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ABSTRACT 

We initiate studies of a new classical characterization of absolute continuity which promises to be invaluable in studies and 

further generalizations of nonclassical characterizations of absolute continuity in diversely more general function spaces. 

Our main objective is showing that our newer characterization for absolute continuity includes Riesz characterization in 

Lp−spaces (𝑝 > 1) by allowing the situation 𝑝 ≥ 1. Our method also enriches studies of connection between absolute 

continuity and rapidly Cauchy sequences. 
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INTRODUCTION 

In his studies of absolute continuity Riesz was led to 

formulate the first 𝐿𝑝 characterization of absolute continuity 

for 𝑝 >  1. It is the aim of this work to modify the Riesz 

characterization from 𝑝 >  1  to a more general 

characterization which admits 𝑝 ≥  1 . It is important to 

observe that the condition 𝑝 >  1 of Riesz characterization 

excludes the fundamentally important space of Lebesgue 

integrable functions 𝐿1[𝑎, 𝑏]  which our newer 

characterization seeks to admit. 

 

Let 𝑓 ∈ 𝐿𝑝[𝑎, 𝑏]  and 𝐹(𝑥)  be real-valued functions, it is 

well known that if 𝐹(𝑥) is absolutely continuous on [𝑎, 𝑏], 
then 𝐹  can be represented in terms some function 𝑓 ∈
𝐿𝑝[𝑎, 𝑏] in the form 

 

(1) 𝐹(𝑥) = 𝑐 + ∫ 𝑓(𝑡)𝑑𝜇
𝑥

𝑎
 

where µ denotes Lebesgue measure and 𝑐 ∈ 𝑅 is a constant 

of integration. The famous Riesz theorem which 

characterizes absolute continuity is stated below: 

 

Theorem 1. (Riesz) see (Natanson, 1964) 

A function 𝐹: [𝑎, 𝑏] → ℝ can be represented in the form of 

1: 

𝐹(𝑥) = 𝑐 + ∫ 𝑓(𝑡)𝑑𝜇
𝑥

𝑎

 

if and only if for every partition 𝒫𝑛 of [𝑎, 𝑏] by points 𝑎 =
𝑥0 < 𝑥1 < . . . 𝑥𝑛 < 𝑏 the following 

inequality holds: 

 

(2) ∑
|𝐹(𝑥𝑘+1)−𝐹(𝑥𝑘)|𝑝

|𝑥𝑘+1−𝑥𝑘|𝑝−1
𝑛
𝑗=1 ≤ 𝑘  

where 𝑘  is a constant independent of the choice partition 

points in 𝒫𝑛. 

 

It is of importance to remark that the Riesz 𝐿𝑝 

characterization of absolute continuity was later studied and 

generalized by Medvedev using the concepts of functions of 

bounded Riesz variation and Riesz–Medvedev variations 

(Appel, 2014) which we have generalized in a recent 

submission. 

 

We recall a real valued function 𝑓: [𝑎, 𝑏] → ℝ on a closed 

bounded interval [𝑎, 𝑏]  is called absolutely continuous 

provided for each 𝜖 > 0 there exists a 𝛿 > 0 such that for 

each finite collection {(𝑎𝑘 , 𝑏𝑘)}𝑘=1
𝑛  of open sub-

intervals (𝑎𝑘 , 𝑏𝑘) ⊆ (𝑎, 𝑏) we have  

 

(3) ∑ |𝑓(𝑏𝑘) − 𝑓(𝑎𝑘)| < 𝜖𝑛
𝑘=1  whenever ∑ |𝑏𝑘 − 𝑎𝑘| <𝑛

𝑘=1

𝛿 

The space of absolutely continuous functions on [𝑎, 𝑏] 
denoted by 𝐴𝐶[𝑎, 𝑏] , is a well-known subspace of 

continuous functions 𝐶[𝑎, 𝑏] introduced by Vitali in 1905 

(Marly, 1998) as a natural generalization of the class of 

continuous monotone functions. The space 𝐴𝐶[𝑎, 𝑏]  of 

absolutely continuous functions plays invaluable roles both 

in theoretical, applied, and industrial directions. The most 

profound usefulness 

Salient features in the theory of absolute continuity are the 

following properties of absolute continuous functions: 

 

Lemma 2: Let 𝐴  be an arbitrary subset of ℝ . Suppose 

𝑓: 𝐴 → ℝ is absolutely continuous on 𝐴. Let 𝐸 be a bounded 

subset of 𝐴. Then 𝑓 is of bounded variation on 𝐸. 

 

Lusin Condition 

A function 𝑓 ∶  𝐴 → ℝ is said to satisfy the Lusin condition, 

if 𝑓 maps set of measure zero to sets of measure zero. The 

function with this condition is said to be a Lusin function. 

We also call a set of measure zero, a null set. 

 

Lemma 3 

Let A be an arbitrary subset of ℝ . Suppose: 𝑓: 𝐴 → ℝ  is 

absolutely continuous on 𝐴. Then 𝑓 is a Lusin function on 

𝐴, i.e., 𝑓 maps set of measure zero to sets of measure zero. 

 

Theorem 4: (Banach-Zarecki) 

Suppose 𝑋 is a closed and bounded subset of ℝ. Suppose 

𝑓: 𝑋 − ℝ is a finite-valued function, continuous of bounded 

variation on 𝑋 and is a Lusin function. Then 𝑓 is absolutely 

continuous on 𝑋. 

 

Theorem 4 usually known as the Banach-Zarecki theorem is 

a sufficient condition for absolute continuity, therefore the 
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combination of Lemma 2, Lemma 3 and Theorem 4 yields 

the important early characterization of absolute continuity 

below: 

 

Theorem 5: (Characterization of Absolute Continuity) 

Suppose 𝑋 is a closed and bounded subset of and 𝑓: 𝑋 → ℝ 

is a finite valued continuous function. Then 𝑓 is absolutely 

continuous on 𝑋 if, and only if, 𝑓 is of bounded variation on 

𝑋 and is a Lusin function. 

Other invaluable features of the theory are the following 

properties: 

 

Theorem 6:  

Suppose 𝐼  is an interval and 𝑓: 𝐼 → ℝ  is an absolutely 

continuous function on 𝐼 . Suppose 𝑓′(𝑥) = 0  almost 

everywhere on 𝐼. Then 𝑓 is a constant function. 

 

Theorem 7: 

Suppose 𝑓: [𝑎, 𝑏] → ℝ is an absolutely continuous function 

on [𝑎, 𝑏]. Then ∫ 𝑓′(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑓(𝑏) − 𝑓(𝑎). 

 

Theorem 8: 

Suppose 𝑋  is a non-empty subset of ℝ and 𝑓: 𝑋 → ℝ is a 

finite-valued continuous function and also a Lusin function. 

Then 𝑓 maps measurable subsets of 𝑋 to measurable sets.  

 

Corollary 9: 

Suppose 𝑋 is a non-empty subset of ℝ and 𝑓: 𝑋 → ℝ is an 

absolutely continuous function. Then 𝑓  maps measurable 

subsets of 𝑋 to measurable sets. 

 

Theorem 10: 

Let 𝑋 be an arbitrary subset of ℝ and 𝑓: 𝑋 → ℝ is a finite-

valued function. Suppose 𝑓  has finite derivative at every 

point of a measurable set 𝐷 in 𝑋, then 𝑓 is a Lusin function 

on 𝐷. 

 

These properties lead to the following classical 

characterizations of absolute continuity: 

 

Theorem 11:  

Suppose 𝐼 is an interval not necessarily bounded. 𝐼 may be 

open, half open, or closed. Suppose 𝑓: 𝐼 → ℝ is a continuous 

function of bounded variation. Then 𝑓  is absolutely 

continuous if, and only if, 𝑓 is a Lusin function.  

 

Theorem 12: 

Suppose 𝑋 is a non-empty closed and bounded subset of ℝ 

and 𝑓: 𝑋 → ℝ is a continuous function of bounded variation. 

Then 𝑓 is absolutely continuous if, and only if, 𝑚(𝑓({𝑥 ∈

𝑋: 𝐷𝑓(𝑥) = ±∞})) = 0. 

 

Theorem 13: 

Suppose 𝑓 ∶ [𝑎, 𝑏] → ℝ  is a continuous Lusin function. 

Suppose 𝑓′(𝑥)  exists and is finite almost everywhere on 

[𝑎, 𝑏] . Then f is absolutely continuous on [𝑎, 𝑏] if, and only 

if, 𝑓′ is Lebesgue integrable on [𝑎, 𝑏]. 
The characterizations above lead to the classical 

consequences below: 

 

Corollary 14: 

Suppose 𝑓: [𝑎, 𝑏] → ℝ  is a continuous function. Suppose 

𝑓′(𝑥) exists and is finite except for 𝑥 in a denumerable set in 

[𝑎, 𝑏] . Then 𝑓 is absolutely continuous on [𝑎, 𝑏] if, and only 

if, 𝑓′ is Lebesgue integrable on [𝑎, 𝑏]. 
 

Corollary 15: 

Suppose 𝑓: [𝑎, 𝑏] → ℝ  is a continuous function. Suppose 

𝑓′(𝑥)exists and is finite for every 𝑥 in [𝑎, 𝑏]. Suppose 𝑓′ is 

Lebesgue integrable or 𝑓′(𝑥) is bounded for all 𝑥 in [𝑎, 𝑏] . 
Then 𝑓  is absolutely continuous on [𝑎, 𝑏]  and 𝑓(𝑥) =

𝑓(𝑎) + ∫ 𝑓′(𝑥)𝑑𝑥
𝑥

𝑎
 for 𝑥 in [𝑎, 𝑏]. 

 

Modern studies of space 𝐴𝐶[𝑎, 𝑏] of absolutely continuous 

function have been tremendously generalized in various 

directions via introduction of nonclassical space 𝐵𝑉[𝑎, 𝑏] of 

bounded variations functions by N. Wiener and L. C  Young 

based on guage functions and 𝑝𝑡ℎ powers ; (Apell, 2014) 

and references there-in. But their contributions follow from 

the classical Reisz characterization of absolute continuity in 

𝐿𝑝 -spaces. The Reisz characterization constitute the 

framework for nonclassical setting of guage functions 

employed by Medvedev to obtain elegant nonclassical 

characterizations of absolutely continuous functions we are 

investigating currently. In the present study we obtain a 

classical characterization which extends the famous Riesz 

characterization. We also enrich the connection between 

concept of rapidly Cauchy sequences and absolute 

continuity initiated by (Lax, 2009).   

 

Our method is based on relating the space of absolutely 

continuous functions with the concept of rapidly Cauchy 

sequences (Lax, 2009). We recall a sequence {𝑢𝑛}𝑛=1
∞ ⊂ 𝑋 

in a normed linear space (𝑋, ∥. ∥)  is said to be rapidly 

Cauchy if there exists a convergent series ∑ 𝜖𝑘
∞
𝑘=1  such that 

 

(4) ||𝑢𝑛+1 − 𝑢𝑛|| ≤ 𝜖𝑛
2 or ||𝑢𝑛+1 − 𝑢𝑛|| ≤

𝜂

𝑛4 for some 𝜂 >

0. 

 

MAIN RESULTS 

Theorem 16: 

A function 𝐹: [𝑎, 𝑏] → ℝ can be represented in the form of 

1: 

𝐹(𝑥) = 𝑐 + ∫ 𝑓(𝑡)𝑑𝜇
𝑥

𝑎

 

if and only if the following property holds: 

 

(5) sup
1≤𝑗≤𝑛

|𝐹(𝑧𝑗) − 𝐹(𝑧𝑗−1)| = 𝒪 (
1

𝑛
)   for all 𝑧𝑗 ∈ 𝒫𝑛; 

 

where 𝒪 is the Bachmann-Landau asymptotic notation often 

called the big 𝑂 defined by sup
1≤𝑗≤𝑛

|𝑓(𝑧𝑗) − 𝑓(𝑥𝑗−1)| ≤
𝑛𝑗

𝑛
 for 

some 𝜂𝑗 ≥ 0. 

 

PROOF 

The proof is an application of Theorem3 below which asserts 

that a function 𝐺(𝑥) is absolutely 
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continuous if and only if: 

sup
1≤𝑗≤𝑛

|𝐺(𝑧𝑗+1) − 𝐺(𝑧𝑗)| = 𝒪 (
1

𝑛
)   for all  𝑧𝑗 ∈ 𝒫𝑛 ; where 

𝒫𝑛 = {𝑧𝑗}
𝑗=1

𝑛
= {

(𝑛−𝑗)𝑎+𝑘𝑏

𝑛
}

𝑗=1

𝑛

.  

 

The proof is equivalent to showing that if Riesz property (2) 

holds then the property (6) in Theorem 17 below also holds 

as a special case. In this direction we set 𝐺(𝑥) =

∫ |𝑓(𝑡)|𝑝𝑑𝑡
𝑥

𝑎
. Clearly, 𝐺(𝑥) is absolutely continuous since 

|𝑓(𝑡)|𝑝 ∈ 𝐿1[𝑎, 𝑏]  and by Theorem 3, we have 

sup |𝐺(𝑥𝑗+1) − 𝐺(𝑥𝑗)| = sup
1≤𝑗≤𝑛

∫ |𝑓(𝑡)|𝑝𝑑𝑡 ≤
𝜂

𝑛

𝑥𝑗+1

𝑧𝑗
  for 

some 𝜂 > 0. 

To complete the proof, we rewrite (2) in the form below: 

 |𝐹(𝑧𝑗) − 𝐹(𝑧𝑗−1)|
𝑝

≤
𝑘𝑗

|𝐺(𝑧𝑗)−𝐺(𝑧𝑗−1)|
|𝐺(𝑧𝑘) −

𝐺(𝑧𝑘−1)|(𝑧𝑘 − 𝑧𝑘−1)𝑝−1 

 ≤
𝑘𝑗

|𝐺(𝑧𝑗)−𝐺(𝑧𝑗−1)|
|𝐺(𝑧𝑘) − 𝐺(𝑧𝑘−1)|

(𝑏−𝑎)𝑝−1

𝑛𝑝−1    

≤
𝑘𝑗

|𝐺(𝑧𝑗) − 𝐺(𝑧𝑗−1)|(𝑏 − 𝑎)

𝜂(𝑏 − 𝑎)𝑝

𝑛𝑝
  

 sup
1≤𝑗≤𝑛

|𝐹(𝑧𝑗) − 𝐹(𝑧𝑗−1)| ≤

sup
1≤𝑗≤𝑛

𝑘𝑗

|𝐺(𝑧𝑗)−𝐺(𝑧𝑗−1)|(𝑏−𝑎)

𝜂1(𝑏−𝑎)

𝑛
≤

𝜂

𝑛
  

 

The conclusion follows from the fact that the constants 𝑘𝑗′𝑠 

are linear functions of |𝐺(𝑧𝑗) − 𝐺(𝑧𝑗−1)| as demonstrated in 

(Natanson, (1964) - p.257). End of proof. □ 

 

As mentioned above the proof of Theorem 2 is an application 

Theorem 3 which we prove next. Theorem 3 is a very 

important characterization of absolute continuity in 

𝐿1[𝑠, 𝑏]−space which is excluded in Riesz characterization. 

 

Theorem 17: 

A function 𝑓: [𝑎, 𝑏] → ℝ  is absolutely continuous if and 

only if for each finite partition 𝒫𝑛 = {𝑧𝑘}𝑘=1
𝑛 of [𝑎, 𝑏]  of the 

form 𝒫𝑛 = {𝑧𝑘}𝑘=1
𝑛 = {

(𝑛−𝑘)𝑎+𝑘𝑏

𝑛
}

𝑘=1

𝑛

 the following 

property holds: 

 

(6) sup
1≤𝑗≤𝑛

|𝐹(𝑧𝑘+1) − 𝐹(𝑧𝑘)| = 𝒪 (
1

𝑛
)  for all 𝑧𝑘 ∈ 𝒫𝑛; 

 

where 𝒪 is the Bachmann-Landau asymptotic notation often 

called the big O defined by sup
1≤𝑘≤𝑛

|𝑓(𝑧𝑘+1) − 𝑓(𝑧𝑘)| ≤
𝜂𝑘

𝑛
 for 

some  𝜂𝑘 ≥ 0. 

 

PROOF 

For any 𝑛 ∈ ℕ, let 𝒫𝑛 be a finite partition, of the bounded 

interval [𝑎, 𝑏], of the form 𝒫𝑛 = {𝑧𝑘}𝑘=1
𝑛 = {

(𝑛−𝑘)𝑎+𝑘𝑏

𝑛
}

𝑘=1

𝑛

, 

then |𝑧𝑘+1 − 𝑧𝑘| =
𝑏−𝑎

𝑛
. Assuming 𝑓: [𝑎, 𝑏] → ℝ  is 

absolutely continuous; then for 

any 𝜖 >  0  there is 𝛿 >  0  such that ∑ |𝑓(𝑧𝑘+1) −𝑛
𝑘=1

𝑓(𝑧𝑘)| < 𝜖 whenever ∑ |𝑧𝑘+1 − 𝑧𝑘|𝑛
𝑘=1 < 𝛿 ≤ 𝑏 − 𝑎.  

 

Also, it follows that there exists, for each 𝑘, a constant 𝜂𝑘 

such that |𝑓(𝑧𝑘+1) − 𝑓(𝑧𝑘)| ≤ 𝜂𝑘|𝑧𝑘+1 − 𝑧𝑘| =
𝜂𝑘(𝑏−𝑎)

𝑛
, 

yielding sup
1≤𝑘≤𝑛

|𝑓(𝑧𝑘+1) − 𝑓(𝑧𝑘) | ≤
𝜂(𝑏−𝑎)

𝑛
 where 𝜂 =

sup
1≤𝑘≤𝑛

𝜂𝑘.   

 

Conversely, for each subinterval (𝑥𝑘 , 𝑦𝑘)  of [𝑎, 𝑏] , 

assuming sup
1≤𝑘≤𝑛 

|𝑓(𝑧𝑘(𝑗+1) − 𝑓(𝑧𝑘𝑗)| = 𝒪 (
1

𝑛
)  for all finite 

partitions 𝒫𝑘𝑛  of (𝑥𝑘 , 𝑦𝑘) , in the form of 𝒫𝑛  above, then 

𝑛 sup
1≤𝑘≤𝑛

|𝑓(𝑧𝑘 + 1) − 𝑓(𝑧𝑘)| ≤ 

𝜂𝑘|𝑧𝑘+1 − 𝑧𝑘| for some constant 𝜂𝑘 > 0. Let {(𝑥𝑘 , 𝑦𝑘)}𝑘=1
𝑛  

be a family of such subintervals of [𝑎, 𝑏]; then given any 𝜖 >
0  we shall compute 𝛿 > 0  such that ∑ |𝑓(𝑦𝑘) −𝑛

𝑘=1

𝑓(𝑥𝑘)| < 𝜖 whenever ∑ |𝑦𝑘 − 𝑥𝑘|𝑛
𝑘=1 < 𝛿.  

 

Without loss of generalization we may assume that |𝑦𝑘 −
𝑥𝑘| ≤ 𝛽𝑘|𝑧𝑘(𝑗+1) − 𝑧𝑘𝑗|  while |𝑓(𝑦𝑘) − 𝑓(𝑥𝑘)| ≤

𝜃𝑘|𝑓(𝑧𝑘(𝑗+1)) − 𝑓(𝑧𝑘𝑗)|  for some 𝛽𝑘 , 𝜃𝑘 > 0 . Here, the 

partition 𝒫𝑛 = {𝑧𝑘𝑗}
𝑗=1

𝑛
 for the subinterval (𝑥𝑘 , 𝑦𝑘)  should 

be understood to satisfy 𝑧𝑘𝑗 =
(𝑛−𝑗)𝑥𝑘+𝑗𝑦𝑘

𝑛
  

 

so that |𝑧𝑘(𝑗+1) − 𝑧𝑘𝑗| =
𝑦𝑘−𝑥𝑘

𝑛
; 𝑗, 𝑘 =  1,2, . . . , 𝑛 . This 

yields   |𝑓(𝑦𝑘) − 𝑓(𝑥𝑘)| ≤ ∑ 𝜃𝑘|𝑓(𝑧𝑘(𝑗+1)) −𝑛
𝑗=1

𝑓(𝑧𝑘𝑗)| ≤ 𝑛 sup 𝜃𝑘|𝑓(𝑧𝑘(𝑗+1)) − 𝑓(𝑧𝑘𝑗)| ≤ 𝜂𝑘  for some 

𝜂𝑘 >  0.  

 

Hence  ∑ |𝑓(𝑦𝑘) − 𝑓(𝑥𝑘)|𝑛
𝑘=1 ≤ ∑ 𝜂𝑘|𝑛

𝑘=1 < 𝜖  whenever 

∑ |𝑦𝑘 − 𝑥𝑘|𝑛
𝑘=1 < 𝛿.  

 

Where 𝜖 > ∑ 𝜃𝑘|𝑓(𝑧𝑘(𝑗+1)) − 𝑓(𝑧𝑘𝑗)|𝑛
𝑗=1   and 𝛿 >

∑ 𝜃𝑘|𝑧𝑘(𝑗+1) − 𝑧𝑘𝑗 ≤ 𝑏 − 𝑎|𝑛
𝑗=1 .  End of proof. □  

 

CONCLUSION 

In concluding, it is important to mention that the space of 

absolutely continuous functions is invaluable in theory and 

applications of fractional dynamic problems where it is 

identified with the Sobolev space 𝑊1,1 which happens to be 

the very space excluded in Riesz characterization which 

have been resolved in our main result. In deed it is properties 

of absolute continuity that makes fractional calculus 

invaluable in signal processing for image enhancement and 

restoration. It has also been established that fractional 

calculus is currently the best techniques for revelation of 

faint objects from astronomical image processing. 

 

REFERENCES 

Appell, Jurgen, Jozef Banas, Nelson Merentes (2014), 

Bounded Variation and Around. Walter de Gruyter 

GmbH, Berlin/Boston. 

Lax, Peter (2009), Rethinking Lebesgue Integration, 

American Mathematical Monthly Vol. 116, 10, pp. 863- 

881. 

Marly, Jan (1998), Absolutely Continuous Functions of 

Several Variables. J. Math. Anal. Appl, 231, 492-508  



 

World Journal of Applied Science and Technology, Vol. 15 No. 2(2) (2023) 362 - 365    365 

Natanson, I. P.  (1964), Theory of Functions of a Real 

Variable, Frederick Ungar Publishing Co. Inc. 

 


