_4 + \theta_2 + \gamma} \end{aligned}$$
(8)

The probability density  $\rho(r, \phi) = |\psi_{nm}(r, \phi)|^2$  is the squared of the wave function. The wave function can be normalized using (Galindo, *et al.*, 1978)

$$\int_0^\infty \int_0^{2\pi} |\psi_{nm}(r,\phi)|^2 \, dr \, d\phi = 1 \,. \tag{9}$$

On inserting equation (6) into equation (9) leads to

$$-\frac{2\pi N_{nm}^2}{\alpha} \int_0^\infty z^{2k} (1-z)^Q |P_n^{(2k, 2Q-1)}(1-2z)|^2 \frac{1}{z} dz = 1,$$
(10)

By replacing t = 1 - 2z and the boundary of integration changed from  $z \in (1, 0)$  to  $t \in (-1, 1)$ , then equation (10) becomes

$$-\frac{2\pi N_{nm}^2}{\alpha} \int_{-1}^{1} \left(\frac{1-t}{2}\right)^{2Q-1} \left(\frac{1+t}{2}\right)^k |P_n^{(2k, 2Q-1)}(t)|^2 dt = 1,$$
(11)

Implementing the standard integral (Adamowitz, 1965)

$$\int_{-1}^{1} \left(\frac{1-x}{2}\right)^{\beta} \left(\frac{1+x}{2}\right)^{\gamma} |P_{n}^{(\beta, \gamma-1)}(x)|^{2} dx = \frac{2^{\beta+\gamma+1} \Gamma(\beta+n+1) \Gamma(\gamma+n+1)}{n! \Gamma(\beta+\gamma+1) \Gamma(\beta+\gamma+2n+1)},$$
(12)

The gamma function  $\Gamma(y) = \int_0^\infty h^{y-1} e^{-y} dy$ . Setting  $t = x, \beta = 2Q - 1, \gamma = 2k$ , therefore, the normalization constant can be written as

Open Access article published under the terms of a Creative Commons license (CC BY). http://wojast.org Isonguyo et al: Shannon Information Entropy with Improved Kratzer Potential under the Effects of Magnetic and Aharonov-Bohm Flux Fields https://dx.doi.org/10.4314/wojast.v15i2.4

$$N_{nm} = \sqrt{\frac{2\pi (\alpha + \delta) n! \Gamma(2k + 2Q + 1) \Gamma(2k + 2Q + 2n)}{\Gamma(2k + n + 1) \Gamma(2Q + n + 1)}}.$$
(13)

Hence, the two-dimensional total wave function is given as

$$\psi_{nm}(r,\phi_r) = \frac{e^{im\phi_r}}{\sqrt{2\pi r}} \psi_{nm}(r,\phi) = \frac{e^{im\phi_r}}{\sqrt{2\pi r}} z^{k} (1-z)^{Q} P_n^{(2k, 2Q-1)}(1-2z).$$
(14)

In order to obtain the two-dimensional wave function in momentum space, the Fourier transform of the position wave function is calculated as

$$\psi_{nm}(p,\phi_p) = \frac{1}{\sqrt[3]{2\pi}} \int_0^\infty \int_0^{2\pi} \frac{\psi_{nm}(r,\phi_r)}{\sqrt{r}} e^{i[m\phi_r - prCos(\phi_r - \phi_p)]} r \,\mathrm{d}r \,\mathrm{d}\phi_r \,, \tag{15}$$

the angular part can be simplified in terms of the Bessel function as (Olendski, 2021; Omugbe, et al., 2023)

 $\int_{0}^{2\pi} e^{i[m\phi_r - prCos(\phi_r - \phi_p)]} r \, dr \, d\phi_r = (-1)^m \, 2\pi \, J_{|\mathbf{m}|}(\mathbf{p} r) e^{im\phi_r} ,$ 

where

$$J_{|m|}(pr) \approx \sqrt{\frac{2}{\pi pr}} \operatorname{Cos}\left(pr - \frac{|m|\pi}{2} - \frac{\pi}{4}\right), \tag{17}$$

Equation (17) is the asymptotic series of the Bessel function and  $J_{|m|}$  (pr) is the Bessel function of order m (Omugbe, *et al.*, 2023).



Figure 1: Position space wave function plot in the ground state for IKP



Figure 3: Position space wave function plot in the second excited state for IKP



Figure 5: Momentum space wave function plot in the first excited state for IKP



Figure 2: Position space wave function plot in the first excited state for IKP



Figure 4: Momentum space wave function plot in the ground state for IKP



Figure 6: Momentum space wave function plot in the second excited state for IKP.

(16)

# SHANNON ENTROPY WITH IMPROVED KRATZER POTENTIAL UNDER THE EFFECTS OF MAGNETIC AND AHARONOV-BOHM FLUX FIELDS

The Shannon entropy is obtained by utilizing the wave function in equation (15). In position and momentum, the Shannon entropies are analytically solved respectively as

$$Sh_r = \int_0^\infty \int_0^{2\pi} |\psi_{nm}(r,\phi_r)|^2 \ln |\psi_{nm}(r,\phi_r)|^2 \, r \, dr \, d\phi \quad , \tag{18}$$

and

$$Sh_p = \int_0^\infty \int_0^{2\pi} |\psi_{nm}(p,\phi_p)|^2 \ln |\psi_{nm}(p,\phi_p)|^2 p \, dp \, d\phi \quad , \tag{19}$$

Further analytical solution of Shannon entropy in two-dimension is complex and difficult, especially in momentum coordinate because of the Fourier transform calculations. Therefore, we have obtained the results numerically with Mathematica 9.0 software and the spectroscopic parameters in Table 1.

#### NUMERICAL RESULTS

Table 1: Spectroscopic parameter and reduced masses for selected molecules (Okon, et al., 2018)

| Molecules      | $D_{e}(eV)$ | $r_e(A^0)$ | $\alpha\left(\frac{1}{A0}\right)$ | $\mu(amu)$ |
|----------------|-------------|------------|-----------------------------------|------------|
| H <sub>2</sub> | 4.7446      | 0.7416     | 1.9426                            | 0.50391    |
| ScF            | 5.85        | 1.794      | 1.46102                           | 13.35894   |

Table 2: Numerical results of Shannon entropy for Improved Kratzer potential for Hydrogen molecule in the absence of Magnetic and Aharonov-Bohm flux fields and singular effects of Aharonov-Bohm flux fields for the ground state  $(Sh_{T=}Sh_r + Sh_p \ge d(1 + ln\pi) \ge 4.28946, m = 0, n = 0).$ 

| ī   | $Sh_r(\xi = \overrightarrow{B} = 0)$ | $Sh_p(\xi = \overrightarrow{B} = 0)$ | $Sh_T(\xi=2, \overrightarrow{B}=0)$ | $Sh_r(\xi=2, \overrightarrow{B}=0)$ | $Sh_p(\xi=2, \overrightarrow{B}=0)$ | $Sh_T(\xi=2 \overrightarrow{B}=0)$ |
|-----|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|
| 0   | -0.351271                            | 124.030                              | 123.679                             | -0.350073                           | 125.538                             | 125.188                            |
| 0.1 | -0.347290                            | 134.233                              | 133.886                             | -0.346164                           | 135.722                             | 135.376                            |
| 0.2 | -0.343702                            | 144.192                              | 143.848                             | -0.342664                           | 145.320                             | 145.320                            |
| 0.3 | -0.340474                            | 153.918                              | 153.578                             | -0.339479                           | 155.371                             | 155.031                            |
| 0.4 | -0.337570                            | 163.422                              | 163.085                             | -0.336632                           | 164.856                             | 164.519                            |
| 0.5 | -0.334955                            | 172.714                              | 172.379                             | -0.334070                           | 174.130                             | 173.795                            |
| 0.6 | -0.332599                            | 181.803                              | 181.471                             | -0.331761                           | 183.201                             | 182.869                            |
| 0.7 | -0.330470                            | 190.701                              | 190.370                             | -0.329677                           | 191.751                             | 191.751                            |
| 0.8 | -0.328546                            | 199.414                              | 199.086                             | -0.327792                           | 200.450                             | 200.450                            |
| 0.9 | -0.326802                            | 207.954                              | 207.627                             | -0.326085                           | 208.975                             | 208.975                            |
| 1.0 | -0.325220                            | 216.327                              | 216.002                             | -0.324536                           | 217.333                             | 217.333                            |
|     |                                      |                                      |                                     |                                     |                                     |                                    |

Table 3: Numerical results of Shannon entropy for Improved Kratzer potential for Hydrogen molecule in the combine effects of Magnetic and Aharonov-Bohm flux fields, and singular effect of magnetic field for the ground state ( $Sh_T=Sh_r+Sh_p \ge d(1 + ln\pi) \ge 4.28946, m = 0, n = 0$ )

| Ē   | $Sh_r(\xi = \overrightarrow{B} = 2)$ | $Sh_P(\xi = \overrightarrow{B})$ | $Sh_T(\xi = \overrightarrow{B})$ | $Sh_r(\xi)$     | $Sh_P(\xi=0,\vec{B})$ | $Sh_r(\xi)$             |
|-----|--------------------------------------|----------------------------------|----------------------------------|-----------------|-----------------------|-------------------------|
|     |                                      | = 2)                             | = 2)                             | = 0, $B$ $=$ 2) | = 2                   | $= 0, \mathbf{B}$ $= 2$ |
| 0   | -0.453210                            | 191.085                          | 190.631                          | -0.534513       | 76.1806               | 75.6461                 |
| 0.1 | -0.449855                            | 197.412                          | 196.962                          | -0.528.456      | 83.3115               | 82.7830                 |
| 0.2 | -0.446654                            | 203.691                          | 203.245                          | -0.522161       | 90.4203               | 89.8982                 |
| 0.3 | -0.443596                            | 209.923                          | 209.479                          | -0.515834       | 97.5012               | 96.9854                 |
| 0.4 | -0.440674                            | 216.108                          | 215.667                          | -0.509600       | 104.549               | 104.039                 |
| 0.5 | -0.437880                            | 222.245                          | 221.807                          | -0.503533       | 111.560               | 111.056                 |
| 0.6 | -0.435207                            | 228.336                          | 163.455                          | -0.497676       | 118.531               | 118.033                 |
| 0.7 | -0.432649                            | 234.382                          | 233.949                          | -0.492054       | 125.459               | 124.966                 |
| 0.8 | -0.430199                            | 240.381                          | 239.951                          | -0.486674       | 132.341               | 131.855                 |
| 0.9 | -0.427850                            | 246.336                          | 245.908                          | -0.481540       | 139.178               | 138.696                 |
| 1.0 | -0.425598                            | 252.247                          | 251.821                          | -0.476647       | 145.966               | 145.489                 |

Table 4: Numerical results of Shannon entropy for Improved Kratzer potential for Hydrogen molecule in the absence of Magnetic and Aharonov-Bohm flux fields and singular effects of Aharonov-Bohm flux fields for the first excited state  $(Sh_{T=}Sh_r + Sh_n \ge d(1 + ln\pi) \ge 4.28946, m = 0, n = 1).$ 

|     | $p = \langle \rangle$                   | - ,                                     | , ,                          |                                         |                                        |                                    |
|-----|-----------------------------------------|-----------------------------------------|------------------------------|-----------------------------------------|----------------------------------------|------------------------------------|
| Ē   | $Sh_r(\xi = \overrightarrow{B} \\ = 0)$ | $Sh_P(\xi = \overrightarrow{B} \\ = 0)$ | $Sh_T(\xi = \vec{B})$ $= 0)$ | $Sh_r(\xi = 2, \overrightarrow{B} = 0)$ | $Sh_P(\xi = 2, \overrightarrow{B} = 0$ | $Sh_r(\xi=2,\overrightarrow{B})=0$ |
| 0   | -0.317743                               | 374.076                                 | 373.759                      | -0.316831                               | 378.237                                | 377.920                            |
| 0.1 | -0.314779                               | 402.263                                 | 401.949                      | -0.313912                               | 406.371                                | 406.057                            |
| 0.2 | -0.312064                               | 429.769                                 | 429.457                      | -0.311242                               | 433.823                                | 433.512                            |
| 0.3 | -0.309589                               | 456.626                                 | 456.317                      | -0.308809                               | 460.627                                | 460.318                            |
| 0.4 | -0.307335                               | 482.866                                 | 482.558                      | -0.306595                               | 486.815                                | 486.508                            |
| 0.5 | -0.305285                               | 508.519                                 | 508.213                      | -0.304582                               | 512.417                                | 512.112                            |
| 0.6 | -0.303419                               | 533.614                                 | 557.311                      | -0.302750                               | 537.463                                | 537.160                            |
| 0.7 | -0.301720                               | 558.180                                 | 557.879                      | -0.301082                               | 561.981                                | 561.679                            |
| 0.8 | -0.300170                               | 582.243                                 | 581.943                      | -0.299562                               | 585.996                                | 585.697                            |
| 0.9 | -0.298757                               | 605.528                                 | 605.528                      | -0.298175                               | 609.534                                | 609.236                            |
| 1.0 | -0.297465                               | 628.955                                 | 628.658                      | -0.296909                               | 632.618                                | 632.321                            |

Table 5: Numerical results of Shannon entropy for Improved Kratzer potential for Hydrogen molecule in the combine effects of Magnetic and Aharonov-Bohm flux fields, and singular effect of magnetic field for the first excited state ( $Sh_T=Sh_r + Sh_p \ge d(1 + ln\pi) \ge 4.28946$ , m = 0, n = 1)

| P   | Ē | $Sh_r(\xi = \vec{B})$<br>= 2) | $Sh_P(\xi = \overrightarrow{B})$<br>= 2) | $Sh_T(\xi = \vec{B})$ $= 2)$ | $Sh_r(\xi = 0, \vec{B} = 2)$ | $Sh_P(\xi = 0, \vec{B} = 2$ | $Sh_r(\xi = 0, \vec{B})$<br>= 2) |
|-----|---|-------------------------------|------------------------------------------|------------------------------|------------------------------|-----------------------------|----------------------------------|
| 0   |   | -0.400769                     | 560.747                                  | 560.347                      | -0.456237                    | 241.137                     | 240.681                          |
| 0.1 |   | -0.398244                     | 578.303                                  | 578.905                      | -0.452640                    | 261.066                     | 260.614                          |
| 0.2 |   | -0.395824                     | 595.724                                  | 595.329                      | -0.448730                    | 280.911                     | 280.463                          |
| 0.3 |   | -0.393503                     | 613.013                                  | 612.619                      | -0.444671                    | 300.659                     | 300.214                          |
| 0.4 |   | -0.391276                     | 630.169                                  | 629.778                      | -0.440571                    | 320.299                     | 319.858                          |
| 0.5 |   | -0.389140                     | 647.194                                  | 646.805                      | -0.436500                    | 339.821                     | 339.385                          |
| 0.6 |   | -0.387088                     | 664.090                                  | 663.703                      | -0.432503                    | 359.220                     | 358.788                          |
| 0.7 |   | -0.385119                     | 680.858                                  | 680.473                      | -0.428610                    | 378.490                     | 378.062                          |
| 0.8 |   | -0.383226                     | 597.500                                  | 697.500                      | -0.424839                    | 397.626                     | 397.201                          |
| 0.9 |   | -0.381407                     | 714.017                                  | 713.635                      | -0.421200                    | 416.625                     | 416.204                          |
| 1.0 |   | -0.379658                     | 730.410                                  | 730.031                      | -0.417698                    | 435.485                     | 435.067                          |

Table 6: Numerical results of Shannon entropy for Improved Kratzer potential for Hydrogen molecule in the absence of Magnetic and Aharonov-Bohm flux fields and singular effects of Aharonov-Bohm flux fields for the second excited state  $(Sh_{T=}Sh_r + Sh_p \ge d(1 + ln\pi) \ge 4.28946, m = 0, n = 2).$ 

| Ē   | $Sh_r(\xi = \overrightarrow{B} = 0)$ | $Sh_p(\xi = \overrightarrow{B} = 0)$ | $Sh_T(\xi = \overrightarrow{B} = 0)$ | $Sh_r(\xi=2, \vec{B}=0)$ | $Sh_P(\xi=2, \overrightarrow{B}=0)$ | $Sh_T(\xi=2, \overrightarrow{B}=0)$ |
|-----|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|-------------------------------------|-------------------------------------|
| 0   | -0.311374                            | 689.133                              | 688.822                              | -0.310538                | 696.104                             | 695.793                             |
| 0.1 | -0.308459                            | 736.326                              | 736.018                              | -0.307664                | 743.197                             | 742.890                             |
| 0.2 | -0.305787                            | 782.329                              | 782.023                              | -0.305032                | 789.103                             | 788.798                             |
| 0.3 | -0.303343                            | 827.206                              | 826.902                              | -0.302627                | 833.885                             | 833.582                             |
| 0.4 | -0.301110                            | 871.018                              | 870.717                              | -0.300430                | 877.606                             | 877.305                             |
| 0.5 | -0.299070                            | 913.824                              | 913.525                              | -0.298423                | 920.322                             | 920.024                             |
| 0.6 | -0.297203                            | 955.678                              | 955.380                              | -0.296587                | 962.088                             | 961.792                             |
| 0.7 | -0.295494                            | 996.629                              | 996.333                              | -0.294907                | 1002.96                             | 1002.66                             |
| 0.8 | -0.293928                            | 1036.72                              | 1036.43                              | -0.293366                | 1042.97                             | 1042.68                             |
| 0.9 | -0.292490                            | 1076.01                              | 1075.72                              | -0.291952                | 1082.18                             | 1081.88                             |
| 1.0 | -0.291168                            | 1114.52                              | 1114.23                              | -0.290654                | 1120.61                             | 1120.32                             |

Table 7: Numerical results of Shannon entropy for Improved Kratzer potential for Hydrogen molecule in the combine effects of Magnetic and Aharonov-Bohm flux fields, and singular effect of magnetic field for the first excited state ( $Sh_T=Sh_r + Sh_p \ge d(1 + ln\pi) \ge 4.28946, m = 0, n = 2$ )

| Ē   | $Sh_r(\xi = \overrightarrow{B} = 2)$ | $Sh_p(\xi = \overrightarrow{B} = 2)$ | $Sh_T(\xi = \overrightarrow{B} = 2)$ | $Sh_r(\xi=0, \vec{B}=2)$ | $Sh_P(\xi=0, \overrightarrow{B}=2)$ | $Sh_T(\xi=0, \overrightarrow{B}=2)$ |
|-----|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|-------------------------------------|-------------------------------------|
| 0   | -0.381474                            | 1001.06                              | 1000.68                              | -0.431402                | 463.414                             | 462.983                             |
| 0.1 | -0.379208                            | 1030.43                              | 1030.05                              | -0.427976                | 497.229                             | 496.801                             |
| 0.2 | -0.377032                            | 1059.55                              | 1059.17                              | -0.424371                | 530.842                             | 530.418                             |
| 0.3 | -0.374942                            | 1088.44                              | 1088.07                              | -0.420693                | 564.239                             | 563.818                             |
| 0.4 | -0.372934                            | 1117.11                              | 1116.73                              | -0.417014                | 597.407                             | 596.990                             |
| 0.5 | -0.371004                            | 1145.54                              | 1145.17                              | -0.413381                | 630.338                             | 629.925                             |
| 0.6 | -0.369148                            | 1173.76                              | 1173.39                              | -0.409827                | 663.024                             | 662.614                             |
| 0.7 | -0.367363                            | 1201.75                              | 1201.38                              | -0.406369                | 695.460                             | 695.054                             |
| 0.8 | -0.365646                            | 1229.52                              | 1229.16                              | -0.403021                | 727.239                             | 727.239                             |
| 0.9 | -0.363993                            | 1257.08                              | 1256.72                              | -0.399789                | 759.568                             | 759.168                             |
| 1.0 | -0.362402                            | 1284.43                              | 1284.07                              | -0.396676                | 791.235                             | 790.839                             |

Table 8: Numerical results of Shannon entropy for Improved Kratzer potential for Scandium fluoride molecule in the absence of Magnetic and Aharonov-Bohm flux fields and singular effects of Aharonov-Bohm flux fields for the ground state  $(Sh_{T=}Sh_r + Sh_p \ge d(1 + ln\pi) \ge 4.28946, m = 0, n = 0).$ 

|     | Ē | $Sh_r(\xi = \overrightarrow{B} = 0)$ | $Sh_p(\xi = \overrightarrow{B} = 0)$ | $Sh_T(\xi = \overrightarrow{B} = 0)$ | $Sh_r(\xi=2, \overrightarrow{B}=0)$ | $Sh_P(\xi=2, \overrightarrow{B}=0)$ | $Sh_T(\xi=2, \overrightarrow{B}=0)$ |
|-----|---|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| 0   |   | -0.856790                            | 497.446                              | 496.589                              | -0.856646                           | 497.644                             | 496.787                             |
| 0.1 |   | -0.834444                            | 544.223                              | 543.388                              | -0.834315                           | 544.418                             | 543.584                             |
| 0.2 |   | -0.815220                            | 589.932                              | 589.117                              | -0.815103                           | 590.126                             | 589.310                             |
| 0.3 |   | -0.798530                            | 634.608                              | 633.810                              | -0.798424                           | 634.800                             | 634.001                             |
| 0.4 |   | -0.783930                            | 678.290                              | 677.506                              | -0.783828                           | 678.479                             | 677.696                             |
| 0.5 |   | -0.771054                            | 721.018                              | 720.246                              | -0.770965                           | 721.205                             | 720.434                             |
| 0.6 |   | -0.759640                            | 762.831                              | 762.072                              | -0.759558                           | 763.016                             | 762.257                             |
| 0.7 |   | -0.749461                            | 803.771                              | 803.022                              | -0.749385                           | 803.954                             | 803.205                             |
| 0.8 |   | -0.740338                            | 843.876                              | 843.136                              | -0.740266                           | 844.057                             | 843.317                             |
| 0.9 |   | -0.732123                            | 883.184                              | 882.452                              | -0.732056                           | 883.363                             | 882.631                             |
| 1.0 |   | -0.724695                            | 921.730                              | 921.006                              | -0.724632                           | 921.907                             | 921.182                             |

Table 9: Numerical results of Shannon entropy for Improved Kratzer potential for Scandium fluoride molecule in the combine effects of Magnetic and Aharonov-Bohm flux fields, and singular effect of magnetic field for the ground state ( $Sh_T=Sh_r + Sh_p \ge d(1 + ln\pi) \ge 4.28946, m = 0, n = 0$ )

|     | Ē | $Sh_r(\xi = \overrightarrow{B} = 2)$ | $Sh_p(\xi = \overrightarrow{B} = 2)$ | $Sh_T(\xi = \overrightarrow{B} = 2)$ | $Sh_r(\xi=0, \overrightarrow{B}=2)$ | $Sh_P(\xi=0, \overrightarrow{B}=2)$ | $Sh_T(\xi=0, \overrightarrow{B}=2)$ |
|-----|---|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| 0   |   | -0.866334                            | 511.537                              | 510.670                              | -0.880964                           | 484.421                             | 483.540                             |
| 0.1 |   | -0.844702                            | 557.038                              | 556.194                              | -0.857344                           | 530.483                             | 529.626                             |
| 0.2 |   | -0.825943                            | 601.566                              | 600.740                              | -0.836967                           | 575.559                             | 574.722                             |
| 0.3 |   | -0.809541                            | 645.148                              | 644.339                              | -0.819231                           | 619.674                             | 618.855                             |
| 0.4 |   | -0.795096                            | 687.818                              | 687.023                              | -0.803674                           | 662.858                             | 662.055                             |
| 0.5 |   | -0.782292                            | 729.608                              | 728.825                              | -0.789935                           | 705.145                             | 704.355                             |
| 0.6 |   | -0.770877                            | 770.553                              | 769.782                              | -0.777725                           | 746.567                             | 745.790                             |
| 0.7 |   | -0.760648                            | 809.927                              | 809.927                              | -0.766815                           | 787.161                             | 786.394                             |
| 0.8 |   | -0.751438                            | 849.295                              | 849.295                              | -0.757018                           | 826.959                             | 826.202                             |
| 0.9 |   | -0.743110                            | 887.917                              | 887.917                              | -0.748180                           | 865.994                             | 865.246                             |
| 1.0 |   | -0.735551                            | 926.561                              | 925.826                              | -0.740176                           | 904.300                             | 903.560                             |

Table 10: Numerical results of Shannon entropy for Improved Kratzer potential for Scandium fluoride molecule in the absence of Magnetic and Aharonov-Bohm flux fields and singular effects of Aharonov-Bohm flux fields for the first excited state ( $Sh_{T=}Sh_r + Sh_p \ge d(1 + ln\pi) \ge 4.28946$ , m = 0, n = 1).

| Ē   | $Sh_r(\xi = \overrightarrow{B} = 0)$ | $Sh_p(\xi = \overrightarrow{B} = 0)$ | $Sh_T(\xi = \overrightarrow{B} = 0)$ | $Sh_r(\xi=2, \vec{B}=0)$ | $Sh_P(\xi=2, \overrightarrow{B}=0)$ | $Sh_T(\xi=2, \overrightarrow{B}=0)$ |
|-----|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|-------------------------------------|-------------------------------------|
| 0   | -0.751167                            | 1404.33                              | 1403.58                              | -0.751051                | 1404.88                             | 1404.13                             |
| 0.1 | -0.733601                            | 1534.79                              | 1534.06                              | -0.733497                | 1535.34                             | 1534.61                             |
| 0.2 | -0.718403                            | 1662.31                              | 1661.60                              | -0.718308                | 1662.85                             | 1662.14                             |
| 0.3 | -0.705148                            | 1786.99                              | 1786.28                              | -0.705061                | 1787.52                             | 1786.82                             |
| 0.4 | -0.693505                            | 1908.92                              | 1908.23                              | -0.693426                | 1909.45                             | 1908.76                             |
| 0.5 | -0.683214                            | 2028.22                              | 2027.54                              | -0.683141                | 2028.75                             | 2028.06                             |
| 0.6 | -0.674066                            | 2145.00                              | 2144.33                              | -0.673998                | 2145.52                             | 2144.84                             |
| 0.7 | -0.665891                            | 2259.37                              | 2258.70                              | -0.665828                | 2259.88                             | 2259.21                             |
| 0.8 | -0.658553                            | 2371.43                              | 2370.77                              | -0.658493                | 2371.93                             | 2371.27                             |
| 0.9 | -0.651931                            | 2481.28                              | 2480.63                              | -0.651872                | 2481.78                             | 2481.13                             |
| 1.0 | -0.645950                            | 2589.03                              | 2588.39                              | -0.645897                | 2589.53                             | 2588.88                             |

Table 11: Numerical results of Shannon entropy for Improved Kratzer potential for Scandium fluoride molecule in the combine effects of Magnetic and Aharonov-Bohm flux fields, and singular effect of magnetic field for the first excited state  $(Sh_{T=}Sh_r + Sh_p \ge d(1 + ln\pi) \ge 4.28946, m = 0, n = 1)$ 

| ī   | $Sh_r(\xi = \overrightarrow{B} = 2)$ | $Sh_p(\xi = \overrightarrow{B} = 2)$ | $Sh_T(\xi = \overrightarrow{B} = 2)$ | $Sh_r(\xi=0, \vec{B}=2)$ | $Sh_P(\xi=0, \overrightarrow{B}=2)$ | $Sh_T(\xi=0, \overrightarrow{B}=2)$ |
|-----|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|-------------------------------------|-------------------------------------|
| 0   | -0.759836                            | 1443.66                              | 1442.90                              | -0.771318                | 1368.04                             | 1367.27                             |
| 0.1 | -0.742797                            | 1570.58                              | 1569.84                              | -0.752792                | 1496.50                             | 1495.75                             |
| 0.2 | -0.727940                            | 1694.82                              | 1694.09                              | -0.736702                | 1622.65                             | 1621.52                             |
| 0.3 | -0.714894                            | 1816.46                              | 1815.75                              | -0.722629                | 1745.36                             | 1744.64                             |
| 0.4 | -0.703362                            | 1935.58                              | 1934.88                              | -0.710235                | 1865.90                             | 1865.19                             |
| 0.5 | -0.693111                            | 2052.28                              | 2051.59                              | -0.699253                | 1983.96                             | 1983.27                             |
| 0.6 | -0.683950                            | 2166.64                              | 2165.96                              | -0.689467                | 2099.65                             | 2098.96                             |
| 0.7 | -0.675723                            | 2278.77                              | 2278.10                              | -0.680703                | 2213.04                             | 2212.36                             |
| 0.8 | -0.668305                            | 2388.75                              | 2388.08                              | -0.672819                | 2324.24                             | 2323.56                             |
| 0.9 | -0.661588                            | 2496.68                              | 2496.02                              | -0.665696                | 2433.33                             | 2432.66                             |
| 1.0 | -0.655486                            | 2602.63                              | 2601.97                              | -0.659237                | 2540.40                             | 2539.74                             |

Table 12: Numerical results of Shannon entropy for Improved Kratzer potential for Scandium fluoride molecule in the absence of Magnetic and Aharonov-Bohm flux fields and singular effects of Aharonov-Bohm flux fields for the second excited state ( $Sh_{T=}Sh_r + Sh_p \ge d(1 + ln\pi) \ge 4.28946, m = 0, n = 2$ ).

| Ē   | $Sh_r(\xi = \overrightarrow{B} = 0)$ | $Sh_p(\xi = \overrightarrow{B} = 0)$ | $Sh_T(\xi = \overrightarrow{B} = 0)$ | $Sh_r(\xi=2, \vec{B}=0)$ | $Sh_P(\xi=2, \overrightarrow{B}=0)$ | $Sh_T(\xi=2, \overrightarrow{B}=0)$ |
|-----|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|-------------------------------------|-------------------------------------|
| 0   | -0.696781                            | 2387.04                              | 2386.35                              | -0.696679                | 2387.96                             | 2387.96                             |
| 0.1 | -0.681555                            | 2604.21                              | 2603.53                              | -0.681463                | 2605.12                             | 2605.12                             |
| 0.2 | -0.668332                            | 2816.43                              | 2815.76                              | -0.668284                | 2817.33                             | 2817.33                             |
| 0.3 | -0.656765                            | 3023.87                              | 3023.21                              | -0.656688                | 3024.76                             | 3024.76                             |
| 0.4 | -0.646579                            | 3226.71                              | 3226.06                              | -0.646508                | 3227.59                             | 3227.59                             |
| 0.5 | -0.637557                            | 3425.14                              | 3424.50                              | -0.637491                | 3426.01                             | 3426.01                             |
| 0.6 | -0.629552                            | 3619.35                              | 3618.72                              | -0.629461                | 3620.21                             | 182.484                             |
| 0.7 | -0.622331                            | 3809.53                              | 3808.91                              | -0.622274                | 3810.38                             | 178.513                             |
| 0.8 | -0.615868                            | 3995.85                              | 3995.24                              | -0.615815                | 3996.69                             | 174.963                             |
| 0.9 | -0.610036                            | 4178.50                              | 4177.89                              | -0.609986                | 4179.33                             | 171.846                             |
| 1.0 | -0.604754                            | 4357.63                              | 4357.02                              | -0.604707                | 4358.45                             | 169.172                             |

Table 13: Numerical results of Shannon entropy for Improved Kratzer potential for Scandium fluoride molecule in the combine effects of Magnetic and Aharonov-Bohm flux fields, and singular effect of magnetic field for the second excited state ( $Sh_{T=}Sh_r + Sh_p \ge d(1 + ln\pi) \ge 4.28946$ , m = 0, n = 2)

| ī   | $Sh_r(\xi = \overrightarrow{B} = 2)$ | $Sh_p(\xi = \overrightarrow{B} = 2)$ | $Sh_T(\xi = \overrightarrow{B} = 2)$ | $Sh_r(\xi=0, \overrightarrow{B}=2)$ | $Sh_P(\xi=0, \overrightarrow{B}=2)$ | $Sh_T(\xi=0, \overrightarrow{B}=2)$ |
|-----|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| 0   | -0.704821                            | 2452.45                              | 2451.75                              | -0.714769                           | 2326.55                             | 2325.83                             |
| 0.1 | -0.690041                            | 2663.73                              | 2663.04                              | -0.698729                           | 2540.42                             | 2539.72                             |
| 0.2 | -0.677109                            | 2870.49                              | 2869.81                              | -0.684751                           | 2749.72                             | 2749.04                             |
| 0.3 | -0.665719                            | 3072.87                              | 3072.21                              | -0.672485                           | 2954.57                             | 2953.90                             |
| 0.4 | -0.655627                            | 3271.03                              | 3270.38                              | -0.661654                           | 3155.12                             | 3154.46                             |
| 0.5 | -0.646638                            | 3465.14                              | 3464.49                              | -0.652034                           | 3351.51                             | 3350.86                             |
| 0.6 | -0.638590                            | 3655.63                              | 3654.70                              | -0.643446                           | 3543.92                             | 3543.27                             |
| 0.7 | -0.631353                            | 3841.79                              | 3841.16                              | -0.635743                           | 3732.49                             | 3731.85                             |
| 0.8 | -0.624818                            | 4024.66                              | 4024.04                              | -0.628803                           | 3917.39                             | 3916.76                             |
| 0.9 | -0.618896                            | 4204.10                              | 4203.48                              | -0.622526                           | 4098.78                             | 4098.15                             |
| 1.0 | -0.613511                            | 4380.25                              | 4379.64                              | -0.616829                           | 4276.79                             | 4276.17                             |

# DISCUSSION

In this work, we have investigated the Shannon entropy with improved Kratzer potential (IKP) model under the influence of external fields and applied to scandium fluoride molecule as well as hydrogen molecule for three low-lying quantum states using equations (6), (14), (18), (19) and the spectroscopic parameters in Table 1. The following conversions factors were used for our computations: 1amu = 931.494028  $\frac{MeV}{c^2}$  and  $\hbar c = 1973.29 \text{eVA}^0$ .

In Figures 2-6, the variation of the wave function in position and momentum coordinates are demonstrated for the ground, first excited and second excited states for scandium fluoride as well as hydrogen molecules. Characteristics features of the wave function for both molecules indicate that higher quantum states exhibit more oscillations and peaks which is similar to an ideal condition for experimental and theoretical description of wave functions.

The numerical values of Shannon entropy  $Sh_r$ ,  $Sh_p$  and their sum  $Sh_T$  for three low-lying quantum states with the potential control parameter  $\bar{c}$  have been displayed in Tables 2-13 for hydrogen and scandium fluoride molecules in the absence  $(\xi = \vec{B} = 0)$ , combined  $(\xi = \vec{B} = 2)$  and singular  $(\xi = 0, \vec{B} = 2 \text{ or } \xi = 2, \vec{B} = 0)$  influence of magnetic  $(\vec{B})$  and Aharonov-Bohm flux fields  $(\xi)$ . Negative values of the position Shannon entropy were observed for IKP as applied to both molecules. Observations from our results show lower values of position Shannon entropies for singular presence of magnetic field as well as in the combined effects of both magnetic and AB flux fields when compared to the Shannon entropy values in the absence of the two fields. A reverse situation occurs for the singular influence of AB fields for H<sub>2</sub> and ScF. In the case of momentum Shannon entropies, greater values were observed for a singular influence of AB field as well as in the combined presence of both magnetic and AB fields, while lower values were discovered for singular effect of magnetic field when compared with values in the absence of both external fields for the two molecules.

In Tables 2-13, Our results obey the Shannon entropy uncertainty relation  $Sh_T = Sh_r + Sh_p \ge d(1+In\pi)$  for the two molecules. In all, the external fields are seen to influence the Shannon entropy as such enhances the localization of particle and stability of the system we considered.

# CONCLUSION

We have studied the effects of magnetic and Aharonov-Bohm flux field on Shannon entropy with improved Kratzer potential model in position and momentum spaces for scandium fluoride and hydrogen molecules. The wave function of IKP was obtained by solving the bound state solution of the two-dimensional Schrodinger wave equation using Nikiforov-Uvarov functional analysis method. The probability density was obtained by squaring the wave function and then used to calculate the Shannon information entropy for the ground state, first excited state and second excited states for two diatomic molecules analytically and numerically. Observations from our results reveals negative values for the Shannon entropy in position space which physically indicate high localization of the particles in the system. Also, our numerical values show that the Shannon entropy uncertainty relation is obeyed. Moreover, the Shannon entropy values are influenced by the external fields which in turn boost the localization of particle and stability of the system studied which can find applications in the dynamics of atomic and molecular systems subjected to external fields, nanostructure processes in information technology amongst others.

# REFERENCES

Adamowski, M. and Stegun, I. (1965). Handbook of Mathematical Functions, Dover, New York.

- Beckner, W. (1975). Inequalities in Fourier analysis. *Annals of Mathematics*, 102:159 182. Aharonov, Y. V. and Bohm, D. (1959). Further considerations on electromagnetic potentials in the quantum theory. *Physical Review*, 115:485.
- Bialynicki-Birula, I. and Mycielski, J. (1975). Uncertainty relations for information entropy in wave mechanics. *Communication in Mathematical Physics*, 44:129.
- Dehesa, J. S., Martinez-Finkelshtein, A. and Sorokin, V. N. (2006). Information Theoretic measures for Morse and Poschl-Teller potential. *Molecular Physics*, 104:613.
- Edet, C. O. and Ikot, A. N. (2021). Shannon information entropy in the presence of magnetic and Aharonov Bohm (AB) fields. *European Physical Journal Plus*, 136:432.
- Edet, C. O., Ettah, E. B., Aljunid, S. A., Endut, R., Ali, N., Ikot, A. N., and Asjad, M. (2022). Global quantum information-theoretic measures in the presence of magnetic and Aharonov Bohm (AB) fields. *Symmetry*, 14:976.
- Greiner, W. (2000). Quantum Mechanics an Introduction, 4th ed. Springer-Verlag Berlin, Heidelberg, New York.
- Galindo, A. and Pascual, P. (1978). Quantum Mechanics, Springer, Berlin.
- Gadre, S. K. and Pathak, R. K. (1991). Bounds to atomic and Molecular energy functions. *Advances in Quantum Chemistry*, 22:1.
- Grassi, A. A. (2011). A relationship between atomic correlation energy of neutral atoms and generalized entropy. *International Journal of Quantum Chemistry*, 111:2390.
- Hiley, B. J. (2013). The early history of the Aharonov-Bohm effect, https://doi.org/10.48550/arXiv.1304.4736.
- Ikot, A. N., Rampho, G. J., Amadi, P. O., Okorie, U. S., Sithole, M. J., and Lekala, M. L. (2020). Quantum information entropic measures for exponential - type potential. *Results in Physics*, 18:103150.
- Ikot, A. N., Okorie, U. S., Amadi, P. O., Edet, C. O., Rampho, G. J., and Sever, R. (2021). The Nikiforov-Uvarov functional analysis (NUFA) method: A new approach for solving exponential-type potentials. *Few-body Systems*, 62:9.
- Isonguyo, C. N., Oyewumi K. J. and Oyun O. S. (2018). Quantum Information-Theoretic measures for static screened Coulomb Potential. *International Journal of Quantum Chemistry*, 118:e25620.
- Nalewajski, R. F., Koster, A. M. and Escalante, S. (2005). Electron Localization as Information measure. *Journal of Physical Chemistry A*, 109:10038.
- Nalewajski, R. F. (2006). Information Theory of Molecular Systems. Elsevier, Amsterdam. Okon, I. B., Antia, A. D., Akpabio, L. E., and Archibong, B. U. (2018). Expectation values of some diatomic molecules with Deng - Fan potential using Hellmann - Feynman theorem. *Journal of Applied Physical Science International*, 10:247.
- Najafizade, S. A., Hassanabadi, H. and Zarrinkamar, S. (2016). Nonrelativistic Shannon information entropy for Kratzer potential. *Chinese Physics B*, 25:040301.
- Nielson, M. A. and Chuang, I. L. (2001). Quantum Computation and Quantum Information Cambridge University Press, Cambridge.
- Nikiforov, A. F. and Uvarov, V. B. (1988). Special Functions of Mathematical Physics. Birkhauser, Basel.
- Olendski, O. (2019). Quantum information measures of the Aharonov Bohm ring in uniform magnetic fields. *Physics Letters A*, 383:1110.
- Olendski, O. (2021). Quantum information measures of the Dirichlet and Neumann hyperspherical dots. *International Journal of Quantum Chemistry*, 21: e26455.
- Okon, I. B., Antia, A. D., Ituen, E. E and Isonguyo, C. N. (2018). Eigen Solution for Shannon Entropy with Trigonometric Yukawa Plus Inversely Quadratic Potential. *World Journal of Applied Science and Technology*. 10:137.
- Okon, I. B., Isonguyo, C. N., Antia, A. D., Ikot, A. N., and Popoola, O. O. (2020). Fisher and Shannon information entropies for a noncentral inversely quadratic plus exponential Mie-type potential. *Communication in theoretical Physics*, 72:065104.
- Okon, I. B., Onate, C. A., Omugbe, E., Okorie, U. S., Edet, C. O., Antia, A. D., Araujo, J. P., Isonguyo, C. N., Onyeaju, M. C., William, E. S., Horchani, R., and Ikot, A. N. (2022). Aharonov Bohm (AB) flux and thermomagnetic properties of Hellmann plus screened Kratzer potential as applied to diatomic molecules using Nikiforov Uvarov functional analysis (NUFA) method. *Molecular Physics*, 120:9.
- Okon, I. B., A., O. C., Horchani, R., Popoola, O. O., Omugbe, E., William, E. S., Okorie, U. S., Inyang, E. P., Isonguyo, C. N., Udoh, M. E., Antia, A. D., Chen, W. L., Eyube, E. S., Araujo, J. P., and Ikot, A. N. (2023). Thermomagnetic properties and its effects on Fisher entropy with Schioberg plus Manning Rosen potential (SPMRP) using Nikiforov Uvarov functional analysis (NUFA) and Supersymmetric quantum mechanics (SUSYQM) methods. *Scientific Reports*, 13:28193.
- Omugbe, V., Osafile, O. E., Njoku, I. J., Jahanshir, A., Edet, C. O., Okon, I. B., Eyube, E. S., Onate, C. A., Horchani, R., William, E. S., and Ikot, A. N. (2023). Information - theoretic measures and thermodynamic properties under magnetic and Aharonov - Bohm flux fields. *European Journal of Physics D*, 77:143.
- Rampho, G. J., Ikot, A. N., and Edet, C. O. and Okorie, U. S. (2021). Energy spectra and thermal properties of diatomic molecules in the presence of magnetic and AB fields with improved Kratzer potential. *Molecular Physics*, 119:5.
- Sears, S. B. (1980). Applications information theory in chemical Physics. Ph.D. Thesis, *University of North Carolina, Chapel Hill*.
- Shannon, C. E. (1948). A mathematical Theory of Communication, Bell System Technology Journal, 27:379.

Tezcan, C. and Sever, R. (2009). A general approach for the exact solution of the Schrodinger equation. *International Journal of Theoretical Physics*. 48:337.

Yahya, W. A., Oyewumi, K. J. and Sen, K. D. (2014). Position and momentum information theoretic measures of the pseudoharmonic potential. *International Journal of Quantum Chemistry* 115:1543.

#### APPENDICES

## Nikiforov-Uvarov-Functional Analysis Method

The Nikiforov-Uvarov Functional Analysis (NUFA) method is a combination of the concepts of Nikiforov-Uvarov (NU) method and the functional analysis method developed by Ikot and his co- authors (Ikot, *et al.*, 2021; Nikiforov and Uvarov 1988; Okon, *et al.*, 2020). NU is applied to solve a second-order differential equation of the form

$$\frac{d^2\psi(s)}{ds^2} + \frac{\partial(s)}{\sigma(s)}\frac{d\psi(s)}{ds} + \frac{\partial(s)}{\sigma^2(s)}\psi(s) = 0$$
(1)

where  $\sigma(s)$  and  $\mathcal{H}(s)$  are polynomials at most second degree and  $\mathcal{H}(s)$  is a first-degree polynomial. (Tezcan and Sever, 2009) latter introduced the parametric form of NU method in the form

$$\frac{d^2\psi(s)}{ds^2} + \frac{\alpha_1 - \alpha_2 s}{s(1 - \alpha_3 s)} \frac{d^2\psi(s)}{ds^2} + \frac{1}{s^2(1 - \alpha_3 s)^2} \Big[ -U_1 s^2 + U_2 s - U_3 \Big] \psi(s) = 0$$
(2)

where  $\alpha_i$  and  $\xi_i$  (i = 1, 2, 3) are all parameters. It can be observed in equation (2) that the differential equation has two

singularities all 
$$s \to 0$$
 and  $s \to \frac{1}{\alpha_3}$  thus we take wave function in the form.  
 $\Psi_n(s) = s^{\lambda} (1 - \alpha_3 s)^{\nu} f(s)$ 
(3)

Substituting equation (3) into equation (2) leads to the following equation,

$$s(1-\alpha_{3}s)\frac{d^{2}f(s)}{ds^{2}} + \left[\alpha_{1}+2\lambda-(2\lambda\alpha_{3}+2\nu\alpha_{3}+\alpha_{2})s\right]\frac{df(s)}{ds} -\alpha_{3}\left(\lambda+\nu+\frac{1}{2}\left(\frac{\alpha_{2}}{\alpha_{3}}-1\right)+\sqrt{\frac{1}{4}\left(\frac{\alpha_{2}}{\alpha_{3}}-1\right)^{2}+\frac{U_{1}}{\alpha_{3}^{2}}}\right)\left(\lambda+\nu+\frac{1}{2}\left(\frac{\alpha_{2}}{\alpha_{3}}-1\right)-\sqrt{\frac{1}{4}\left(\frac{\alpha_{2}}{\alpha_{3}}-1\right)^{2}+\frac{U_{1}}{\alpha_{3}^{2}}}\right)f(s) + \left[\frac{\lambda(\lambda-1)+\alpha_{1}\lambda-U_{3}}{s}+\frac{\nu(\nu-1)\alpha_{3}+\alpha_{2}\nu-\alpha_{1}\alpha_{3}\nu-\frac{U_{1}}{\alpha_{3}}+U_{2}-U_{3}\alpha_{3}}{(1-\alpha_{3}s)}\right]f(s) = 0$$

$$(4)$$

Equation (4) can be reduced to a Gauss hypergeometric equation if and only if the following functions vanished

$$\lambda (\lambda - 1) + \alpha_1 \lambda - U_3 = 0 \tag{5}$$

$$\upsilon(\upsilon - 1)\alpha_3 + \alpha_2\upsilon - \alpha_1\alpha_3\upsilon - \frac{U_1}{\alpha_3} + U_2 - U_3\alpha_3 = 0.$$
(6)

Thus equation (4) now becomes

$$s(1-\alpha_{3}s)\frac{d^{2}f(s)}{ds^{2}}\left[\alpha_{1}+2\lambda-(2\lambda\alpha_{3}+2\nu\alpha_{3}+\alpha_{2})s\right]\frac{df(s)}{ds} -\alpha_{3}\left(\lambda+\nu+\frac{1}{2}\left(\frac{\alpha_{2}}{\alpha_{3}}-1\right)+\sqrt{\frac{1}{4}\left(\frac{\alpha_{2}}{\alpha_{3}}-1\right)^{2}+\frac{U_{1}}{\alpha_{3}^{2}}}\right)\left(\lambda+\nu+\frac{1}{2}\left(\frac{\alpha_{2}}{\alpha_{3}}-1\right)-\sqrt{\frac{1}{4}\left(\frac{\alpha_{2}}{\alpha_{3}}-1\right)^{2}+\frac{U_{1}}{\alpha_{3}^{2}}}\right)f(s)=0$$
(7)

Solving equations (5) and (6) completely give,

$$\lambda = \frac{1}{2} \left( \left( 1 - \alpha_1 \right) \pm \sqrt{\left( 1 - \alpha_1 \right)^2 + 4U_3} \right)$$
(8)

Open Access article published under the terms of a Creative Commons license (CC BY). http://wojast.org

/

Isonguyo et al: Shannon Information Entropy with Improved Kratzer Potential under the Effects of Magnetic and Aharonov-Bohm Flux Fields https://dx.doi.org/10.4314/wojast.v15i2.4

$$\upsilon = \frac{1}{2\alpha_3} \left( \left( \alpha_3 + \alpha_1 \alpha_3 \right) \pm \sqrt{\left( \alpha_3 + \alpha_1 \alpha_3 \right)^2 + 4 \left( \frac{U_1}{\alpha_3} + \alpha_3 U_3 - U_2 \right)} \right)$$
(9)

Equation (7) is the hypergeometric equation type of the form

$$x(1-x)\frac{d^{2}f(s)}{ds^{2}} + \left[c - (a+b+1)x\right]\frac{df(x)}{dx} - \left[ab\right]f(x) = 0$$
(10)

where a, b and c are given as follows:

$$a = \sqrt{\alpha_3} \left( \lambda + \nu + \frac{1}{2} \left( \frac{\alpha_2}{\alpha_3} - 1 \right) + \sqrt{\frac{1}{4} \left( \frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{U_1}{U_3^2}} \right)$$

$$(11)$$

$$b = \sqrt{\alpha_3} \left( \lambda + \nu + \frac{1}{2} \left( \frac{\alpha_2}{\alpha_3} - 1 \right) - \sqrt{\frac{1}{4} \left( \frac{\alpha_2}{\alpha_3} - 1 \right)} + \frac{U_1}{\alpha_3^2} \right)$$
(12)

$$c = \alpha_1 + 2\lambda \tag{13}$$

Setting either a or b equal to a negative integer -n, the hypergeometric function f(s) turns to a polynomial of degree n. Hence, the hypergeometric function f(s) approaches finite in the following quantum condition, i.e., a = -n where  $n = 0, 1, 2, 3...n_{max}$  or b = -n.

On using the quantum condition,

$$\sqrt{\alpha_3} \left( \lambda + \upsilon + \frac{1}{2} \left( \frac{\alpha_2}{\alpha_3} - 1 \right) + \sqrt{\frac{1}{4} \left( \frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{U_1}{\alpha_3^2}} \right) = -n$$
(14)

$$\lambda + \upsilon + \frac{1}{2} \left( \frac{\alpha_2}{\alpha_3} - 1 \right) + \frac{n}{\sqrt{\alpha_3}} = -\sqrt{\frac{1}{4} \left( \frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{U_1}{\alpha_3^2}}$$
(15)

Squaring both sides of equation (15) and rearranging, we obtain the equation for the NUFA method as

$$\lambda^{2} + 2\lambda \left(\upsilon + \frac{1}{2} \left(\frac{\alpha_{2}}{\alpha_{3}} - 1\right) + \frac{n}{\sqrt{\alpha_{3}}}\right) + \left(\upsilon + \frac{1}{2} \left(\frac{\alpha_{2}}{\alpha_{3}} - 1\right) + \frac{n}{\sqrt{\alpha_{3}}}\right)^{2} - \frac{1}{4} \left(\frac{\alpha_{2}}{\alpha_{3}} - 1\right)^{2} - \frac{U_{1}}{\alpha_{3}^{2}} = 0$$
(16)

By substituting equations (8) and (9) into equation (3), we obtain the corresponding wave equation for the NUFA method as

$$\Psi_{n}(s) = N_{n} S^{\frac{(1-\alpha_{1})+\sqrt{(\alpha_{1}-1)^{2}+4U_{3}}}{2}} (1-\alpha_{3})^{\frac{(\alpha_{3}+\alpha_{1}\alpha_{3}-\alpha_{2})+\sqrt{(\alpha_{3}+\alpha_{1}\alpha_{3}-\alpha_{2})^{2}+4\left(\frac{U_{1}}{\alpha_{3}^{2}}+\alpha_{3}U_{3}-U_{2}\right)}}{2\alpha_{2}} {}_{2}F_{1}(a,b,c;s)$$
(17)