
Open Access article published under the terms of a  
Creative Commons license (CC BY). 

http://wojast.org 

Isonguyo, et al: Entropic Uncertainty Relations and the Fisher 
Information for the Generalized Radial Yukawa Potentia 

https://dx.doi.org/10.4314/WOJAST.v14i1b.44   

 

World Journal of Applied Science and Technology, Vol. 14 No. 1b (2022) 44 - 50                           44 

ENTROPIC UNCERTAINTY RELATIONS AND THE FISHER INFORMATION FOR THE 

GENERALIZED RADIAL YUKAWA POTENTIAL 

 
1ISONGUYO, C. N., 2OYEWUMI, K. J., 2OYUN, O. S. AND 1OKON, I. B. 

 
1Theoretical Physics Group, Department of Physics, University of Uyo, Uyo, Akwa Ibom State, Nigeria. 
2Theoretical Physics Section, Department of Physics, University of Ilorin, Ilorin, Kwara State, Nigeria. 

Corresponding email: ceciliaisonguyo@uniuyo.edu.ng 

 

ABSTRACT 

The Heisenberg uncertainty relation as well as the Fisher information are presented analytically and numerically for the 

Generalized radial Yukawa potential. The probability density for the ground and first excited state has been analyzed via the 

Fisher information for this potential model. Some numerical results are obtained. From the numerical results obtained, we 

observed that, for n = 0, 1, the position-space Fisher information Ir increases with increasing potential parameter a, while the 

momentum-space Fisher information Iρ initially increases, and later decreases with increasing potential parameter a. The 

Fisher-information-based uncertainty relation and the Heisenberg uncertainty relation have been verified to hold for this 

atomic model. In addition, we observed a squeezed phenomenon in some of the results in position r and momentum ρ for the 

ground and first excited states. 

 

KEYWORDS: Schrὅdinger Equation; Nikiforov-Uvarov method; Manning Rosen plus exponential Yukawa 

Potential. 

 

INTRODUCTION 

As stated by the density functional theory (DFT), the 

physical and chemical properties of fermionic systems 

(atoms, molecules, nuclei, solids) can be completely 

described by means of the single-particle probability 

densities in the position and momentum spaces (Hohenberg, 

et al., 1964). The spread of the probability densities which 

characterizes their allowed quantum states are quantified by 

the information-theoretic measures in a more appropriate 

manner than the celebrated variance or other measures of 

dispersion (Sen, 1995 and Dehesa, et al., 2005). This is due 

to the fact that, these information-theoretic tools do not make 

any reference to some specific point of the corresponding 

Hilbert space. These measures play important roles in the 

uncertainty and other quantum parameters. 
 

Fisher information is one of the main information-theoretic 

measures that was first introduced by Fisher in 1925, as a 

measure of intrinsic accuracy in statistical estimation theory 

(Fisher, 1925 and Sears, et al., 1980). Since then, it has found 

many applications in different areas of sciences, 

communication and quantum computation (Hohenberg, 

1964 and Dehesa, et al., 2005). Several laws and 

fundamental equations in physics have been obtained 

through the principle of minimum/maximum Fisher 

information, examples include: the equation of non-

relativistic quantum mechanics, the time-dependent Kohn-

Sham equations and the time-dependent Euler equation of 

density functional theory, amongst others (Frieden, 1998; 

Reginatto, 1998 and Nalewajski, 2003). Fisher information 

of the electronic distribution functions is closely related to 

the vonWeizsäcker kinetic energy functional of atomic and 

molecular systems and the kinetic energy (Parr, et al. 1989; 

Romera, et al., 1994 and Sears, 1980).  As reported by 

Nalewajski, Fisher information have been used in numerous 

ways in quantum chemistry and more generally, molecular 

electronic structure theory (Nalewajski, 2008). In addition, 

it is used as descriptors of chemical reactivity of molecules 

(Montgomery, et al., 2008; Esquivel, et al., 2010 and Grassi, 

2011).  
 

However, the study of information theory of quantum-

mechanical systems have been extensively used in recent 

years to study a variety of quantum mechanical systems 

(Majernik, et al., 1996; Yanez, et al., 1994; Dehesa, et al., 

1997; Dehesa, et al., 2006; Yahya, et al., 2014a; Yahya, et 

al., 2014b; Yahya, et al., 2013; Osobonye, et al., 2020; Patil, 

et al., 2007; Isonguyo, et al., 2018; Okon, et al., 2018 and 

Antia, et al., 2018). This is because, it provides a deeper 

knowledge into the internal structure of the quantum systems 

and it is closely related with modern quantum computation 

and information, which is a basic theory for numerous 

technological developments (Gadre, et al., 1991 and 

Nielson, 2001). The Fisher information in the position-space 

Ir is defined by (Fisher, 1925, Isonguyo, et al., 2018; Okon, 

et al., 2018), 
 

Ir = ∫
[𝜌′(𝑟)]2

𝜌(𝑟)
𝑑𝑟 = 4∫[𝜓′(𝑟)]2𝑑𝑟 = 〈𝜌2〉,   (1) 

 

 the corresponding quantity for the momentum space Fisher 

information Iρ  is defined as, 

 

Ip = ∫
[𝜌′(𝑝)]2

𝜌(𝑝)
𝑑𝑟 = 4∫[𝜙′(𝑝)]2𝑑𝑟 = 〈𝑟2〉.  (2) 

 

The Fisher information product is expresses as Irp = IrIp , 

where 𝜓(𝑟)  is a normalized eigenfunction in the spatial 

coordinate and 𝜙(𝑝) is its normalized eigenfunction in the 

momentum coordinate which is obtained by the Fourier 

transform of 𝜓(𝑟) . Fisher information is the gradient 

functional of probability density, as such, it is a local 

measure of the extent and concentration of the probability 

density of the system in the spatial localization of the 

electron cloud. The higher this quantity, the more 

concentrated the single particle density, the smaller the 

uncertainty and the higher the accuracy in predicting the 
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localization of the particles (Yahya, et al., 2014a and Falaye, 

et al., 2014). 

 

In this paper, the aim is to investigate the Fisher information 

for the generalized radial Yukawa Potential (GYP) and its 

uncertainty principle. The Yukawa potential is very useful in 

describing the nuclear interaction between protons and 

neutrons due to the creation and exchange of pion (Yukawa, 

1935; Oluwadare, et al., 2016 and Adamowski, 1985). This 

model has found extensive applications in the various 

branches of Physics such as atomic and nuclear physics, 

solid state physics, Plasma physics, and alot more (Greiner, 

2000 and Preston, et al., 1975). GYP is a combination of a 

long range Yukawa interaction and a short range repulsive 

inversely quadratic Yukawa interaction (Oluwadare, et al., 

2016 and Isonguyo, et al., 2018). 

 

Furthermore, we shall study the Uncertainty Relation 

(Heisenberg uncertainty relation) which is an important 

aspect of quantum mechanics. This Principle was introduced 

by Heisenberg in 1927. The Heisenberg uncertainty principle 

for the product of the uncertainties in the position and 

momentum spaces, expressed in terms of Planck’s constant 

is given as (Heisenberg, 1927) 

 

∆r∆p ≥
ℏ

2
 ,      (3) 

where,  

 ∆r = √〈𝑟2〉 − 〈𝑟〉2   and  ∆p = √〈𝑝2〉 − 〈𝑝〉2  . (4) 

 

∆r and ∆p  represent the position and momentum 

uncertainties, respectively. This relation implies that it is 

physically impossible to measure exactly both position and 

momentum simultaneously (Heisenberg, 1927 and Chen, et 

al., 2013). In addition, we shall study the squeezing 

behaviour of the ground and first excited states for some of 

the potential parameter a. 

 

This work is structured as follows: In the next Section, we 

obtained the eigensolution for the Generalized Yukawa 

potential, the normalized wave function and the probability 

density of the system. Furthermore, the Fisher information 

and the Heisenberg uncertainty relation is presented for 

GYP, some numerical results are also given. Finally, the 

discussion and conclusion follows.  

      

GENERALIZED YUKAWA POTENTIAL AND ITS 

ANALYTICAL SOLUTION 

In this section, we shall present the analytical solution of 

this system, which is necessary for obtaining the wave 

function and probability density needed for the analysis. 

The radial Schrodinger equation is given as (Greiner, 2000; 

Galindo, et al., 1978 and Ita, et al., 2015) 

 
𝑑2𝜓𝑛𝑙(𝑟)

𝑑𝑟2
+

2𝜇

ℏ2
 { (𝐸𝑛𝑙 − 𝑉(𝑟)) −

 ℏ2𝑙(𝑙+1)

2𝜇𝑟2
}𝜓𝑛𝑙(𝑟) = 0,

      (5) 

 

with the Generalized radial Yukawa potential (GYP) defined 

as (Oluwadare, et al., 2016) 

 

𝑉(𝑟) =  − (
 𝑉0𝑒

−𝑎𝑟

𝑟
) − 

𝑉1𝑒
−2𝑎𝑟

𝑟2
 ,   (6) 

 

where E is the exact bound state energy eigenvalue, 𝜓(𝑟) is 

the eigenfunction, 𝜇 represents the reduced mass,(ℏ=𝜇=1). n 

denotes the principal quantum number (n and 𝑙 are known as 

the vibration-rotation quantum numbers), r is the inter-

nuclear separation. 𝑉0 and 𝑉1 are constants which determine 

the potential strength, a is the screening parameter which 

characterize the range of the interaction. The plot of this 

potential model as a function of r is shown below. 

 

 
Figure 1: Shape of the Generalized Yukawa Potential (GYP) 

as a function of r, for some values of a, with 𝑉0 = 5.0, 𝑉1 = 

10.0 

 

On substituting equation (6) into equation (5) and then solve, 

the wave function and energy eigenvalue equation for the 

generalized Yukawa potential are obtained respectively as: 

 

𝜓𝑛𝑙
𝐺𝑌𝑃(𝑟) = 𝑁𝑛𝑙(𝑒

−𝑎𝑟)𝜀(1 − 𝑒−2𝛼𝑟)𝜂𝑃𝑛
(2𝜀,   2𝜂−1)(1

− 2𝑒−2𝛼𝑟) 

 = 𝑁𝑛𝑙𝑠
𝜀(1 − 𝑠)𝜂𝑃𝑛

(2𝜀,   2𝜂−1)(1 − 2𝑠) ,   𝑠 = 𝑒−2𝛼𝑟   (7) 

 

and 

E = −
2ℏ2𝑎2

𝜇
[
𝑛2+𝑛+

1

2
−
𝜇𝑉0
ℏ2𝑎

+𝑙(𝑙+1)+(2𝑛+1)𝛿

(2𝑛+1)+2𝛿
]

2

,  (8) 

where 

 

𝜀 = √−
𝜇𝐸

2𝑎2ℏ2
  , 𝛿 = √

1

4
+ 𝑙(𝑙 + 1) −

2𝜇𝑉1

ℏ2
  ,  𝐴 =

√
1

4
+ 2𝑉1 + 𝑙(𝑙 + 1)  .    (9) 

 

The normalization constant can be calculated using 

∫ |𝜓𝑛𝑙
𝐺𝑌𝑃(𝑟)|

2
𝑑𝑟 = 1

∞

−∞
 (Greiner, 2000 and Galindo, et al., 

1978). For n = 0, 1 we have 

 

 𝑁0
𝐺𝑌𝑃 = 2√

2𝑎Γ(2ε+2𝜂+1)

Γ(2𝜂+1)Γ(2ε)
  ,    (10) 

 

𝑁1
𝐺𝑌𝑃 = √

𝑎𝜀Γ(2ε+2𝜂+3)

𝜂(𝜂+1)Γ(2𝜂)(2𝜂+2𝜀+1)Γ(2ε+2)
    .  (11) 
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Hence, the normalized wave function in position space for 

two low lying states n = 0, 1, are then given by: 

 

𝜓0
𝐺𝑌𝑃(𝑟) = 2√

2𝑎Γ(2ε+2𝜂+1)

Γ(2𝜂+1)Γ(2ε)
(𝑒−𝑎𝑟)𝜀(1 − 𝑒−2𝛼𝑟)𝜂   (12) 

and  

𝜓1
𝐺𝑌𝑃(𝑟) =

𝑁1
𝐺𝑌𝑃

2
(𝑒−𝑎𝑟)𝜀(1 − 𝑒−2𝛼𝑟)𝜂 ((1 − 2𝑒−2𝛼𝑟)(2ε +

2𝜂 + 1) − 2𝜂 + 2ε + 1),    (13)  

 

while the corresponding normalized wave function in 

momentum-space is obtained by finding the Fourier 

transform of 𝜓𝑛𝑙
𝐺𝑌𝑃(𝑟)  as (Greiner, 2000): 

 

𝜓0
𝐺𝑌𝑃(𝑝) =

1

√2𝜋
∫ 𝑒−𝑖𝑝𝑟
∞

0
𝜓0
𝐺𝑌𝑃(𝑟)𝑑𝑝 =

𝑁0
𝐺𝑌𝑃

√2𝜋

Γ(𝜂+1)Γ(
ip

2a
+ε)

2aΓ(
ip

2a
+ε+𝜂+1)

  

,      (14) 
 

𝜓1
𝐺𝑌𝑃(𝑝) =

1

√2𝜋
∫ 𝑒−𝑖𝑝𝑟
∞

0
𝜓1
𝐺𝑌𝑃(𝑟)𝑑𝑝 =

𝑁1
𝐺𝑌𝑃

√2𝜋

Γ(𝜂+1)(a(n+2ε+1)−i𝜂𝑝)Γ(
ip

2a
+ε)

2a2Γ(
ip

2a
+ε+𝜂+2)

  ,   (15) 

 

The probability density for GYP is obtained by squaring 

equation (7) which gives  
 

 𝜌(𝑟) = |𝜓𝑛𝑙
𝐺𝑌𝑃(𝑟)|

2
= 𝑁𝑛𝑙

2 𝑠2𝜀(1 −

𝑠)2𝜂 [𝑃𝑛
(2𝜀,   2𝜂−1)(1 − 2𝑠)]

2

 .   (16) 

 

 
Figure 2: Wave function plot in the ground state for GYP 
 

 
Figure 3: Wave function plot  in the first excited state for 

GYP 
 

 

Figure 4: Probability density plot in the ground state for GYP 

 

 
Figure 5: Probability density plot in the first excited state for 

GYP 

 

UNCERTAINTY PRINCIPLE AND FISHER 

INFORMATION 

The expectation values for the GYP are evaluated using the 

following equations (Greiner, 2000): 

 

〈𝑟〉𝑛 = ∫ 𝜓𝑛𝑙
𝐺𝑌𝑃(𝑟) 𝑟 𝜓𝑛𝑙

𝐺𝑌𝑃(𝑟)𝑑𝑟  ,
∞

0
〈𝑟2〉𝑛 =

∫ 𝜓𝑛𝑙
𝐺𝑌𝑃(𝑟) 𝑟2 𝜓𝑛𝑙

𝐺𝑌𝑃(𝑟)𝑑𝑟  
∞

0
                                               (17) 

 

 〈𝑝2〉𝑛 = ∫ 𝜓𝑛𝑙
𝐺𝑌𝑃(𝑟) 𝑝2 𝜓𝑛𝑙

𝐺𝑌𝑃(𝑟)𝑑𝑟  , 〈𝑝〉𝑛 = 0.
∞

0
  (18) 

 

On substituting equations (14), (15)into (17) and (18), then 

simplify the integrals above for the ground and first excited 

state, 

(n = 0, 1) yields 

 

〈𝑟〉0 =
Γ(2𝜂+1)Γ(2ε)(H2(ε+𝜂)−H2ε−1)

4𝑎2Γ(2ε+2𝜂+1)
 ,  (19) 

 

〈𝑟〉1 =
1

8𝑎2(ε+𝜂+1)2Γ(2ε+2𝜂+2)
×

(
Γ(2𝜂+1)Γ(2ε)(2(𝜂+1)(2ε+1)(𝜂+𝜀+1)(2ε+2𝜂+1)H2(ε+𝜂)

+2(𝜂+1)((𝜂+1)((2𝜂+3)+8ε2+10(𝜂+1)ε)

−2(𝜂+1)(2ε+1)(𝜂+𝜀+1)(2𝜂+2𝜀+1)(𝜓(0)(2ε)+γ))

)  , (20) 

 

〈𝑟2〉0 =
Γ(2𝜂+1)Γ(2ε)((−H2(ε+𝜂)+𝜓

(0)(2ε)+γ)2−𝜓(1)(2ε+2𝜂+1)+𝜓(1)(2ε))

8𝑎3Γ(2ε+2𝜂+1)
 (21) 

 

where H denote the Harmonic number, 𝜓(0)  is digamma 

function,  𝜓(1)  denote polygamma function and γ  is the 

Euler-Mascheroni constant (Adamowski, 1965). 
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The Fisher information for the generalized radial Yukawa 

potential is evaluated by using the probability density 

obtained for this system in equation (16) and then, analyze 

via the Fisher information formula in equations (1) and (2). 

The Fisher information for GYP in the spatial coordinate is 

expressed as: 

 

𝐼𝑛
𝐺𝑌𝑃 = 4∫ [𝜓′(𝑟)]2𝑟2𝑑𝑟 =

∞

0

16𝑎 ∫ (
2

1−𝜈
) [𝜓′(𝜈)]2 

1

−1
𝑑𝜈 ,    𝜈 = 1 − 2𝑠, 𝑠 = 𝑒−2𝑎𝑟 .  (22) 

 

Therefore, substituting equation (7) into equation (22) gives 

the following expression  

𝐼𝑛
𝐺𝑌𝑃 =

32𝑎2𝑁𝑛𝑙
2 ∫

{
 
 

 
 −𝜀 (

1+𝜈

2
)
𝜂

(
1−𝜈

2
)
𝜀

𝑃𝑛
(2𝜀,2𝜂−1)(𝜈)

+ (
1+𝜈

2
)
𝜂

(
1−𝜈

2
)
𝜀+1

(2ε + 𝜂 + 2𝜂) 𝑃𝑛
(2𝜀,2𝜂−1)(𝜈)

+𝜂 (
1+𝜈

2
)
𝜂−1

(
1−𝜈

2
)
𝜀+1

𝑃𝑛
(2𝜀,2𝜂−1)(𝜈) }

 
 

 
 

(
2

1−𝜈
) 𝑑𝑣

1

−1

.       (23) 

 

Due to the complicated form of the integral in equation (23) 

for n-state, we shall be limited to studying few low-lying 

state, that is, the ground and first excited state. The Fisher 

information in spatial coordinate for GYP is obtained as 

follows (Yanez, et al., 2008; Sánchez-Moreno, et al., 2011 

and Guerrero, et al., 2010): 

 

For the ground state, equation (23) becomes  

 

𝐼0
𝐺𝑌𝑃(𝑟) =

4a𝜂Γ(2𝜂−1)Γ(2ε+1)

Γ(2ε+2𝜂)
(𝑁0

𝐺𝑌𝑃)2 , (24) 

also, for the first excited state, we have 

 

𝐼1
𝐺𝑌𝑃(𝑟) =

8a𝜂Γ(3𝜂−1)Γ(2ε+2)

Γ(2ε+2𝜂+1)
(𝑁1

𝐺𝑌𝑃)2. (25) 

 

It is very complicated to obtain the Fisher information in 

momentum coordinate 𝐼1
𝐺𝑌𝑃(𝑝) analytically. Hence, we will 

compute it numerically by finding the Fourier transform of 

the position coordinate wave function in equation (7) , then, 

substitute into equation (22) and simplify.  

NUMERICAL RESULTS 

Table 1: Numerical Results For Fisher Information in the 

ground eigenstates for various values of a, with 𝑙 =0, 𝑉0 =
0.5,  𝑉1 = 1.0 , min = minimum value for the Generalized 

Yukawa Potential (GYP) 

 

 

 

 

Table 2: Numerical Results For Uncertainty Relation in the ground eigenstates for various values of a, with 𝑙=0, 𝑉0 = 0.5, 
𝑉1 = 1.0, min = minimum value for the Generalized Yukawa Potential (GYP) 

a 〈𝑟2〉 〈𝑟〉 ∆(r) (∆r)2 〈𝑝2〉 ∆(p) ∆(r)∆(p)

≥ ℏ 2⁄  

(∆r)2(∆p)2 min{(∆r)2(∆p)2

} 

0.01 111.663 9.64398 4.319334 18.6566 0.02240 0.149666 0.646459 0.41790 0.250000 

0.02 105.391 9.36281 4.210616 17.7294 0.02377 0.154164 0.649127 0.42141 0.250000 

0.03 100.693 9.14193 4.137404 17.1182 0.02493 0.157903 0.653308 0.43418 0.250000 

0.04 97.2530 8.97159 4.094334 16.7634 0.02590 0.160935 0.658921 0.43403 0.250000 

0.06 93.4185 8.75862 4.087184 16.7049 0.02723 0.165024 0.674488 0.44488 0.250000 

0.07 92.8343 8.70929 4.120985 16.9826 0.02760 0.166132 0.684629 0.46872 0.250000 

0.08 93.0995 8.69625 4.180279 17.4746 0.02777 0.166634 0.696575 0.48527 0.250000 

0.09 94.2418 8.71992 4.266702 18.2049 0.02773 0.166533 0.710547 0.50482 0.250000 

0.10 96.3383 8.78211 4.383240 19.2129 0.02750 0.165831 0.726878 0.52835 0.250000 

0.20 315.513 14.4686 10.30399 106.172 0.01417 0.119024 1.226419 1.50447 0.250000 

0.30 275.312 13.1241 10.15236 103.070 0.02083 0.144338 1.465367 2.14695 0.250000 

0.40 41.8620 5.42482 3.526092 12.4334 0.08750 0.295804 1.043032 1.08792 0.250000 

0.50 17.5133 3.57460 2.176117 4.73546 0.18750 0.433013 0.942286 0.97892 0.250000 

0.60 9.75505 2.69184 1.583997 2.50902 0.32083 0.566421 0.897209 0.80498 0.250000 

0.70 6.25070 2.16609 1.248501 1.55877 0.48750 0.698212 0.871718 1.94611 0.250000 

0.80 4.35788 1.81484 1.031600 1.06421 0.68750 0.829157 0.855370 1.09787 0.250000 

0.90 3.21588 1.56279 0.879524 0.77354 0.92083 0.959600 0.843991 0.71232 0.250000 

a Ir Ip IrIp ≥ 36.0 min(IrIp) 

0.01 0.08960 446.652 40.02002 36.0 

0.02 0.09507 421.566 40.07689 36.0 

0.03 0.09973 402.772 40.16978 36.0 

0.04 0.10360 389.012 40.30164 36.0 

0.06 0.10667 379.477 40.47767 36.0 

0.07 0.10893 373.674 40.70543 36.0 

0.08 0.11040 371.337 40.99560 36.0 

0.09 0.11107 372.398 41.36113 36.0 

0.10 0.11093 376.967 41.81808 36.0 

0.20 0.11000 385.353 42.38883 36.0 

0.30 0.05667 1262.05 71.51621 36.0 

0.40 0.08333 1101.25 91.77080 36.0 

0.50 0.35000 167.448 58.60680 36.0 

0.60 0.75000 70.0530 52.53975 36.0 

0.70 1.28333 39.0202 50.07579 36.0 

0.80 1.95000 25.0028 48.75546 36.0 

0.90 3.68333 12.8635 47.38052 36.0 
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Table 3: Numerical Results For Fisher Information in the first excited eigenstates for various values of a, with 𝑙=0, 𝑉0 =
0.5, 𝑉1 = 1.0, min = minimum value for the Generalized Yukawa Potential (GYP) 

 

a Ir Ip IrIp ≥ 36.0 min(IrIp) 

0.01 0.064765 2736.54 177.2331 36.0 

0.02 0.064000 2745.94 175.7402 36.0 

0.03 0.059432 2919.82 173.5310 36.0 

0.04 0.051062 3352.11 171.1644 36.0 

0.05 0.038889 4393.56 170.8608 36.0 

0.06 0.022914 8105.23 185.7200 36.0 

0.07 0.003136 2093930 656.6146 36.0 

0.08 0.022222 9944.06 220.9789 36.0 

0.09 0.056173 3255.44 182.8672 36.0 

0.10 0.098765 1770.79 174.8928 36.0 

0.20 1.000000 170.590 170.5900 36.0 

0.30 2.765430 61.8560 171.0584 36.0 

0.40 5.395060 31.7561 171.3261 36.0 

0.50 8.888890 19.2925 171.4889 36.0 

0.60 13.24690 12.9538 171.5977 36.0 

0.70 18.46910 9.29522 171.6743 36.0 

0.80 24.55560 6.99362 171.7325 36.0 

0.90 31.50620 5.45217 171.7772 36.0 

 

Table 4: Numerical Results For Uncertainty Relation in the first excited eigenstates for various values of a, with 𝑙=0, 𝑉0 =
0.5, 𝑉1 = 1.0, min = minimum value for the Generalized Yukawa Potential (GYP) 

 

a 〈𝑟2〉 〈𝑟〉 ∆(r) (∆r)2 〈𝑝2〉 ∆(p) ∆(r)∆(p)

≥ ℏ 2⁄  

(∆r)2(∆p)2 min{(∆r)2(∆p)2

} 

0.01 684.135 24.3656 9.51065 90.4501 0.01619 0.127245 1.210185 1.46443 0.250000 

0.02 686.485 24.3930 9.56382 91.4639 0.01600 0.126491 1.209737 1.46346 0.250000 

0.03 729.955 25.1147 9.96026 99.2068 0.01486 0.121893 1.214091 1.42963 0.250000 

0.04 838.028 26.8056 10.9310 119.488 0.01277 0.112984 1.235033 1.52586 0.250000 

0.05 1098.39 30.3730 13.2616 175.871 0.00972 0.098601 1.307615 1.79465 0.250000 

0.06 2026.31 39.9130 20.8149 433.265 0.00573 0.075686 1.575400 2.48259 0.250000 

0.07 52348.3 172.500 150.314 22592.0 0.00078 0.027999 4.208444 17.6218 0.250000 

0.08 2486.02 42.4889 26.0904 680.708 0.00556 0.074536 1.944662 3.78477 0.250000 

0.09 813.860 25.4090 12.9708 168.241 0.01404 0.118504 1.537097 2.36213 0.250000 

0.10 442.698 19.0307 8.97385 80.5328 0.02469 0.157135 1.410104 1.98829 0.250000 

0.20 42.6475 6.03208 2.50230 6.26149 0.25000 0.500000 1.251151 1.56528 0.250000 

0.30 15.4640 3.64010 1.48784 2.21369 0.69136 0.831479 1.237109 1.53044 0.250000 

0.40 7.93903 2.61021 1.06105 1.12581 1.34877 1.161363 1.232266 1.51849 0.250000 

0.50 4.82313 2.03532 0.82498 0.68061 2.22222 1.490712 1.229812 1.51243 0.250000 

0.60 3.23845 1.66818 0.67500 0.45562 3.31173 1.819815 1.228375 1.50891 0.250000 

0.70 2.32381 1.41334 0.57121 0.32628 4.61728 2.148785 1.227396 1.50653 0.250000 

0.80 1.74841 1.22608 0.49511 0.24513 6.13890 2.477680 1.226721 1.50488 0.250000 

0.90 1.36304 1.08266 0.43691 0.19089 7.87655 2.806519 1.226194 1.50353 0.250000 

 

 

DISCUSSION 

We report the numerical values of the Fisher information  

and uncertainty relations both in the position and momentum 

spaces Ir , Ip, 〈𝑟2〉, 〈𝑟〉, 〈𝑝2〉, ∆(r)∆(p) and their associated 

uncertainty relations for generalized radial Yukawa 

potential. The results in Tables (1) and (3) show that, the 

position-space Fisher information Ir increases with 

increasing potential parameter a, in the ground and first 

excited states (n = 0,1) while the momentum space Fisher 

information Ip first increases and later decreases with 

increasing potential parameter a. This implies that, the Fisher 

information with large values have high accuracy in 

predicting the localization of the particles in the atomic 

system. Also, we have been able to verify that the Fisher-
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information-based-uncertainty relation (IrIp ≥ 36.0 ) holds 

for the potential model under study. In addition, we observed 

from Tables (2) and (4) a squeezed phenomenon for some of 

the screening parameter a  in the momentum space p for the 

ground state when a ≤ 0.7, while in the first excited state, the 

squeezed phenomenon (squeezed states) occurs in both 

position r and momentum p when a ≥ 0.6 and a ≤ 0.2, 

respectively. A state is defined to be squeezed if (∆r)2 < 0.5 

or (∆p)2 < 0.5, where (∆y)2 = 〈𝑦2〉 − 〈𝑦〉2 , 𝑦 = 𝑟   or p 

(Esquivel et al., 2000, Grassi, 2011). Our results also obey 

the Heisenberg uncertainty relation ∆(r)∆(p) ≥ ℏ
2⁄    for 

GYP. Figures 2-4 demonstrate the variation of the wave 

function and the probability densities with position r and 

momentum p respectively, for the ground and first excited 

states for some values of the screening parameter a. 

 

CONCLUSION 

In this article, we have presented the Fisher information and 

uncertainty relations for the generalized radial Yukawa 

potential in both the position and momentum spaces. The 

Fisher information was calculated by utilizing the 

probability density, which is the square of the wave function, 

obtained through the exact solution of this system. The 

validity of the Fisher-information based uncertainty relation 

which is stronger version of Heisenberg uncertainty 

principle have been verified to hold for this atomic model. 

We found from our results that, for n = 0, 1, the position-

space Fisher information Ir  increases with increasing 

potential parameter a, while the momentum-space Fisher 

information Ip  first increases, and then decreases with 

increasing potential parameter a. We have also observed that, 

there exist a squeezed phenomenon in both position and 

momentum space in the ground and first excited state for 

some values of the potential parameter a. The squeezed in 

position r is compensated for by an increase in the 

momentum p and otherwise, such that, the Heisenberg 

Uncertainty principle is satisfied for the atomic model as 

displayed in the numerical results.  
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