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ABSTRACT 

This study investigates Casson fluid flow with heat generation and radiation over a non-linear stretching sheet. The resulting 

partial differential equations are converted to a system of ordinary differential equations using similarity transformation and 

solved numerically using shooting technique with fourth order Runge-Kutta method. The effect of radiation, heat source, 

and Casson parameters on the momentum and thermal boundary layers are examined through graphs using MATLAB. From 

the graphs it is seen that increase in the values of heat source and Prandtl number parameter increases the temperature profiles. 

The momentum boundary layer thickness decreases while the rate of heat transfer increases with increasing non-linear 

parameter. The temperature and thermal boundary layer thickness decreases with increasing radiation parameter values. 

 

Keywords:  Casson fluid, heat generation, radiation, stretching sheet 

 

INTRODUCTION 

In recent years, researchers in the fields of science and 

engineering have focused on analyzing the flow caused by 

sheets that are either continuously or periodically stretched. 

This is due to the various practical applications in different 

engineering fields, such as the extrusion of polymer sheets 

from a dye, the cooling of metal plates in a cooling bath, and 

the movement of heat-treated materials between feed and 

wind-up rolls or on a conveyor belt. The flow past a 

stretching plate was derived by Crane (1970). Crane (1970) 

looked into the steady flow of a non-compressible, viscous 

fluid over an elastic sheet, where the flow was caused by the 

sheet being stretched within its own plane, with a velocity 

that varied linearly with the distance from a fixed point. 

Wang (1984) studied the three-dimensional flow due to a 

stretching flat surface. Andersson (1992) analysed MHD 

flow of a viscoelastic fluid past a stretching surface. Previous 

studies have primarily focused on linear stretching sheets, 

but it is not always the case that the stretching sheet is linear. 

Gupta and Gupta (1977) examined heat and mass transfer on 

a stretching sheet with suction or blowing. Vajravelu (2001) 

studied viscous flow over a nonlinearly stretching sheet. 

Raptis and Perdikis (2006) investigated viscous flow over a 

nonlinearly stretching sheet in the presence of a chemical 

reaction and magnetic field. Viscous flow and heat transfer 

over a nonlinear stretching sheet was performed by Cortell 

(2007). Recently, Pramanic (2014) studied Casson fluid flow 

and heat transfer past an exponentially porous stretching 

surface in the presence of thermal radiation. He found that 

increasing values of the Casson parameter suppress the 

velocity field but enhance the temperature. Bhattacharyya 

(2013) studied the MHD Stagnation-Point Flow of Casson 

Fluid and Heat Transfer over a stretching sheet with thermal 

radiation. Mabood (2015) analysed MHD boundary layer 

flow and heat transfer of nanofluid over a nonlinear 

stretching sheet. Ekang et al. (2021) studied MHD heat and 

mass flow of nanofluid over a nonlinear permeable 

stretching sheet. 

 

Casson fluid is a type of non-Newtonian fluid that behaves 

like solid elastic, with a yield shear stress present in its 

consecutive equation. Mustafa (2011) examined unsteady 

boundary layer flow of a Casson fluid due to an impulsively 

started moving flat plate. Hayat (2009) studied the effect of 

thermal radiation on the flow of a second-grade fluid. Senge 

et al. (2020) investigated the influence of radiation on 

magneto-hydrodynamics flow over an exponentially 

stretching sheet embedded in a thermally stratified porous 

medium in the presence of heat source. 

Radiation influence on boundary layer flow is also essential 

because it is used in engineering, physics, and industrial 

sectors such as, polymer processing, gas-cooled nuclear 

reactors, design of furnace, and space technologies such as 

aerodynamics rockets, power plants for interplanetary 

flights, propulsion systems, missiles, and space crafts that 

function at extreme temperatures. As a result, the effects of 

thermal radiation cannot be neglected in such mechanisms. 

Due to heat, fluids fluctuate in their viscosity, which may 

vary depending on the rate of deformation, and certain fluids 

have an elastic component in nature, which is considered as 

non-fluids. In general, heat generation can change the 

temperature of the fluid and alter its viscosity. A rise in 

temperature can cause the fluid to become less viscous and 

more fluid, making it easier to flow. On the other hand, heat 

generation can also cause the fluid to become more viscous 

and less fluid, making it harder to flow. Additionally, the 

heat generation could cause the fluid to reach a higher yield 

stress, requiring more stress to begin flowing. 

In this work, Casson fluid flow with heat generation and 

radiation over a non-linear stretching sheet is examined. The 

governing partial differential equations are converted to a 

system of non-linear ordinary differential equations using 

the similarity transformation and then solved numerically 

using shooting technique with fourth order Runge-Kutta 

method. The effect of the controlling parameters on the fluid 

velocity and temperature distributions have been 
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demonstrated graphically and discussed. A comparative 

study is also presented. 

 

METHODOLOGY 

Mathematical Formulation 

Consider the flow of an incompressible viscous fluid through 

a flat sheet intersected by plane 𝑦 = 0. The flow is restricted 

to 𝑦 > 0. Two equal and opposing forces are applied along 

the x axis to stretch the wall while keeping the origin fixed. 

The standard Casson fluid's rheological equation of state for 

an isotropic and incompressible flow is 

𝜏𝑖𝑗 = {
(𝜇𝐵 +

𝑝𝑦

√2𝜋
) 2𝑒𝑖𝑗   ;      𝜋 ˃ 𝜋𝑐

(𝜇𝐵 + 
𝑝𝑦

√2𝜋𝑐
) 2𝑒𝑖𝑗    ;      𝜋 ˂ 𝜋𝑐

       

where 𝜋 = 𝑒𝑖𝑗 𝑒𝑗𝑖  , and 𝑒𝑖𝑗 is the ( 𝑖, 𝑗)th component of the 

deformation rate, defined as 

 

𝑒𝑖𝑗 =  
1

2
( 
𝜕𝑢𝑖

𝜕𝑥𝑗
+ 

𝜕𝑢𝑗

𝜕𝑥𝑖
).  𝜋 is the product of the deformation 

rate with itself, 𝜋𝑐 is the critical value of the product of the 

component of the rate of strain tensor with itself, 𝜇𝐵 is the 

plastic dynamic viscosity of casson fluid and 𝑝𝑦 is the yield 

stress of the fluid. The positive 𝑥 coordinate is measured 

along the sheet and the positive 𝑦 coordinate is measured 

perpendicular to the sheet. 

We make the following assumptions. The heat source and 

radiation are imposed at the plate surface, the temperature of 

the fluid at the surfaced raised to 𝑇𝑤, is assumed to be greater 

than the ambient temperature of the fluid, 𝑇∞. 

The temperature, 𝑇𝑤  at the surface is given by 

 

𝑇𝑤(𝑥) =  𝑇∞ + (𝑇𝑤 − 𝑇∞)𝜃                                                 
where 𝑇∞ is a constant. 

From these assumptions the governing equations are 

obtained as follows 

 
𝜕𝑢 

𝜕𝑥
+

𝜕𝑣

 𝜕𝑦
= 0      (1) 

𝑢
𝜕𝑢 

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜗 (1 +

1

𝛽
)
∂2𝑢

∂𝑦2
    (2) 

  𝑢
𝜕𝑇

𝜕𝑥
+  𝑣

𝜕𝑇

𝜕𝑦
= 𝜅

𝜕2𝑇

𝜕𝑦2
+

𝑄0

𝜌𝑐𝑝
(𝑇 − 𝑇∞) −

1

𝜌𝑐𝑝

𝜕𝑞𝑟

𝜕𝑦
 (3) 

where 𝑢 and 𝑣 are the velocity components in the 𝑥 and 𝑦 

directions, respectively, 𝜗 is the kinematic viscosity, 𝜌 is the 

fluid density,  

𝛽 = µ𝐵√2𝜋𝑐/𝑝𝑦  is the parameter of the Casson fluid, 𝜅 is 

the thermal diffusivity of the fluid, 𝑄0 is dimensional heat 

generation, 𝜅∗ is the absorption coefficient, 𝜎∗ = Stefan-

Boltzmann constant 𝑞𝑟 is radiative heat flux, 𝑇 is 

temperature. 

Using Rosseland approximation for radiation, 

   𝑞𝑟 =
4𝜎∗

3𝜅∗

𝜕𝑇4

𝜕𝑦
          (4) 

By assuming that the temperature difference within the flow 

is such that 𝑇4 may be expanded in a Taylor series and 

expanding 𝑇4 about 𝑇∞ and neglecting terms of higher 

orders, we have 

𝑇4 ≅ 4𝑇∞
3𝑇 − 3𝑇∞

4           (5) 

Substituting the partial derivative with respect to 𝑇 of 

equation  (5) in equation  (4) the rate of change of 

radioactive heat flux in the 𝑦-axis direction becomes 

  
𝜕𝑞𝑟

𝜕𝑦
= −

16𝜎∗𝑇∞
3

3𝜅∗

𝜕2𝑇

𝜕𝑦2
        (6) 

Therefore equation (3) becomes;   

𝑢
𝜕𝑇

𝜕𝑥
+  𝑣

𝜕𝑇

𝜕𝑦
= 𝜅

𝜕2𝑇

𝜕𝑦2
+

𝑄0

𝜌𝑐𝑝
(𝑇 − 𝑇∞) +

16𝜎∗𝑇∞
3

3𝜌𝑐𝑝𝜅
∗

𝜕2𝑇

𝜕𝑦2
 (7) 

With initial and boundary conditions: 

𝑢𝑤 = 𝑈 = 𝑐𝑥
𝑛,  𝜐 = 0,   𝑇 =  𝑇𝑤, at 𝑦 = 0  (8)

   

𝑢 → 0,  𝑇 → 𝑇∞, 𝑦 → ∞     

Here, c (c >  0) is a parameter related to the surface 

stretching speed, 𝑇𝑤 is the uniform temperature at the sheet, 

𝑇∞ is the free stream temperature, and 𝑛 is the power index 

related to the surface stretching sheet. 

Now we introduce the stream function 𝜑(𝑥, 𝑦), define by; 

𝑢 =
𝜕𝜑

𝜕𝑦
            𝜐 = −

𝜕𝜑

𝜕𝑥
    (9) 

These automatically satisfy continuity equation. Next 

introduce the similarity transformations; 

 𝜑 =
𝑐𝑥

𝑛+1
2

√𝑐(𝑛 + 1)
2𝜗

𝑓(𝜂);    𝜂

= 𝑦√
𝑐(𝑛 + 1)

2𝜗
𝑥
𝑛+1
2 ;       

𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

= 𝜃(𝜂)   

𝑢 = 𝑐𝑥𝑛𝑓′(𝜂);         𝑣 = −√𝑐𝜗
(𝑛+1)

2
𝑥
𝑛−1

2 [𝑓(𝜂) +

𝑛−1

𝑛+1
𝜂𝑓′(𝜂)]     (10) 

Substituting equations (9) and (10) into equations (2) to (7), 

the governing equations reduce to:  

(1 +
1

𝛽
) 𝑓′′′ + 𝑓𝑓′′ −

2𝑛

𝑛+1
𝑓′
2
= 0    (11) 

1

𝑝𝑟
(1 +

4

3
𝑅) 𝜃′′+𝑓𝜃′ +

2

𝑛+1
𝑄𝜃 = 0   (12) 

https://dx.doi.org/10.4314/WOJAST.v15i1.33


Open Access article published under the terms of a  
Creative Commons license (CC BY). 

http://wojast.org 

Ekang et al: Casson Fluid Flow with Heat Generation and  
Radiation Over a Non-Linear Stretching Sheet 

                                https://dx.doi.org/10.4314/WOJAST.v15i1.33  

 

World Journal of Applied Science and Technology, Vol. 15 No. 1 (2023) .33 – 37   35 

The transformed boundary conditions are: 

𝑓′(0) =  1, 𝑓( 0 ) =  0, 𝜃( 0 ) =  1,  𝑎𝑡 𝜂 =  0, 

𝑓′(𝜂) → 0,   𝜃(𝜂) → 0,   𝑎𝑠 𝜂 → ∞,   (13) 

where the prime denotes differentiation with respect to 𝜂 and 

the dimensionless parameters are as follows:  

𝑃𝑟 =
𝜗

𝑘
 is the Prandtl number. 

𝑄 =  
𝑄0𝑥

 𝑢𝑤𝜌𝑐𝑝
 is the heat source; 

𝑅 =
4𝜎∗𝑇∞

3

3𝑘𝜅∗
 is the radiation parameter; 

Hence the dimensionless form of Skin friction (𝐶𝑓) and the 

Local Nusselt number (𝑁𝑢𝑥) are given by; 

 𝐶𝑓𝑅𝑒𝑥
1

2 = (1 +
1

𝛽
) 𝑓′′(0);       

𝑁𝑢𝑥

𝑅𝑒𝑥

1
2

(
2

𝑛+1
)

1

2
= −𝜃′(0)   (14) 

 where  𝑅𝑒𝑥 =
𝑥𝑢𝑤

𝜗
  is the local Reynolds number.  

Method of solution 

The dimensionless equations (9) and (10) subject to the 

boundary conditions (11) are non-linear equations, hence 

solving numerically, we convert it to a system of equations 

by setting the following:  

Let: 

              

(

  
 

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6)

  
 

 = 

(

 
 
 

𝜂
𝑓

𝑓′

𝑓′′

𝜃
𝜃′)

 
 
 

    (15) 

where  

𝑓′′′ = (
𝛽

1 + 𝛽
) {−𝑦2𝑦4 +

2𝑛

𝑛 + 1
𝑦′3

2
 } 

𝜃′′ = (
3𝑃𝑟

3 + 4𝑅
) {−𝑦2𝑦4 − 2𝑄𝑦5} 

Satisfying 

              

(

 
 
 
 

𝑦1(0)

𝑦2(0)

𝑦3(0)

𝑦4(0)

𝑦5(0)

𝑦6(0))

 
 
 
 

 = 

(

 
 
 

0
0
1
𝐴1
1
𝐴2)

 
 
 

    (16) 

where 𝐴1 and 𝐴2 are guessed such that 

(𝑦3(∞)
𝑦5(∞)

) = (0
0
)       as  𝜂 → ∞  (17) 

These equations are solved numerically using shooting 

technique with fourth order Runge-Kutta (R-K 4) method. 

The boundary condition as  𝜂 → ∞ was replaced by a finite 

value in accordance with standard practice in the boundary 

layer analysis. We set 𝜂∞ = 10.  

RESULTS AND DISCUSSION 

The Effects of the dimensionless governing parameters 

namely: Radiation parameter (R), Prandtl number (𝑃𝑟), 

Casson Parameter (𝛽), Heat source parameter (𝑄) and the 

nonlinear parameter (𝑛) on the velocity and temperature 

distribution profiles are analyzed numerically using the R-K 

4 method stated in the previous section. To do this we set the 

following properties to be constant. The numerical values 

were generated and MATLAB was used to plot the 

following graphs by varying the fluid properties with basics 

at 𝑝𝑟 = 0.7, 𝛽 = 2, 𝑅 = 1.2, 𝑄 = 1, 𝑛 = 1. 
In order to analyze the results, numerical computations have 

been carried out using the R-K 4 method for various values 

of Casson parameter 𝛽, nonlinear stretching parameter 𝑛 , 

Prandtl number 𝑝𝑟, heat source 𝑄 and radiation parameter 𝑅. 

For illustrations of the results, the numerical results are 

plotted in Figs. 1-5. 

Figure 1a presents the influence of variation of casson 

parameter (𝛽) on velocity profiles of fluid.The velocity 

profile decreases as the casson parameter (𝛽) values 

increase. The Casson parameter produces a resistance in the 

fluid flow and consequently the boundary layer thickness 

decreases for higher value of Casson parameter.  

Figure 1b shows the influence of variation of casson 

parameter (𝛽) on temperature profile of the fluid. It is 

observed that as the values of the casson parameter (𝛽) 
increases, the temperature increases. There is a slight 

increase in the thermal boundary layer thickness as the 

Casson parameter increases. 

Figure 2a shows the influence of variation of the non-linear 

parameter (𝑛) on velocity profiles of the fluid. The velocity 

decreases as the non-linear parameter (𝑛) values increase. 

As a result, the momentum boundary layer thickness 

decreases with increasing non-linear stretching parameter.  

Figure 1a. Influence of 𝛽 on 𝑓′(𝜂) 

Figure 1b Influence of 𝛽 on 𝜃(𝜂) 
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Figure 2a. Influence of 𝑛 on 𝑓′(𝜂) 
 

Figure 2b presents the influence of variation of the non-

linear parameter (𝑛) on temperature profiles of fluid. It 

shows that the temperature increases as the non-linear 

parameter (𝑛) values increase. This implies that the rate of 

heat transfer increases with increasing non-linear parameter.  

Figure 2b: Influence of 𝑛 on 𝜃(𝜂) 

Figure 3 presents the influence of variation of the Prandtl 

number parameter (𝑃𝑟) on temperature profiles of fluid. The 

temperature increases as the Prandtl number parameter (𝑃𝑟) 
values increases. It is noted that increase in the prandtl 

number corresponds to a weaker thermal diffusivity and a 

thinner thermal boundary layer.  

 

Figure 3 Influence of 𝑝𝑟  on 𝜃(𝜂) 

Figure 4 Influence of 𝑄 on 𝜃(𝜂) 

Figure 4 presents the influence of variation of the Heat 

source parameter (𝑄) on temperature profiles of fluid.The 

temperature increases as the Heat source parameter (𝑄) 
value increases. This is due to the fact that additional energy 

was generated and this brought about the increase in 

thickness of the thermal boundary layers. 

Figure 5 Influence of 𝑅 on 𝜃(𝜂) 

Figure 5 presents the influence of variation of the radiation 

parameter (𝑅) on temperature profiles of fluid. The 

temperature and thermal boundary layer thickness decreases 

with increasing radiation parameter (𝑅) values.  

Conclusion 

The effects of the fluid parameters on the heat transfer are 

examined with the help of graphs. From the graphs, it is seen 

that increase in the values of Casson parameters decreases 

the velocity profiles and increases the temperature profiles. 

The momentum boundary layer thickness decreases while 

the rate of heat transfer increases with increasing nonlinear 

parameter. The temperature profile increases as the Prandtl 

number parameter (𝑃𝑟) values increase. The temperature 

profile increases as the Heat source parameter (𝑄) values 

increase. The temperature and thermal boundary layer 

thickness decreases with increasing radiation parameter (𝑅) 
values. 
 

Notation 

Dynamic viscosity of the Casson fluid: µ 

Density of the fluid: ρ 

Thermal conductivity of the fluid: k 

Fluid temperature: T 

Heat generation: Q 

Velocity of the fluid along the x-axis: 𝑢 

Velocity of the fluid along the y-axis: 𝑣 

Ambient temperature: 𝑇∞ 

Prandtl number: Pr  

Reynolds number: Re  

Nusselt number: Nu  

Skin friction: 𝐶𝑓 

∂ (partial derivative): used to represent partial derivatives in 

equations 

∇ (nabla): used to represent the gradient operator in 

equations 

Kinematic viscosity: 𝜗  
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