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ABSTRACT 

In this work, we obtained analytical bound state solution of Schrodinger wave equation and thermodynamic properties with 

modified Hulthen plus generalized Coulomb Potential as applied to Yttrium Barium copper oxide (𝑌𝐵𝑎2𝐶𝑢3𝑂7−𝑥) 
superconductor using parametric Nikiforov-Uvarov method (NU). We obtained the energy eigenvalues for various screening 

parameter (𝛼 = 0.2 , 0.4 , 0.6 , 0.8 , 1.0) and the total normalized wave function expressed in terms of Jacobi polynomial.  

Thermodynamic properties of  𝑌𝐵𝑎2𝐶𝑢2𝑂7−𝑥 such as the vibrational mean energy 𝑈(𝛽), vibrational heat capacity 𝐶(𝛽), 
vibrational entropy 𝑆(𝛽) and vibrational free energy 𝐹(𝛽) were obtained using partition function. The thermodynamic wave 

functions and probability density plots were also obtained.   Yttrium Barium copper oxide can be used on an adjustment 

measure to obtain necessary inherent and band gap energies for the production and manufacturing of 

𝑌𝐵𝑎2𝐶𝑢2𝑂7−𝑥  technological devices. 

Keywords: Schrὅdinger Equation; Thermodynamic properties, Nikiforov-Uvarov method; Modified Hulthen plus 
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Introduction 

The high-temperature superconductor (HTS) 𝑌𝐵𝑎2𝐶𝑢2𝑂7−𝑥  

is one of the most promising materials for applications and 

hence it has been intensively investigated by many 

researches since its discovery in 1986. The important issue 

here is to improve the efficiency of current transmission for 

HTS 𝑌𝐵𝑎2𝐶𝑢2𝑂7−𝑥 as well as making its superconducting 

properties more reliable robust and reproducible, which is 

associated with difficulty in fabrication for practical 

applications (Zhang, et al., 2016). According to Ikot et al. 

(2021), a crucial and fascinating problem in physics is to 

study the thermal and magnetic properties of quantum 

systems, and some researchers have investigated in this 

direction. For example, Johan et al. (2019) scrutinized the 

effect of geometric and transport properties of a Gallium 

Arsenide (GaAs) quantum Dot (QD) using the power 

exponential potential model. There are several ways of 

classifying superconductors, either by their response to an 

external magnetic field, their materials constituents such as 

elements, alloys or ceramics and their critical temperature 

(low temperature or high temperature).  
 

Type I superconductors comprises mainly of metals and has 

only one critical field while Type II superconductors 

comprise mainly of alloys and compound with two critical 

fields exhibiting   perfect diamagnetism (Josephson, 1964) . 

Studying thermodynamic properties of High temperature 

superconductor (𝑌𝐵𝑎2𝐶𝑢2𝑂7−𝑥) will reveal some hidden 

properties that enhance the development of several 

superconductor technological devices. Thermodynamic 

properties of quantum mechanical system is derived from 

exact partition function (Okon, et al., 2015). The eigen 

functions obtained by solving schrodinger wave equation 

provide vital information and gives in-depth understanding 

of quantum mechanical systems (Greiner, 2001; Chen, 2004; 

Zhang et al., 2010; Flugge, 1974 and Onate et al., 2022). The 

relativistic wave equations are Dirac and Klein-Gordon 

equations while Schrödinger wave equation is a non-

relativistic wave equation (Antia et al., 2022; Chalk, 1988; 

Okon, et al., 2015; Isonguyo, et al., 2014; Omugbe, et al., 

2020; Farout, et al., 2021 and Edet, et al., 2020).  
 

The thermodynamic properties examined in this work are 

vibrational mean energy 𝑈(𝛽), vibrational heat capacity 

𝐶(𝛽), Vibrational entropy 𝑆(𝛽) and vibrational free energy 

𝑈(𝛽). The proposed potential use in this work is modified 

Hulthen plus generalized Coulomb Potential. This potential 

has applications in several branches of physics such as high 

energy physics, particle physics, molecular physics and for 

modelling superconductors (Chalk, 1988; Ita, et al., 2017; 

Falaye, et al., 2013; Ahmadov, et al., 2021; Ikhdair, 2011 

and Landau, et al., 1977).  The proposed potential model is 

given as  
 

V(r) = - 
𝑉𝑒−2𝑥𝑟

1−𝑒−2𝑥𝑟
− 

𝑍𝑒𝑒
−2𝑥𝑟

𝑟
               (1) 

 

Parametric Nikiforov – Uvarov Method 

The parametric formalization of NU involves reducing the 

second order linear differential equation to a generalized 

equation of hyper-geometric-type. This method provides 

exact solutions in terms of special orthogonal functions as 

well as the corresponding energy equation. With appropriate 

coordinate transformation, 𝑠 = 𝑠(𝑥), this equation can be 

written as (Nikiforov, 1988; Okon, et al., 2017; Ikhdair, 

2009 and Tezcan, et al., 2009). 
 

𝜓"(𝑠)  +
�̅�(𝑠)

𝜎(𝑠)
 𝜓1

(𝑠)
+

�̃�(𝑠)

𝜎2(𝑠)
 𝜓(𝑠) = 0     (2) 

 

where 𝜏̅(𝑠) is a polynomial of degree one, 𝜎(𝑠) and �̃�(𝑠) are 

polynomials of at most degree two. Then the parametric NU 

differential equation is in the form (Okon, et al., 2017). 
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𝜓"(𝑠)  + 
𝑐1− 𝑐2𝑠

𝑠(1−𝑐3𝑠)
𝜓′(𝑠) +

1

𝑠2(1−𝑐3𝑠)
2
[−𝜉1𝑠

2 + 𝜉2𝑠 −

𝜉3]𝜓(𝑠) = 0      (3) 

Other parametric constants can be obtained as  

 

[
 
 
 
 
 
 
 𝑐1 = 𝑐2 = 𝑐3 = 1, 𝑐4 =

1

2
(1 − 𝑐1), 𝑐5 =

1

2
(𝑐2 − 2𝑐3),

𝑐6 = 𝑐5
2 + 𝜉1, 𝑐7 = 2𝑐4𝑐5 − 𝜉2,  𝑐8 = 𝑐4

2 + 𝜉3 ,

𝑐8 = 𝑐4
2 + 𝜉3, 𝑐9 = 𝑐3𝑐7 + 𝑐3

2𝑐8 + 𝑐6, 𝑐10 = 𝑐1 + 2𝑐4 + 2√𝑐8,

𝑐11 = 𝑐2 − 2𝑐5 + 2(√𝑐9 + 𝑐3√𝑐8), 𝑐12 = 𝑐4 + √𝑐8

𝑐13 = 𝑐5 − (√𝑐9 + 𝑐3√𝑐8)
]
 
 
 
 
 
 
 

     

          (4) 
 

The energy eigen equation is given as  

𝑐2𝑛 − (2𝑛 + 1)𝑐5 + (2𝑛 + 1)(√𝑐9 + 𝑐3√𝑐8) + 𝑛(𝑛 −

1)𝑐3 + 𝑐7 + 2𝑐3𝑐8 + 2√𝑐8𝑐9 = 0 ,       (5) 
 

while corresponding wave function is given by  
 

𝜓(𝑠) = 𝜙(𝑠)𝜒𝑛(𝑠) = 𝑁𝑛𝑠
−𝑐12−

𝑐13
𝑐3 𝑃𝑛

(𝑐10−1,
𝑐11
𝑐3
−𝑐10−1 )

(1 −

2𝑐3𝑠)                          (6) 
 

Solution of Schrödinger Equation Using Modified 

Hulthen Plus Generalised Coulomb Potential  

The radial solution of Schrödinger wave equation in the 

presence of orbital angular quantum number for varying 

quantum state. (Inyang, et al., 2020; Pakdel, et al., 2014; 

Bale, et al., 2019; Ikot, et al., 2016; Okon, et al., 2018; 

Farout, et al., 2021; Ikot, et al., 2012; Sever, et al., 2012; 

Ukewuihe, et al., 2012 and Diao, et al., 2009) is given as  
 

 
𝑑2𝑅(𝑟)

𝑑𝑟2
+

2𝜇

ℏ2
 { (𝐸𝑛𝑙 − 𝑉(𝑟)) −

 ℏ2𝑙(𝑙+1)

2𝜇𝑟2
}𝜓(𝑟) = 0   (7) 

 

where 𝐸𝑛𝑙 is the exact bound state energy eigenvalues, 𝜓(𝑟) 
is the wave function, μ represent the reduced mass. n and 𝑙 
are known as the quantum number and rotation quantum 

number. On substituting equation (1) into equation (7), the 

radial part of the Schrödinger equation for the Modified 

Hulthen Plus Generalised Coulomb potential is given as: 

  
 

𝑑2𝑅(𝑟)

𝑑𝑟2
+ {

2𝜇

ℏ2
[𝐸𝑛𝑙 + 

𝑉𝑒−2𝑥𝑟

1−𝑒−2𝑥𝑟
+ 

𝑍𝑒𝑒
−2𝑥𝑟

𝑟
  ] −

𝑙(𝑙+1)

𝑟2
} 𝑅(𝑟) = 0 

.               (8) 
 

To deal with the present of the centrifugal barrier in equation 

(8) above, the Greene–Aldrich approximation scheme 

(Ikhdair, 2009)  is employed: 
 

1

𝑟2
= 

∝2

(1−𝑒−∝𝑟)2
 ⇒

1

𝑟
=

∝

(1−𝑒−∝𝑟)
 .      (9)  

 

Using the coordinate transformation s = 𝑒−∝𝑟and by 

substituting   equation (9), into equation (8) with the help of 

equation 5, gives energy eigen equation as  

𝑬𝒏𝒍 =

−
ℏ𝟐𝜶𝟐

𝟐𝝁
{
𝑛2+𝑛+

1

2
+(𝑛+

1

2
)√1+4𝑙(𝑙+1)−

𝜇𝑣

2ℏ2𝛼2
−
𝑍𝑒𝜇

ℏ2𝛼
+𝑙(𝑙+1)

(2𝑛+1)+1+4𝑙(𝑙+1)
}

2

           (10) 

 

Equation (10) can be express in a closed and compact form 

as 

𝐸𝑛𝑙 = −
ℏ2𝛼2

2𝜇
{[𝑛 +

1

2
+

1

2
√1 + 4𝑙(𝑙 + 1)] +

(
−𝜇𝑣

2ℏ2𝛼2
−
𝑍𝑒𝜇

ℏ2𝛼
)

[𝑛+
1

2
+
1

2
√1+4𝑙(𝑙+1)]

}

2

                 (11) 

 

Which can further be simplified as  
 

𝐸𝑛𝑙 = −𝑄1 {(𝑛 + 𝛿) +
𝑄2

(𝑛+𝛿)
}
2

        (12) 

Where 

 𝑄1 =
ℏ2𝛼2

2𝜇
 , 𝑄2 = (

−𝜇𝑣

2ℏ2𝛼2
−

𝑍𝑒𝜇

ℏ2𝛼
) , 𝛿 =

1

2
+

1

2
√1 + 4𝑙(𝑙 + 1)      (13) 

 

The total wave function is obtained using equation (6) as  

Ψ𝑛(𝑟) = 𝑁𝑛𝑙(𝑒
−2𝛼𝑟)𝛽(1 − 𝑒−2𝛼𝑟)𝜁𝑃𝑛

[2𝛽,(2𝜁−1)](1 −
2𝑒−2𝛼𝑟)       (14) 

 

   𝛽 = √
−𝜇𝐸𝑛𝑙

2ℏ2𝛼2
  , 𝜁 =

1

2
+

1

2
√1 + 4𝑙(𝑙 + 1)     (15) 

 

Thermodynamic Properties for the proposed potential. 

The thermodynamic properties of quantum systems can be 

obtained from the exact partition function given as: 
 

𝑍(𝛽) = ∑ 𝑒−𝛽𝐸𝑛
𝜆

𝑛=0
               (16) 

 

Where, 𝜆 an upper bound of the vibrational quantum number 

obtain from the numerical solution of  
𝑑𝐸𝑛

𝑑𝑛
= 0,   𝛽 =

1

𝑘𝑇
  , K 

and T are Boltzmann constant and absolute temperature 

respectively. In classical limit, the summation in equation 

(16) can be replaced with the integral: 
 

𝑍(𝛽) =  ∫ 𝑒−𝛽𝐸𝑛𝑑𝑛
𝜆

0
     (17) 

By inserting equation (10) into (13) and simplifying gives 

the partition function as  
 

𝑍(𝛽) = 𝑒2𝛽𝑄1𝑄2 ∫ 𝑒
𝛽(𝑄1𝜌

2+
𝑄1𝑄2
𝜌2

)
𝑑𝜌

𝜆

𝛿
   (18) 

Where 𝜌 = 𝑛 + 𝛿                                                 (19) 

The solution of equation (18) Using Mathematica software 

is given as:
 

𝑍(𝛽) =
1

4√−𝛽𝑄1
𝑒2𝛽𝑄1𝑄2√𝜋

{
  
 

  
 
𝑒
−2√−𝛽𝑄1√𝛽𝑄1𝑄2

2

[1 + 𝑒𝑟𝑓 (𝜆√−𝛽𝑄1 −
√𝛽𝑄1𝑄2

2

𝜆
)]

+ 𝑒
2√−𝛽𝑄1√𝛽𝑄1𝑄2

2

[−1 + 𝑒𝑟𝑓 (𝜆√−𝛽𝑄1 +
√𝛽𝑄1𝑄2

2

𝜆
)]

}
  
 

  
 

  (20) 
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Other thermodynamic properties are obtained using the 

partition function as follows:  

 

(a) Vibrational mean energy     

𝑈(𝛽) = −
𝜕 ln 𝑧(𝛽)

𝜕𝛽
     (21) 

 

(b) Vibrational entropy  

𝑆(𝛽) = Κ𝑙𝑛𝑍 (𝛽) − Κ𝛽
𝜕𝑙𝑛𝑧(𝛽)

𝜕𝛽
   (22) 

 

(c) Vibrational Free Energy  

F(𝛽) = −
1

𝛽
ln 𝑍(𝛽)    (23) 

 

(d) Vibrational Heat Capacity 

C (𝛽) = Κ𝛽2 (
𝜕2𝑙𝑛𝑍(𝛽)

𝜕𝛽2
)    (24) 

 

 
Figure 1:  Variation of Thermodynamic Partition function 

with respect to inverse temperature parameter (  ).  

Source: Researcher (2023)  

 

 
 

Figure 2:  Variation of Thermodynamic Partition function 

with respect to maximum vibrational quantum number 

parameter (  ).  

 
 

Figure 3: Variation of Thermodynamic vibrational mean 

energy with respect to inverse temperature parameter (  ). 

 
 

Figure 4.  Variation of Thermodynamic vibrational mean 

energy with respect to maximum vibrational quantum 

number parameter ( ).  
 

 
Figure 5:  Variation of Thermodynamic vibrational heat 

capacity with respect to inverse temperature parameter ( 

). Source: Researcher (2023)  
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Figure 6 Variation of Thermodynamic vibrational heat 

capacity with respect to maximum vibrational quantum 

number parameter (  ).  

 
 

Figure 7:  Variation of Thermodynamic entropy with respect 

to inverse temperature parameter (   ).  
 

 

Figure 8: Variation of Thermodynamic entropy with respect 

to maximum vibrational quantum number parameter (  ).  
 

 
Figure 9.  Variation of Thermodynamic vibrational free 

energy with respect to inverse temperature parameter (  )  
 

 
Figure 10:  Variation of Thermodynamic free energy with 

respect to maximum vibrational quantum number parameter 

(  ).  

Table 4.6: The Numerical Bound State Solution for Screening Parameter  0.2 =  

n ( 0.2), 0nlE l = =  ( 0.2), 1nlE l = =  ( 0.2), 2nlE l = =  ( 0.2), 3nlE l = =  

0 -15022.23291 -3735.80153 -1645.77310 -914.32394 

1 -3735.80153 -1645.77310 -914.32394 -575.83416 

2 -1645.77310 -914.32394 -575.83416 -392.03393 

3 -914.32394 -575.83416 -392.03393 -281.28192 

4 -575.83416 -392.03393 -281.28192 -209.47558 

5 -392.03393 -281.28192 -209.47558 -160.32316 

6 -281.28192 -209.47558 -160.32316 -125.24392 

7 -209.47558 -160.32316 -125.24392 -99.36962 

8 -160.32316 -125.24392 -99.36962 -79.77148 
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Table 2: The Numerical Bound State Solution for Screening Parameter  0.4 =  

n ( 0.4), 0nlE l = =  ( 0.4), 1nlE l = =  ( 0.4), 2nlE l = =  ( 0.4), 3nlE l = =  

0 -15022.23291      -3735.80153 -1645.77310 -914.32394 

1 -3735.80153 -1645.77310 -914.32394 -575.83416 

2 -1645.77310 -914.32394 -575.83416 -392.03393 

3 -914.32394 -575.83416 -392.03393 -281.28192 

4 -575.83416 -392.03393 -281.28192 -209.47558 

5 -392.03393 -281.28192 -209.47558 -160.32316 

6 -281.28192 -209.47558 -160.32316 -125.24392 

7 -209.47558 -160.32316 -125.24392 -99.36962 

8 -160.32316 -125.24392 -99.36962 -79.77148 
 

Table 3: The Numerical Bound State Solution for Screening Parameter   0.6 =  

n ( 0.6), 0nlE l = =  ( 0.6), 1nlE l = =  ( 0.6), 2nlE l = =  ( 0.6), 3nlE l = =  

0 -15022.23291 -3735.80153 -1645.77310 -914.32394 

1 -3735.80153 -1645.77310 -914.32394 -575.83416 

2 -1645.77310 -914.32394 -575.83416 -392.03393 

3 -914.32394 -575.83416 -392.03393 -281.28192 

4 -575.83416 -392.03393 -281.28192 -209.47558 

5 -392.03393 -281.28192 -209.47558 -160.32316 

6 -281.28192 -209.47558 -160.32316 -125.24392 

7 -209.47558 -160.32316 -125.24392 -99.36962 

8 -160.32316 -125.24392 -99.36962 -79.77148 

  

Table 4.  The Numerical Bound State Solution for Screening Parameter 0.8 =  

n ( 0.8), 0nlE l = =  ( 0.8), 1nlE l = =  ( 0.8), 2nlE l = =  ( 0.8), 3nlE l = =  

0 -14954.65958 -3660.12889 -1569.37250 -838.58037 

1 -3660.12889 -1569.37250 -838.58037 -501.39510 

2 -1569.37250 -838.58037 -501.39510 -319.36485 

3 -838.58037 -501.39510 -319.36485 -210.78596 

4 -501.39510 -319.36485 -210.78596 -141.52984 

5 -319.36485 -210.78596 -141.52984 -95.29227 

6 -210.78596 -141.52984 -95.29227 -63.48597 

7 -141.52984 -95.29227 -63.48597 -41.23899 

8 -95.29227 -63.48597 -41.23899 -25.62029 
 

Table 5:  The Numerical Bound State Solution for Screening Parameter  1.0 =  

n ( 1.0), 0nlE l = =  ( 1.0), 1nlE l = =  ( 1.0), 2nlE l = =  ( 1.0), 3nlE l = =  

0 -14939.43785 -3636.86996 -1545.08834 -814.48447 

1 -3636.86996 -1545.08834 -814.48447 -477.98657 

2 -1545.08834 -814.48447 -477.98657 -296.96654 

3 -814.48447 -477.98657 -296.96654 -189.66029 

4 -477.98657 -296.96654 -189.66029 -121.91403 

5 -296.96654 -189.66029 -121.91403 -77.41148 

6 -189.66029 -121.91403 -77.41148 -47.55901 

7 -121.91403 -77.41148 -47.55901 -27.48107 

8 -77.41148 -47.55901 -27.48107 -14.24444 

RESULTS AND DISCUSSION 

Figure 1 is the variation of the thermodynamic partition 

function with respect to inverse temperature parameter ( 

).  Here the partition function increases exponentially with 

increasing value of inverse temperature parameter.  Figure 2 

is the variation of thermodynamic partition function with 

respect to maximum vibrational quantum number parameter 

( ).  Here, the partition function decreases exponentially in 

a converging manner from the negative y-axis before 

splitting into a unique spectral curve in an increasing value 

of maximum vibrational quantum number. 

Figure 3 is the variation of thermodynamic vibrational mean 

energy with respect to inverse temperature parameter (  ). 

Here, the vibrational mean energy increases monotonically 

from the origin in a converging manner before splitting into 

different spectral curve with unique equal spacing.  Figure 4 
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is the variation of thermodynamic vibrational mean energy 

with respect to maximum vibrational quantum number 

parameter ( ). Here, vibrational mean energy is a parabolic 

curve with unique intersection before sloping into unique 

spectral lines increasing value of maximum vibrational 

quantum number. 

Figure 5 is the variation of thermodynamic vibrational heat 

capacity with respect to inverse temperature parameter ( 

).  In this plot the specific heat capacity follows a unique 

symmetrical plot with different maximum points before 

decreasing into various spectral curves with an increasing 

value of inverse temperature parameter. 

Figure 6 is the variation of thermodynamic vibrational heat 

capacity with respect to maximum vibrational quantum 

number parameter ( ). This curve intertwines like 

sinusoidal curves with local maximum and minimum points 

before increasing with increasing value of maximum 

vibrational quantum number. Figure 7 is the plot of   

variation of thermodynamic entropy with respect to inverse 

temperature parameter (  ).  This is a linear graph that 

increases monotonically from the origin before splitting into 

different spectral curves which diverges in an increasing 

value of inverse temperature parameter. 

Figure 8 is the variation of thermodynamic entropy with 

respect to maximum vibrational quantum number parameter 

( ). This plot showcases parabolic plots that concaves 

upward with an increasing value of maximum vibrational 

quantum number. 

Figure 9 is the variation of thermodynamic vibrational free 

energy with respect to inverse temperature parameter (  ). 

This is a monotonic plot that increases asymptotically into a 

unique spectral quantized curve with unequal spacing. 

Figure 10 is the variation of thermodynamic free energy with 

respect to maximum vibrational quantum number parameter 

( ). This plot showcases semi parabolic curves that 

increases with an increase in maximum temperature 

parameter. The thermodynamic plots agrees with work of 

Chen et al., (2022) , Okon et al., (2021) and  Horchani et al., 

(2022). Tables 1-5 are numerical bound state solutions of the 

modified Hulthen Plus generalized Coulomb potential for 

various screening parameters 𝛼 = 0.2, 0.4, 0.6 , 0.8 and 1.0. 

for varying orbital angular quantum number 𝑙 = 0, 1, 2 and 

3. Tables 1 -5 shows negative energy eigenvalues which is 

the necessary and sufficient condition for bound state 

solutions. Also, the numerical eigenvalues of tables 1-5 

increases with an increase in quantum state.  

 

CONCLUSION 

In this work, we solve Schrodinger wave equation with 

modified Hulthen plus Coulomb potential Using parametric 

Nikiforov-Uvarov method and use it to model Yttrium 

Barium copper oxide superconductor. The total wave 

function and eigen energy equation were obtained. The 

energy equation was put in a closed and compact form and 

used to study partition function and other thermodynamic 

properties. The trend of thermodynamic plots agrees with 

work of an existing literature. Numerical bound state 

solutions were also obtained for various screening parameter 

and with varying orbital angular quantum number. 

 

REFERENCES 

Ahmadov, A. I., Asamova, S. M., Orujova, M. Sh. and 

Badalov, S. V. (2021). Analytical bound state solutions 

of the Klein-Gordon equation for the sum of Hulthen and 

Yukawa potential within SUSY quantum mechanics. 

Advances in High Energy Physics, 2021: 11. 

Antia, A. D., Okon, I. B., Isonguyo, C. N., Akankpo, A. O. 

and Eyo, N. E. (2022). Bound state solutions and 

thermodynamic properties of modified exponential 

screened plus Yukawa potential. Journal of the Egyptian 

Mathematical Society 30:11. 

Bale, H. P., Ma’arif, M., Suparmic, A. and Cari, C. (2019). 

Bound state energy of spherical quantum dot with 

Yukawa potential influenced by static electric and 

magnetic fields. AIP conference proceedings 22021/02. 

007(2019). 

Chalk,J. D. (1988) A study of barrier penetration in quantum 

mechanics. American Journal of Physics, 56: 29–32.  

Chen, G. (2004). The Exact Solutions of the Schrödinger 

Equation with the Morse Potential via Laplace 

Transforms. Physics Letter A, 326 :7–55.   

Chen, W. and Okon, I. B. (2022). Pseudospin Symmetric 

Solutions of Dirac Equation with the modified Rosen-

Morse potential using Nikiforov-Uvarov method and 

Supersymmetric Quantum Mechanics Approach. 

Chinese Physics B. 31, 5:050302.  

Diao, Y., Yi, L. Ehen, T. and Jia, C. (2009). Arbitrary i-wave 

bound state solutions of the Schrödinger equation with 

Eckart potential. Modern Physics Letters, 23B: 2269-

2279.  

Edet, C. O., Okorie, U. S., Osobonge, G., Ikot, A. N., 

Rampho, G. J. and Sever, R. (2020). Thermal properties 

of Deng-fan Eckart potential model using poisson 

summation approach. Journal of Mathematical 

Chemistry, 58:989-1013. 

Falaye, B. J., Oyewumi, K. J., Ibrahim, T. T., Punyasena, M. 

A. and Onate, C. A. (2013). Bound state solutions of the 

manning-posen potential. Canadian Journal of Physics, 

91: 98-104.  

Falaye,B. J., Oyewumi, K. J. and Abbas, M. (2013). Exact 

Solution of Schrödinger Equation with Q -deformed 

Quantum Potentials Using Nikiforov-Uvarov Method. 

Chinese Physics B., 22:110301.  

Farout, M., Yasin M. and Ikhdair, S. M. (2021). 

Approximate bound state solutions for certain molecular 

potentials. Journal of Applied Mathematics and Physics, 

9: 736-750.  

Flugge, S. (1974). Practical Quantum Mechanics. Berlin, 

Heidelberg, New York: Springer-Verlag.  

Greiner, W. (2001). Quantum Mechanics: An Introduction. 

Berlin: Springer-Verlag. 

Horchani, R., Al-Shafii S., Al-Hashimi, N., Ikot, A. N., 

Okon, I. B., Okorie, U., Duque, C. A. and E. O. 

Oladimeji. (2022). Bound state solutions and thermal 

properties of the N-dimensional Schrödinger equation 

with Varshni plus Woods-Saxon potential via Nikiforov-

https://dx.doi.org/10.4314/wojast.v15i2.1


Open Access article published under the terms of a  

Creative Commons license (CC BY). 

http://wojast.org 

Gian et al: Thermodynamic Properties of Yttrium Barium Copper 

Oxide  (𝑌𝐵𝑎2𝐶𝑢3𝑂7−𝑥) superconducting  Quantum Well 

https://dx.doi.org/10.4314/wojast.v15i2.1 

 

 

World Journal of Applied Science and Technology, Vol. 15 No. 2 (2023) 154 – 160    160 

Uvarov method. Journal of Theoretical and Applied 

Physics, 16: 4. 

Ikhdair, S. (2011). On the bound state solutions of the 

Manning-Rosen potential including an improved 

approximation to the orbital centrifugal term. Physica 

scripta, 83:1.  

Ikhdair, S. M. (2009) An Improved Approximation Scheme 

for the Centrifugal Term and the Hulthén Potential. 

European Physics Journal A 39:307–14.  

Ikot, A. N., Awoga, O. A. and Antia, A. D. (2012). Bound 

state solution of d-dimensional Schrodinger equation 

with Eckart potential plus modified deformed Hylleraas 

potential. Chinese Physics B. 22: 22 

Ikot, A. N., lutfuoglu, B. C., Ngwueke, M. I., Udoh, M. E., 

Zare, S. and Hassanabadi, H. (2016). Klein-Gordon 

equation particles in exponential type molecule 

potentials and their thermodynamic properties in D-

dimensions. The European Physical Journal plus, 131:1-

17. 

Ikot, A. N., Okorie, U. S., Amadi, P. O., Edet, C. O., 

Rampho, G. J. and Sever, R. (2021). The Nikiforov–

Uvarov-Functional Analysis (NUFA) Method: A New 

Approach for Solving Exponential-Type Potentials, Few-

Body Syst 62: 9 

Ita, B. I., Louis, H., Magu, T. O. and Nzeata-Ibe N. A. 

(2017). Bound state solutions of the Schrodinger’s 

equation with Manning-Rosen Plus a class of Yukawa 

potential using Pekeris-like approximation of the 

coulomb term and parametric Nikifarov-Uvarov. World 

Science News. 70: 312-319. 

Isonguyo, C. N., Okon, I. B., Ikot, A. N. and Hassanabadi, 

H. (2014) Solution of Klein-Gordon Equation for some 

diatomic molecules with New Generalised Morse-like 

potential Using SUSYQM. Bulletin of Korean Chemical 

Society, 35: 12 3443 

Jahan, L. L., Boyacioglu, B. and Chatterjee, A. (2019). 
Effect of confinement potential shape on the electronic, 

thermodynamic, magnetic and transport properties of a 

GaAs quantum dot at finite temperature. Scientific 

Reports 9 : 11. Doi: 10.1038/s41598-019-52190-w 

Josephson, B. D, (1964) Coupled Superconductors. Reviews 

of Modern Physics. 36: 216. 

DOI:https://doi.org/10.1103/RevModPhys.36.216. 

Landau, L. D. and Lifshitz, E. M., (1977). Quantum 

Mechanics, Non-Relativistic Theory (Pergamon Press, 

Oxford, 1977), p. 677 

Nikiforov, A. F. and Uvarov, V. B. Special Function of 

Mathematical Physics. Basel: Birkhauser (1988). 

Okon I. B., Omugbe, E., Antia, A. D., Onate, C. A., Akpabio, 

L. E. and Osafile, O.  (2021).  Spin and psendospin 

solutions to Dirac equation and its thermodynamic 

properties using hyperbolic Hulthen plus hyperbolic 

exponential inversely quadratic potential. Scientific 

Report, 11: 1 

Okon, I. B., Popoola O. O, Isonguyo C. N. (2017) 

Approximate Solutions of Schrodinger Equation with 

Some Diatomic Molecular Interactions Using 

NikiforovUvarov Method. Advances in High Energy 

Physics, 2017: 9671816 

Okon, I. B., Popoola, O., Isonguyo, C. N. and Antia, A. D. 

(2018). Solutions of Schrodinger and Klein-Gordon 

Equations with Hulthen Plus Inversely Quadratic 

Exponential Mie Type Potential. Physical Science 

International Journal. 19: 1-27.  

Okon, I. B. and Popoola, O. O. (2015). Bound state solution 

of Schrӧdinger equation with Hulthen plus generalised 

exponential coulomb potential using Nikiforov–Uvarov 

method. International Journal of Recent Advances in 

Physics, 4: 1–12. 

Omugbe, E. O., Osafile, E., Okon, I. B. and Onyeaju, M. C. 

(2020). Energy spectrum and the properties of Schoiberg 

potential using the WKB approximation approach. 

Molecular Physics, 119(4): . 

https://doi.org/10.1080/00268976.2020.1818860 

Onate, C. A., Okon, I. B., Vincent, U. E., Eyube, E. S., 

Onyeaju, M. C., Omugbe, E. and Egharevba, G. O. 

(2022). Nonrelativistic Molecular modified Shifted 

Morse Potential System. Scientific Reports, 12 :15188 

Pakdel, F., Rajabi, A. A. and Hamzavi, M. (2014). Bound 

state solution of the Yukawa potential within the Dirac 

equation. Advances in High energy physics, Article ID 

86748 DOI: https://doi.org/10.1155/2014/867483 

Sever, R. and Akcay, H. (2012). Analytical solutions of the 

Schrödinger equation for diatomic molecular potentials 

with any angular momentum. Journal of mathematical 

Chemistry, 50:1973-1987.  

Tezcan, C.and Sever, R. A. (2009). General Approach for 

the Exact Solution of the Schrödinger Equation. 

International Journal of Theoretical Physics, 48: 337–

50.  

Ukewuihe, U. M., Onyenegocha, C. P., Udensi, S. C., 

Nwokocha, C. O., Okereke, C. J., Njoku, I. J. and 

Iloanya, A. C. (2012). Approximate solutions of 

Schrödinger equation in D-dimensions with the modified 

mobius square plus Hulthen potential. Mathematical and 

Computational Science. 2: 1-15. 

Zhang, Yun,   Johnson ,S.  Naderi, S., Chaubal, M., Hunt, 

A., and Schwartz (2016), J High critical current density 

Bi2Sr2CaCu2Ox/Ag wire containing oxide precursor 

synthesized from nano-oxides Supercond. Sci. 

Technol. 29:  095012 

Zhang, M. C., Sun, G. H. and Dong, S. H. (2010). Exactly 

Complete Solutions of the Schrödinger Equation with a 

Spherically Harmonic Oscillatory Ring-Shaped 

Potential. Physics Letters A, 374:704–8

 

https://dx.doi.org/10.4314/wojast.v15i2.1
https://doi.org/10.1080/00268976.2020.1818860
https://doi.org/10.1155/2014/867483

