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ABSTRACT 

We establish newer characterizations for absolutely continuous functions and obtain tremendous interesting 

enrichment and consequences in its theory and applications. The significance of our studies include independence, of 

our characterization, on differentiability and integrability properties which turns out a very promising lucrative 

departure from traditional characterizations. 
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INTRODUCTION / BACKGROUND THEORY 

We recall (Niculescu, 2008, Stanislav, 2002, Royden and 

Fitzpatrick, 2010, Sremr, 2010, Stanislav (2002),  and Zhou, 

2019) a real valued function 𝑓: [𝑎, 𝑏] → ℝ  on a closed 

bounded interval [𝑎, 𝑏]  is called absolutely continuous 

provided for each 𝜖 >  0 there exists a 𝛿 >  0 such that for 

each finite collection {(𝑎𝑘 , 𝑏𝑘)}𝑘=1
𝑛  of open sub-intervals 

(𝑎𝑘 , 𝑏𝑘) ⊆ (𝑎, 𝑏) we have 

 

(1) ∑ |𝑓(𝑏𝑘) − 𝑓(𝑎𝑘)| < 𝜖 𝑛
𝑘=1 whenever  ∑ |𝑏𝑘 −𝑛

𝑘=1

𝑎𝑘| < 𝛿. 

The space of absolutely continuous functions on [𝑎, 𝑏] often 

denoted by 𝐴𝐶[𝑎, 𝑏] , is a well known subspace of 

continuous functions 𝐶[𝑎, 𝑏] introduced by Vitali in 1905 

(Marly, 1998) in order as a naturally enlargement to the class 

of uniformly continuous functions which contains the 

important class of Lipschitz functions as proper subclass. 

The concept of absolute continuity is both important and 

natural generalization of the class of monotone functions for 

enabling formulation of a version of fundamental theorem 

of calculus which is compatible with Lebesgue theory of 

integration. This explains why earlier characterizations of 

absolute continuity by Vitali’s (Porter, 1915) and many 

followers were based on either differentiability requirement 

 𝑓′ ∈ 𝐿′[𝑎, 𝑏] or integrability in sense of Lebesgue. To date, 

it still persists that most characterizations of the space 

𝐴𝐶[𝑎, 𝑏]  are dependent upon differentiability or 

integrability properties (Welland and Devito, 1967 and 

Zhou, 2019). 

 

The aim of this article is to establish newer characterizations 

of 𝐴𝐶[𝑎, 𝑏]  which together with their consequences are 

independent of differentiability and integrability properties. 

Our main result leads natural connections of the space of 

absolutely continuous functions with the concept of rapidly 

Cauchy sequences.  

 

We recall a real valued function 𝑓: [𝑎, 𝑏] → ℝ on a closed 

bounded interval [𝑎, 𝑏]  is called absolutely continuous 

provided for each 𝜖 > 0 there exists a 𝛿 > 0 such that for 

each finite collection {(𝑎𝑘 , 𝑏𝑘)}𝑘=1
𝑛  of open sub-

intervals (𝑎𝑘 , 𝑏𝑘) ⊆ (𝑎, 𝑏) we have  

 

(2)    ∑ |𝑓(𝑏𝑘) −𝑛
𝑘=1

𝑓(𝑎𝑘)| < 𝜖 whenever ∑ |𝑏𝑘 − 𝑎𝑘| < 𝛿𝑛
𝑘=1  

The space of absolutely continuous functions on [𝑎, 𝑏] 
denoted by 𝐴𝐶[𝑎, 𝑏] , is a well known subspace of 

continuous functions 𝐶[𝑎, 𝑏] introduced by Vitali in 1905 

(Marly, 1998) as a natural generalization of the class of 

continuous monotone functions. The space 𝐴𝐶[𝑎, 𝑏]  of 

absolutely continuous functions plays invaluable roles both 

in theoretical, applied, and industrial directions. The most 

profound usefulness salient features in the theory of absolute 

continuity are the following properties of absolute 

continuous functions: 

 

Lemma 1:  

Let 𝑋  be an arbitrary subset of ℝ . Suppose 𝑓: 𝑋 → ℝ  is 

absolutely continuous on 𝑋. Let 𝐸 be a bounded subset of 

𝑋. Then 𝑓 is of bounded variation on 𝐸. 

 

Lusin Condition 

A function 𝑓 ∶  𝑋 → ℝ is said to satisfy the Lusin condition, 

if 𝑓 maps set of measure zero to sets of measure zero. The 

function with this condition is said to be a Lusin function. 

We also call a set of measure zero, a null set. 

 

Lemma 2: 

Let 𝑋  be an arbitrary subset of ℝ . Suppose: 𝑓: 𝑋 → ℝ  is 

absolutely continuous on 𝑋. Then 𝑓 is a Lusin function on 

𝑋, i.e., 𝑓 maps set of measure zero to sets of measure zero. 

 

Theorem 3: 

Suppose 𝑋 is a closed and bounded subset of ℝ. Suppose 

𝑓: 𝑋 − ℝ is a finite-valued function, continuous of bounded 

variation on 𝑋 and is a Lusin function. Then 𝑓 is absolutely 

continuous on 𝑋. 

 

Theorem 3 usually known as the Banach-Zarecki theorem is 

a sufficient condition for absolute continuity, therefore the 

combination of Lemma 1, Lemma 2 and Theorem 3 yields 

the important early characterization of absolute continuity 

below: 

 

Theorem 4: (Characterization of Absolute Continuity) 
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Suppose 𝑋 is a closed and bounded subset of and 𝑓: 𝑋 → ℝ 

is a finite valued continuous function. Then 𝑓 is absolutely 

continuous on 𝑋 if, and only if, 𝑓 is of bounded variation on 

𝑋 and is a Lusin function. 

 

Other invaluable features of the theory are the following 

properties: 

 

Theorem 5:  

Suppose 𝐼  is an interval and 𝑓: 𝐼 → ℝ  is an absolutely 

continuous function on 𝐼 . Suppose 𝑓′(𝑥) = 0  almost 

everywhere on 𝐼. Then 𝑓 is a constant function. 

 

Theorem 6: 

Suppose 𝑓: [𝑎, 𝑏] → ℝ is an absolutely continuous function 

on [𝑎, 𝑏]. Then ∫ 𝑓′(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑓(𝑏) − 𝑓(𝑎). 

 

Theorem 7: 

Suppose 𝑋  is a non-empty subset of ℝ and 𝑓: 𝑋 → ℝ is a 

finite-valued continuous function and also a Lusin function. 

Then 𝑓 maps measurable subsets of 𝑋 to measurable sets.  

 

Corollary 8: 

Suppose 𝑋 is a non-empty subset of ℝ and 𝑓: 𝑋 → ℝ is an 

absolutely continuous function. Then 𝑓  maps measurable 

subsets of 𝑋 to measurable sets. 

 

Theorem 9: 

Let 𝑋 be an arbitrary subset of ℝ and 𝑓: 𝑋 → ℝ is a finite-

valued function. Suppose 𝑓  has finite derivative at every 

point of a measurable set 𝐷 in 𝑋, then 𝑓 is a Lusin function 

on 𝐷. 

These properties lead to the following classical 

characterizations of absolute continuity: 

 

Theorem 10:  

Suppose 𝐼 is an interval not necessarily bounded. 𝐼 may be 

open, half open, or closed. Suppose 𝑓: 𝐼 → ℝ is a continuous 

function of bounded variation. Then 𝑓  is absolutely 

continuous if, and only if, 𝑓 is a Lusin function.  

 

Theorem 11: 

Suppose 𝑋 is a non-empty closed and bounded subset of ℝ 

and 𝑓: 𝑋 → ℝ is a continuous function of bounded variation. 

Then 𝑓 is absolutely continuous if, and only if, 𝑚(𝑓({𝑥 ∈

𝑋: 𝐷𝑓(𝑥) = ±∞})) = 0. 

 

Theorem 12: 

Suppose 𝑓 ∶ [𝑎, 𝑏] → ℝ  is a continuous Lusin function. 

Suppose 𝑓′(𝑥)  exists and is finite almost everywhere on 

[𝑎, 𝑏]. Then f is absolutely continuous on [𝑎, 𝑏] if, and only 

if, 𝑓′ is Lebesgue integrable on [𝑎, 𝑏]. 
 

The characterizations above lead to the classical 

consequences below: 

 

Corollary 13: 

Suppose 𝑓: [𝑎, 𝑏] → ℝ  is a continuous function. Suppose 

𝑓′(𝑥) exists and is finite except for 𝑥 in a denumerable set 

in [𝑎, 𝑏] . Then 𝑓 is absolutely continuous on [𝑎, 𝑏] if, and 

only if, 𝑓′ is Lebesgue integrable on [𝑎, 𝑏]. 
 

 

Corollary 14: 

Suppose 𝑓: [𝑎, 𝑏] → ℝ  is a continuous function. Suppose 

𝑓′(𝑥)exists and is finite for every 𝑥 in [𝑎, 𝑏]. Suppose 𝑓′ is 

Lebesgue integrable or 𝑓′(𝑥) is bounded for all 𝑥 in [𝑎, 𝑏] .  
 

Then 𝑓  is absolutely continuous on [𝑎, 𝑏]  and 𝑓(𝑥) =

𝑓(𝑎) + ∫ 𝑓′(𝑥)𝑑𝑥
𝑥

𝑎
 for 𝑥 in [𝑎, 𝑏]. 

 

A sequence {𝑢𝑛}𝑛=1
∞ ⊂ 𝑋 in a normed linear space (𝑋, ∥. ∥) 

is said to be rapidly Cauchy if there exists a convergent 

series ∑ 𝜖𝑘
∞
𝑘=1  such that 

 

(3) ||𝑢𝑛+1 − 𝑢𝑛|| ≤ 𝜖𝑛
2  or ||𝑢𝑛+1 − 𝑢𝑛|| ≤

𝜂

𝑛4   for some 

𝜂 > 0. 

It is important to remark that the property ||𝑢𝑛+1 − 𝑢𝑛|| ≤
𝜂

𝑛4  (the second alternate defining property of absolutely 

continuous functions) in equation number (3) can be found 

in works of (Lax, 2009) 

 

MAIN RESULTS 

Theorem 15:  

A function 𝑓: [𝑎, 𝑏] → ℝ  is absolutely continuous if and 

only if for each finite partition 

𝒫𝑛 = {𝑧𝑘}𝑘=1
𝑛  of [𝑎, 𝑏]  of the form 𝒫𝑛 = {𝑧𝑘}𝑘=1

𝑛 =

{
(𝑛−𝑘)𝑎+𝑘𝑏

𝑛
}

𝑘=1

𝑛

 the following property holds: 

 

(4) sup
1≤𝑘≤𝑛

|𝑓(𝑧𝑘+1) − 𝑓(𝑧𝑘)| = 𝒪 (
1

𝑛
) for all 𝑧𝑘 ∈ 𝒫; 

where 𝒪 is the Bachmann-Landau asymptotic notation often 

called the big 𝒪  defined by sup
1≤𝑘≤𝑛

|𝑓(𝑧𝑘+1) − 𝑓(𝑧𝑘)| ≤
𝑛𝑘

𝑛
  

for some 𝜂𝑘 ≥ 0.. 

 

PROOF 

For any 𝑛 ∈ ℕ, let 𝒫𝑛 be a finite partition, of the bounded 

interval [𝑎, 𝑏], of the form 𝒫𝑛 = {𝑧𝑘}𝑘=1
𝑛 = {

(𝑛−𝑘)𝑎+𝑘𝑏

𝑛
}

𝑘=1

𝑛

 

then |𝑧𝑘+1 − 𝑧𝑘| =
𝑏−𝑎

𝑛
. Assuming 𝑓: [𝑎, 𝑏] → ℝ  is 

absolutely continuous; then for any 𝜖 >  0, there is 𝛿 >  0 

such that ∑ |𝑓(𝑧𝑘+1) − 𝑓(𝑧𝑘)| < 𝜖 𝑛
𝑘=1  whenever 

∑ |𝑧𝑘+1 − 𝑧𝑘| < 𝛿 ≤ 𝑏 − 𝑎 𝑛
𝑘=1 . Also, it follows that there 

exists, for each 𝑘 , a constant 𝜂𝑘  such that |𝑓(𝑧𝑘+1) −

𝑓(𝑧𝑘)| ≤  𝜂𝑘|𝑧𝑘+1 − 𝑧𝑘| =
𝜂𝑘(𝑏−𝑎)

𝑛
, yielding 

sup
1≤𝑘≤𝑛

|𝑓(𝑧𝑘+1) − 𝑓(𝑧𝑘)| ≤
𝜂𝑘(𝑏−𝑎)

𝑛
 where 𝜂 = sup

1≤𝑘≤𝑛
𝜂𝑘  

 

Conversely, for each subinterval (𝑥𝑘 , 𝑦𝑘)  of [𝑎, 𝑏] , 

assuming sup
1≤𝑘≤𝑛

|𝑓(𝑧𝑘+1) − 𝑓(𝑧𝑘)| = 𝒪 (
1

𝑛
)  for all finite 

partitions 𝒫𝑘𝑛  of (𝑥𝑘 , 𝑦𝑘) , in the form of 𝒫𝑛  above, then 

𝑛𝑠𝑢𝑝1≤𝑘≤𝑛 |𝑓(𝑧𝑘 + 1) − 𝑓(𝑧𝑘)|  ≤ 𝜂𝑘|𝑧𝑘+1 − 𝑧𝑘| for some 
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constant 𝜂𝑘 > 0 . Let {(𝑥𝑘 , 𝑦𝑘)}𝑘=1
𝑛  be a family of such 

subintervals of [𝑎, 𝑏] ; then given any 𝜖 >  0  we shall 

compute 𝛿 >  0  such that ∑ |𝑓(𝑦𝑘) − 𝑓(𝑥𝑘)| < 𝜖 𝑛
𝑘=1  

whenever ∑ |𝑦𝑘 − 𝑥𝑘| < 𝛿 𝑛
𝑘=1  

δ.  

 

Without loss of generalization we may assume that |𝑦𝑘 −
𝑥𝑘| ≤ 𝛽𝑘|𝑧𝑘(𝑗+1)  −  𝑧𝑘𝑗|  while |𝑓(𝑦𝑘) − 𝑓(𝑥𝑘)|  ≤

 𝜃𝑘|𝑓(𝑧𝑘(𝑗+1)) − 𝑓(𝑧𝑘𝑗)|  for some 𝛽𝑘 , 𝜃𝑘  >  0 . Here, the 

partition 𝒫𝑘𝑛 = {𝑧𝑘𝑗}
𝑗=1

𝑛
 for the subinterval (𝑥𝑘 , 𝑦𝑘) should 

be understood to satisfy𝑧𝑘𝑗 =
(𝑛−𝑗)𝑥𝑘+𝑗𝑦𝑘

𝑛
 so that |𝑧𝑘(𝑗+1)  −

 𝑧𝑘𝑗| =
𝑦𝑘−𝑥𝑘

𝑛
; 𝑗, 𝑘 =  1,2, . . . , 𝑛.  

 

This yields |𝑓(𝑦𝑘) − 𝑓(𝑥𝑘)|  ≤ ∑ 𝜃𝑘|𝑓(𝑧𝑘(𝑗+1)) −𝑛
𝑘=1

𝑓(𝑧𝑘𝑗)| ≤ 𝑛 sup 𝜃𝑘|𝑓(𝑧𝑘(𝑗+1)) −

𝑓(𝑧𝑘𝑗)| ≤ 𝑛 sup 𝜃𝑘|𝑓(𝑧𝑘(𝑗+1)) − 𝑓(𝑧𝑘𝑗)| ≤ 𝜂𝑘 for some 

𝜂𝑘 > 0  Hence ∑ |𝑓(𝑦𝑘) − 𝑓(𝑥𝑘)| ≤ ∑ 𝜂𝑘
𝑛
𝑘=1 <𝑛

𝑘=1

𝜖  whenever ∑ |𝑦𝑘 − 𝑥𝑘| < 𝛿 𝑛
𝑘=1  

 

where 𝜖 > ∑ 𝜃𝑘|𝑓(𝑧𝑘(𝑗+1)) − 𝑓(𝑧𝑘𝑗)|𝑛
𝑗=1  and 𝛿 >

∑ 𝜃𝑘|𝑧𝑘(𝑗+1)  −  𝑧𝑘𝑗
𝑛
𝑗=1 𝛽𝑘| ≤ 𝑏 − 𝑎 End of proof.  ∎ 

 

Corollary 16:   

𝑓 ∶  [𝑎, 𝑏] → ℝ is absolutely continuous if and only if the 

sequence {𝑓(𝑥𝑛)}𝑛=1
∞  

 is rapidly Cauchy whenever {𝑥𝑛}𝑛=1
∞  is rapidly Cauchy. 

 

PROOF 

Let 𝑓 ∶  [𝑎, 𝑏] → ℝ be absolutely continuous then for any 

finite partition 𝒫𝑛 = {𝑧𝑗}
𝑗−1

𝑛
 of [𝑎, 𝑏] 

 we have that, by Theorem 15, there exists 𝜂𝑗 > 0 such that 
|𝑓(𝑧𝑗+1) –𝑓(𝑧𝑗)|

|𝑧𝑗+1− 𝑧𝑗|
 ≤  𝜂𝑗 . Let  {𝑥𝑛}𝑘=1

∞ be a rapidly Cauchy 

sequence in [𝑎, 𝑏] then its nth term 𝑥𝑛  satisfies |𝑥𝑛+1 −

𝑥𝑛| ≤  
1

𝑛4 and by Archimedean property we also have that 

there exist  𝛽𝑗 , 𝜃𝑗  > 0  such that |𝑧𝑗+1 − 𝑧𝑗| ≤  𝛽𝑗|𝑥𝑛+1 −

𝑥𝑛| and |𝑓(𝑥𝑛+1) − 𝑓(𝑥𝑛)| ≤  𝜃𝑗|𝑓(𝑧𝑗+1)–  𝑓(𝑧𝑗)|.  

 

From above we obtain |𝑓(𝑥𝑛+1)–  𝑓(𝑥𝑛)| ≤

 𝜃𝑗|𝑓(𝑧𝑗+1)–  𝑓(𝑧𝑗)| ≤  𝜃𝑗𝜂𝑗|𝑧𝑗+1 –  𝑧𝑗|  ≤

 𝜃𝑗𝜂𝑗𝛽𝑗|𝑥𝑛+1 –  𝑥𝑛|  ≤  
𝜃𝑗𝜂𝑗𝛽𝑗

𝑛4 . This proves that the sequence 

{𝑓(𝑥𝑛)}𝑛=1
∞  is rapidly Cauchy. 

 

On the other hand, suppose the sequence {𝑓(𝑥𝑛)}𝑛=1
∞  is 

rapidly Cauchy for each rapidly Cauchy 

sequence {𝑥𝑛}𝑛=1
∞ . For any Ν 𝜖 ℕ  let 𝒫Ν = {𝑢𝑗}

𝑗=1

Ν
 of 

[𝑎, 𝑏] , defined above, we shall show that 

sup
1 ≤𝑘 ≤ Ν

  |𝑓(𝑢𝑗+1)  −  𝑓(𝑢𝑗)|  =  𝒪 (
1

Ν
).  

 

For the rapidly Cauchy sequence {𝑥𝑛}𝑛=1
∞ , there exists 𝑛(𝑘) 

and a partition {𝑧𝑘}𝑘=1
𝑁 ⊂ (𝑥𝑛(𝑘), 𝓍𝑛(𝑘)+1)  of  

(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)+1) such that |𝑓(𝑧𝑘+1) −

 𝑓(𝑧𝑘)|𝜂𝑘|𝑓(𝑥𝑛(𝑘)+1)  −  𝑓(𝑥𝑛(𝑘))| . Also, since the 

partitions {𝑢𝑘}𝑘=1
𝑁  and  {𝑧𝑘}𝑘=1

𝑁  are finite, there exists θk 

such that |𝑓(𝑢𝑘+1) − 𝑓(𝑢𝑘)|  =  𝜃𝑘|𝑓(𝑧𝑘+1) − 𝑓(𝑧𝑘)| . 

These yield |𝑓(𝑢𝑘+1) − 𝑓(𝑢𝑘)| =  𝜃𝑘|𝑓(𝑧𝑘+1) − 𝑓(𝑧𝑘)| =

 𝜃𝑘𝜂𝑘|𝑓(𝑥𝑛(𝑘)+1) − 𝑓(𝑥𝑛(𝑘))| =  
𝑁𝜃𝑘𝜂𝑘

𝑛(𝑘)4

1

𝑁
 ≤  

𝜂

𝑁
 where 𝜂 ≤

sup
1≤𝑘≤𝑁

𝑁𝜃𝑘𝜂𝑘

𝑛(𝑘)4 . End of proof. ∎ 

  

APPLICATIONS. 

Theorem 17:  

An absolutely continuous function 𝑓: [𝑎, 𝑏] → ℝ  is 

Lipschitz along any rapidly Cauchy sequence, that is; if 
{𝑥𝑛}𝑛=1

∞ ⊂ [𝑎, 𝑏] is a rapidly Cauchy sequence in [𝑎, 𝑏] then 

there exists a constant 𝐿 >  0  such that |𝑓(𝑥𝑚) −
𝑓(𝑥𝑛)|  ≤  𝐿|𝑥𝑚 − 𝑥𝑛| for all 𝑚, 𝑛 ∈ ℕ. 

 

PROOF 

Given an absolutely continuous function 𝑓: [𝑎, 𝑏] → ℝ, let 

{𝑥𝑛}𝑛=1
∞  be a rapidly Cauchy sequence in [𝑎, 𝑏] and 𝒫𝑁 =

{𝑧𝑘}𝑘=1
𝑁 = {

(𝑛−𝑗)𝑐+𝑘𝑑

𝑛
}

𝑗=1

𝑛

 a finite partition of [𝑐, 𝑑] of the 

form above where 𝑐 =  𝑖𝑛𝑓{𝑥𝑛 , 𝑥𝑚}  and 𝑑 =
𝑚𝑎𝑥{𝑥𝑛 , 𝑧𝑚}. Mimicking the procedure above: by Theorem 

15 we have |𝑓(𝑧𝑗+1) −  𝑓(𝑧𝑗)| ≤ 𝜂𝑗|𝑧𝑗+1 − 𝑧𝑗|  and by 

Archimedean property, there exist 𝛽𝑗 , 𝜃𝑗  >  0  such that 

|𝑧𝑗+1 − 𝑧𝑗  ≤ 𝛽𝑗|𝑥𝑛 − 𝑥𝑚|  and |𝑓(𝑥𝑛+1) −  𝑓(𝑥𝑛)| ≤

𝜃𝑗|𝑓(𝑧𝑗+1) − 𝑓(𝑧𝑗)|  for some 𝑗  such that 1 ≤  𝑗 ≤  𝑁 . 

Hence |𝑓(𝑥𝑛) − 𝑓(𝑥𝑚)| ≤  𝜃𝑗|𝑓(𝑧𝑗+1)  −  𝑓(𝑧𝑗)|  ≤

 𝜃𝑗𝜂𝑗|𝑧𝑗+1 − 𝑧𝑗|  ≤  𝜃𝑗𝜂𝑗𝛽𝑗|𝑥𝑛 − 𝑥𝑚. End of proof.  ∎ 

 

Example:  

If 𝑔  is absolutely continuous and 𝑔(𝑢(𝑥𝑛))  is rapidly 

Cauchy sequence whenever 
{𝑥𝑛}𝑛=1

∞  is rapidly Cauchy, then 𝑢(𝑥𝑛) is rapidly Cauchy 

and 𝑢(𝑥) is absolutely continuous. 

 

Concluding Remark 

The famous Riesz characterization of absolute continuity 

below makes use of one of our hypotheses and is therefore 

closely related to our main result: 

 

Theorem 19: (Riesz) 

A function 𝐹: [𝑎, 𝑏] → ℝ can be represented in the form of 

1: 

𝐹(𝑥) = 𝑐 + ∫ 𝑓(𝑡)𝑑𝜇
𝑥

𝑎

 

if and only if for every partition 𝒫𝑛 of [𝑎, 𝑏] by points 𝑎 =
𝑥0 < 𝑥1 < . . . 𝑥𝑛 < 𝑏 the following inequality holds: 

     

 ∑
|𝐹(𝑥𝑘+1)−𝐹(𝑥𝑘)|𝑝

|𝑥𝑘+1−𝑥𝑘|𝑝−1
𝑛
𝑗=1 ≤ 𝑘  

where 𝑘 is a constant independent of the choice partition 

points in 𝒫𝑛. 

 

But is limited to 𝐿𝑝[𝑎, 𝑏]  spaces with 𝑝 > 1  thereby 

excluding the rich theory of the invaluable Sobolev space 

𝑊1,1  which is identified with the space 𝐴𝐶[𝑎, 𝑏]  of 

absolutely continuous functions; i.e. when 𝑝 >  1 . In a 
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recent submission, we have demonstrated that the Riesz 

characterization of absolute continuity implies our main 

result not only for 𝑝 > 1, but also for 𝑝 ≥ 1. On passing, it 

is also of importance to remark that the Riesz 𝐿𝑝 

characterization of absolute continuity was later studied by 

Medvedev (Appel et al, 2014) under the subject area of 

nonclassical bounded variations spaces and generalized 

using the concepts of functions of bounded Riesz variation 

and Riesz–Medvedev variations (Appel et al, 2014) which 

we have generalized in a recent submission. Such 

nonclassical generalizations prove to be very versatile 

techniques in signal processing. 
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