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Abstract
The viability of co-culturing seaweed and sea cucumbers in Zanzibar, Tanzania, was assessed 

using integrated multitrophic aquaculture (IMTA) systems with oyster and recirculating aqua-

culture systems with milkfish. Seaweed production was affected by the ice-ice disease, result-

ing in specific growth rates of 1.32 to -1.96 % d-1. Nitrogen content in the seaweed thallus and 

inorganic nutrient in the water indicated that seaweed could potentially be used as a biofilter.  

An economic analysis showed the economic viability of IMTA systems, co-culturing seaweed 

Kappaphycus alvarezii, sea cucumber Holothuria scabra and oyster Pinctada margaritifera, achiev-

ing a maximum benefit-cost ratio of 1.61 over one year. Interviews with local farmers on Zan-

zibar showed willingness to accept new aquaculture systems, but also highlighted constraints, 

including a lack of infrastructure, funds and expertise.
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Introduction
Due to the projected rise of global human popu-
lation (United Nations, 2019) and the subsequent 
increased demand for fisheries products (FAO, 2020), 
many more wild fish stocks will be overexploited or 
depleted in a few years. Aquaculture, playing a vital 
role to meet the ever increasing demand for food, has 
however developed a controversial reputation, due to 
high density operations, environmental degradation 
and water pollution (Hall et al., 2011; Ahmed and Tur-
chini, 2021). Major changes are necessary to control 
aquaculture production – more resilient and innova-
tive practices need to be developed if this sector is to 
become the most efficient and responsible food pro-
duction system of the future (Soto, 2009; Troell et al., 
2009; Ahmed et al., 2019).

There are several promising systems that address the 
issue of effluent from aquaculture operations. Recir-
culating aquaculture systems (RAS) as one possible 
solution, are based on the recirculation of water with 
various kinds of filters, such as biofilters, solid filters or 
protein skimmers (Badiola et al., 2012; van Rijn, 2013). 
This way, water can be recycled and the amount of 
fresh water needed and waste water produced greatly 
reduced. Instead of conventional biofilters with bacte-
ria, biofilters can also comprise of different animals or 
plants used to filter the water. However, RAS is expen-
sive and technologically challenging and therefore 
not appropriate for aquaculture in many developing 
countries (Badiola et al., 2018; Engle et al., 2020). For 
aquaculture systems to work in developing countries 
they need to be low-tech and low-cost, which can 
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easily be built in spite of the lack of infrastructure and 
high expertise. Another solution could be Integrated 
Multitrophic Aquaculture (IMTA), a sustainable aqua-
culture practice through co-culturing of species from 
different trophic levels. In IMTA, faeces, uneaten food 
materials, and nutrients from higher trophic species 
such as finfish or shrimps become food for lower 
trophic species such as detritivores or filter feeders. 
Dissolved inorganic nutrients can be taken up by 
plants or algae, acting as biofilters (Chopin et al., 2001; 
Troell et al., 2003; Neori et al., 2004; Ren et al., 2012). 
IMTA not only aims to promote an ecologically sus-
tainable and social approach (Ertör and Ortega-Cerdà, 
2015), but it also can provide economic stability for 
aquaculture producers by providing farmers with a 
more diversified set of crops compared to monocul-
ture (Knowler et al., 2020).

Recent literature shows many good examples of 
IMTA practices in tropical countries (Putro et al., 2015; 
Ahmed and Glaser, 2016; Felaco et al., 2020; Fran-
chini et al., 2020; Putro et al., 2020), including seaweed 
(Largo et al., 2016; Shpigel et al., 2018). In Tanzania the 
focus has been on the combination of sea cucumbers 
with seaweed (Namukose et al., 2016; Kunzmann et al.,  
2018; Fabiani et al., 2023; Kunzmann et al., 2023). 
Few of these studies integrated filter feeders such as 
bivalves, and economic aspects were not considered in 
many of them.

Seaweed farming is gaining worldwide popularity, 
reaching a global production of 13.5 million tonnes 
in 2020 (Buschmann et al., 2017; FAO, 2022). The 
seaweed culture cycle is relatively short compared to 
other aquaculture species, and farming techniques 
are low cost. As the global market for seaweed has 
expanded the economic returns from seaweed aqua-
culture have risen (García-Poza et al., 2020). 

Aquaculture on Zanzibar includes the farming of fish, 
mud crabs, pearl oysters, sea cucumbers, seaweed and 
sponges (Msuya et al., 2016; Charisiadou et al., 2022). 
In Tanzania seaweed farming began in 1989, initially 
focused on two macroalgae species, Eucheuma den-
ticulatum (spinosum) and Kappaphycus spp (cottonii) 
(Msuya et al., 2007; Msuya, 2020). The industry is the 
third largest sector in terms of value, contributing 7.6 
% to the GDP of Zanzibar in 2011 (Msuya and Hurtado, 
2017). Seaweed farming faced multiple challenges in 
the past decades (Msuya and Porter, 2014), including 
the ice-ice disease, which is caused by infestation of 
microbes and facilitated mainly by high temperatures 

(Ward et al., 2022). There have been attempts to over-
come this issue by moving the seaweed farms into 
deeper waters (Msuya, 2020).

In Tanzania, sea cucumber fishing is an important 
economic and subsistence activity for local commu-
nities and is extensively practiced (Eriksson et al., 
2012). Aquaculture production of sea cucumbers has 
primarily focused on the most valuable species Hol-
othuria scabra, which are sold and exported mainly to 
China for high prices. 

Shellfish farming for pearl production in Zanzibar 
started in 2004, with an estimated production in 
2012 of about 1,000 pearls, valued at 10 to 20 US$ 
each (Mmochi, 2015). The potential of pearl oysters 
for bioremediation has been positively evaluated and 
pearl production could be a viable economic activity 
for coastal communities in East Africa (Southgate et 
al., 2006; Ishengoma et al., 2011). 

Finfish production in Tanzania is mainly focused on 
the species milkfish Chanos chanos and flathead grey 
mullet Mugil cephalus. Traditionally wild-caught fin-
gerlings are reared in larger earthen ponds, connected 
to the sea, or in smaller earthen ponds directly in the 
mangroves until market size and then sold mainly on 
local markets (Msuya et al., 2016).

The success of sustainable aquaculture systems can 
contribute to farmers’ food security and income, but 
requires the development and testing of new sus-
tainable aquaculture systems. Most systems used, are 
outdated and can have severe impacts on the sur-
rounding environments. This study therefore aims to 
compare biomass production and economic viability 
of different land-based IMTA approaches, including 
the cultivation of seaweed Kappaphycus alvarezii and 
sea cucumbers H. scabra with pearl oysters Pinctada 
margaritifera or milkfish C. chanos. 

Materials and methods
Study site and species collection
Research was conducted in 2022 at the KOICA-RGoZ 
Mariculture Hatchery Zanzibar, Tanzania (6°07’01.0”S 
39°12’42.0”E). Seaweed (K. alvarezii) was collected 
from a small group of local farmers in Muungoni 
(6°19’11.7”S 39°24’43.2”E). Sea cucumbers (H. scabra) 
were collected from a farmer in Unguja Ukuu 
(6°19’01.3”S 39°22’16.4”E) and pearl oysters (P. mar-
garitifera) from the farms in Nyamanzi (6°16’03.5”S 
39°14’55.9”E). The milkfish (C. chanos) were taken from 
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brackish water ponds near Bumbwini (5°56’42.6”S 
39°12’09.4”E). All animals were kept in a separate tank 
without any sediment and feed, to ensure an empty 
gut when weighing, before stocking. Marine sand/sed-
iment was taken during low tide from near Fukuchani 
(5°50’09.5”S 39°17’01.7”E) and the bottom of the tanks 
was covered with 5 cm of this, acting as the source of 
organic nutrients for the sea cucumbers.

Experimental design
Two distinct experimental designs were developed for 
the co-culture trials. One system (IMTA) combined 
seaweed, sea cucumbers and sea oysters in one tank, 
while in another system (RAS), seaweed, sea cucum-
bers and milkfish were integrated in separate tanks. 
Both experiments were conducted simultaneously 
from October to December/January 2022/2023. The 
IMTA systems ran for 90 days, with two cycles of 45 
days each, whereas the RAS system ran for 70 days 
with one cycle only.

The IMTA system consisted of four treatments (A, B, 
C and D) with four replicates each (4x4), i.e., 16 tanks. 
Because of logistic restraints, of the 16 tanks, seven 
were 490 liter fiberglass tanks, three 500 liter fiber-
glass tanks and six 1000 liter plastic tanks. Nylon ropes 
were tied on two sides over the tanks, on which 50 g of 
fresh seaweed fronds were tied at 20 cm intervals and 
suspended 20 cm below the surface; sea oysters were 
suspended in a rectangular cage. Figure 1 shows the 
setup of tanks at the hatchery for all treatments with 

their respective replicates. All four treatments had dis-
crete stocking densities (g m-2), the ratio of seaweed, 
sea cucumbers and pearl oysters were 1:0:0, 1:1:1, 2:1:1 
and 1:2:2 for treatments A, B, C and D, respectively. 
Treatment A was stocked only with seaweed at a den-
sity of 200 g m-2. In treatment B all three species were 
stocked at 200 g m-2. Treatment C was stocked with 
400 g m-2 seaweed and both sea cucumbers and pearl 
oysters at 200 g m-2, while treatment D was stocked 
with 200 g m-2 seaweed and 400 g m-2 sea cucumbers 
and pearl oysters. 

The RAS, labelled treatment E, consisted of one 1000 
liter tank for fish, one 1800 liter tank for sea cucum-
bers and one 500 liter tank for seaweed, which were 
set up in a row, shown graphically in Figure 2. The 
tanks were connected by two U-shaped water pipes 
each and due to height difference and gravitational 
force, water flowed from the fish through the sea 
cucumber to the seaweed tank. A submersal pump 
(DC Runner 2.2 Aqua Medic) in the seaweed tank 
pumped the water back to the fish tank at a rate of 
1200 L h-1. Seaweed fronds were suspended the same 
way as in the IMTA at 795 g m-2 initial stocking den-
sity. Sea cucumbers had an initial stocking density of 
105.85 g m-2 and milkfish, in two batches, on day 0 
and day 39, were stocked at a density of 2013.33 g m-3. 
The fish were fed every day with 4 % bodyweight day-1 
of Koudijs Tilapia broodstock feed 3.0 mm (Viet-
nam), containing minimum 36.0 % crude protein. In 
addition to the system containing seaweed, a control 

Figure 1. Layout of all tanks for treatments A (1:0:0 – seaweed, sea cucumbers and pearl oysters), B (1:1:1), C (2:1:1) and 

D (1:2:2) with each of the 4 replicates. The holding tank in the middle was used to keep stock of seaweed. Seven tanks 

were round 490 litre fiberglass tanks (0.7 m x 0.7 m x 1 m), three square 500 liter fiberglass tanks (1 m x 1 m x 0.5 m) 

and six square 1000 liter plastic tanks (1 m x 1 m x 1 m).
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system was constructed, which did not include any 
seaweed or artificial biofilter and therefore required 
regular water changes.

Growth of all species was monitored three times dur-
ing the entire experimental period (initial, half way 
and at the end). Specific growth rates (SGRs), meas-
uring the percentage increase in fish weight per day, 
were calculated by using the formula according to 
(Dawes et al., 1993):

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑙𝑙𝑙𝑙 𝑊𝑊! − 𝑙𝑙𝑙𝑙 𝑊𝑊!

𝑑𝑑 ∗ 100 

Where SGR indicates the specific growth rate (% d-1); 
W0: Weight at day 0, Wd: Weight at day d. 

Water parameter measurements and N content
Temperature, salinity, pH, and DO, were measured 
at 14-day intervals in the IMTA system and twice a 
week in the RAS using a YSI ProQuatro Multiparam-
eter sensor (USA) and measurements taken between 
09h00 and 12h00. Water samples of 11 ml were taken 
three times a week from the milkfish and seaweed 
tank of the RAS, and stored frozen at -20 °C. During 
the analysis, the samples were thawed and inorganic 
nutrients (NO3

-, NO2
-, NH4

+, PO4
3-) were analysed with 

spectrophotometry using a Microplate reader infinite 
200Pro (TECAN, Austria) following the procedure of 
Strickland and Parsons (1972). The data were graph-
ically and statistically processed using the statistical 
software RStudio and R version 4.0.5.

Seaweed samples from the IMTA were collected on the 
first and last day of each cycle (Day 0 and 45), dried in 

an oven at 60 °C for 24 hours, and then stored at room 
temperature. 1 to 2 mg of the ground and homog-
enized samples from each treatment were put in 
pre-combusted (500 °C, 3 hours) tin cups and then the 
nitrogen content (%) of dry weight was determined by 
using an EURO EA 3000 CN elemental analyser, fol-
lowing a similar approach to Kennedy et al. (2005). The 
data were transformed logarithmically (Logan, 2011), 
and checked for normality with the Shapiro-Wilk test 
and for homogeneity of variance with the Levene-Test. 
A t-test was applied to determine the differences in 
nitrogen between batch one and batch two of seaweed 
and a two-way ANOVA was carried out to determine 
the effect of stocking density on different days.

Economic viability and questionnaire  
on farmers’ perception
Buying and selling records (species-wise) were main-
tained to perform the financial analysis. Seaweed was 
collected directly from farmers, at a price of 0.43 US$ 
per kg wet weight (1 kg = 1000 TZS). Sea cucumbers 
and sea oysters were also collected from farmers and 
the costs per individual were 0.19 US$ (450 TZS) and 
0.2 US$ (470 TZS), respectively. The price of milkfish 
per kilogram was 0.84 US$ (2000 TZS). According 
to Msuya (personal communication), in December 
2022, the price of a kilogram of dry seaweed (Kappa-
phycus) in Zanzibar was 0.86-0.95 US$ per kg (2000-
2200 TZS), and full-grown milkfish was sold for 2.15 
US$ per kg (5000 TZS). Gutted sea cucumber price 
was approximately 15.07 US$ per kg (35,000 TZS/kg, 
according to ministry of fisheries, Zanzibar) and sea 
oyster were sold at current market price of 10.55 US$ 
per kg (24500 TZS/kg).

Figure 2. Sketch of the experimental RAS set-up with squared fish (1000 liter plastic, 1 m x 1 m x 1 m), sea 

cucumber (1600 liter fiberglass, 1.63 m x 1.63 m x 0.5 m) and seaweed (500 liter fiberglass, 1 m x 1 m x 0.5 

m) tanks. The arrows indicate the water flow and the grey lines indicate water pipes and hoses. 
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For the estimation of total costs, the following com-
ponents were considered per square meter: variable 
costs, such as human labour, transportation, feed, 
ropes, pipes and species, as well as fixed costs, includ-
ing tanks and pumps. Estimation of total production, 
gross return (sales value of total production), and ben-
efit-cost ratio (BCR) were used to examine the eco-
nomic performance of the treatments (Rahman et al., 
2017; Magondu et al., 2022). BCR is used to compare 
the ratio of benefits, in this case the gross return, and 
the costs and is calculated as follows:

𝐵𝐵𝐵𝐵𝐵𝐵 =  
|𝑃𝑃𝑃𝑃 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 |
|𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 |

Where PV is the Present Value, being the current value 
of the sum of benefits or costs in this case. The annual 
estimates of variable costs (including tank repairing 
costs), return, and BCR value were used to approximate 
the long-term profit analysis. Whereas fixed costs were 
considered an initial investment and not annualized.

For the questionnaire survey, interviews were con-
ducted with a total of 30 farmers at six sites (Muungoni (n 
= 2, 6°19’11.7”S 39°24’43.2”E), Jambiani (n = 11, 6°19’15.1”S 
39°32’54.9”E), Uzi (n = 4, 6°20’23.5”S 39°23’03.4”E), 
Unguja Ukuu (n = 6, 6°19’01.3”S 39°22’16.4”E), Nyamanzi 
(n = 2, 6°16’03.5”S 39°14’55.9”E), and Fukuchani (n 
= 5, 5°50’09.5”S 39°17’01.7”E)) between October and 

December 2022, with the support of a local translator 
in Swahili. To understand the socio-economic profile 
of the farmers, constraints of different culture systems, 
seasonal influences, weather, and market situations, the 
coastal farmers were interviewed at all six-sites, using a 
combination of focus groups and individual interviews. 
All interviews were semi-structured and open-ended 
questionnaires, where the interviewers not only asked 
questions, but encouraged farmers to provide opin-
ions and recommendations. In order to include both 
sexes and a range of age groups, the interviewees were 
chosen at random from among the farmers who were 
willing and able to participate (Charisiadou et al., 2022).  
To preserve uniformity among respondents, the sur-
vey’s interviews with each respondent lasted between 
20 and 30 minutes (Fröcklin et al., 2012). The focus 
of discussion  topics included problems and conflicts 
related to mariculture practices. Data were processed 
with MS Excel and frequency statistics were analysed 
using IMB SPSS (version 29.0.1.0).	

Results
Water quality
Water temperatures ranged from 24.1 °C to 27.5 °C 
in the RAS system, and from 27.9 °C to 30.1 °C in the 
IMTA systems, with lower temperatures in the begin-
ning, progressively getting warmer. Average salinity 
was 30.2 ± 1.1 (± SD) ppt and 31.5 ± 1.1 ppt and aver-
age pH 8.2 ± 0.2 and 7.9 ± 0.4 for the IMTA and RAS 

Figure 3. Seaweed specific growth rate (SGR, % d-1) in two cycle periods (45 days for treatment A-D; 35 days 
for treatment E). Treatments A-D represent ratios 1:0:0, 1:1:1, 2:1:1, and 1:2:2, respectively of seaweed, sea 
cucumbers and pearly oyster. Treatment E represents seaweed, sea cucumbers and milkfish. Grey indi-
cates the first growth period, blue the second one. Data are in mean values ± standard deviation, n = 4 for 
treatments A-D, treatment E is only one data point per cycle.
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designs, respectively. Dissolved oxygen decreased in 
all tanks over time, ranging from 4.6 ± 0.05 mg L-1 to 
3.7 ± 0.07 mg L-1 in the IMTA and 4.6 ± 0.72 mg L-1 to 
4.2 ± 0.34 mg -1 in the RAS, respectively for the first 
and second half, but never below critical values. 

Growth and survival 
Seaweed performance varied greatly between the first 
and second culture cycle, as seen in Figure 3. SGR in 
the first cycle was positive for treatments A to D and 
above 1 for A (SGR 1.21 ± 0.77 % d-1), C (SGR 1.11 ± 0.13 % 
d-1) and D (SGR 1.32 ± 0.51 % d-1). In the second growth 
cycle, all treatments experienced severe seaweed loss, 
due to the sudden occurrence of ice-ice disease (Ward 
et al., 2022). In treatment E ice-ice also occurred in the 
first growth cycle, resulting in SGRs of -0.95 % d-1 and 
-0.97 % d-1, respectively.

Sea cucumber survival was 94.9 % in treatments A to D, 
and 100 % in treatment E. During the first cycle, treat-
ment  D showed the greatest weight loss (SGR -0.3 ± 
0.22 % d-1), while treatment C the least weight loss (SGR 
-0.03 ± 0.2 % d-1). Specific growth rates in treatments B 
and D were also negative during the second cycle, with 
B experiencing even higher losses (SGR -0.89 ± 0.47 % 
d-1). Treatment C showed positive growth in the second 
cycle (SGR of 0.35 ± 0.06 % d-1). SGR of sea cucumbers 

in treatment E were 0.94 % d-1 and 0.01 % d-1 for the first 
and second half, respectively (Fig. 4).

The survival rate of the sea oysters in the IMTA was 
97.22 %. Dead sea oysters were only found in treatment 
D, which also showed the highest SGR (0.11 ± 0.04 % 
d-1). Survival rate of the first batch of milkfish was 9 %, 
because of this they were restocked on day 42 of the 
RAS experiment. The second batch had a survival rate 
of 100 % and an SGR of 0.42 ± 0.2 % d-1 over the 28 days 
left until the end of the experiment.

Nitrogen uptake and biofiltration by seaweed
Thallus nitrogen content in seaweed showed no signif-
icant difference in different stocking densities and on 
different days among the treatment tanks (p > 0.05), but 
there was a significant difference between cycles one 
and two (p < 0.05) (Fig. 5A, B). Assimilation rate was the 
highest in Treatment D in both culturing cycles.

In the RAS systems, there were no significant differ-
ences in the NH4

+, NO3
-, NO2

- and PO4
3- concentrations 

between the seaweed and control system. NH4
+ in the 

seaweed system peaked at around 1.0 mg L-1, in the 
control at 0.7 mg L-1 at day 7, after which it decreased in 
both systems to around 0.2 mg L-1 on day 20 (Fig. 5C).  
A second and third peak was only observable in the 

Figure 4. Sea cucumber specific growth rate (SGR, % d-1) in two cycle periods (45 days for treatments A-D; 

35 days for treatment E). Treatments B-D represent ratios 1:1:1, 2:1:1, and 1:2:2, respectively of seaweed, sea 

cucumbers and pearl oyster. Treatment E represents seaweed, sea cucumbers and milkfish. Grey indicates 

the first growth period, blue the second one. Data are in mean values ± standard deviation, n = 4 for treat-

ments B-D, treatment E is only one data point per cycle.
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control on day 50 and 62, not in the seaweed system. 
Nitrite concentration peaked in the seaweed system 
shortly after the ammonium peak and stayed low after-
wards, while the control experienced a strong increase 
in the last 10 days of the experiment. Nitrate levels fluc-
tuated around 0.6 and 3 mg L-1 in both systems, and after 
day 50 it increased to 4.5 mg L-1 in the seaweed system. 
Phosphate concentrations stayed relatively low for the 
first 45 days of the experiment, not exceeding 0.2 mg L-1. 
After day 50 it started to increase in both systems, with 
maximums reaching 0.5 mg L-1 in both on day 70.

Economic viability
In the IMTA systems, treatment D had the highest 
total yield for all species (635.36 g m-2) and highest 
gross return (US$ 6.96 per m2), while treatment B had 
the lowest yield (299 g m-2) and gross return (US$ 3.15 
per m2). Treatment A demonstrated especially poor 
economic performance. After analysing cost, return, 
and BCR values on an annual basis, it was discovered 
that treatment C and D were economically viable with 
treatment D being slightly more viable (Table 1). In the 
RAS, economic feasibility was not satisfactory due to 
the loss of milkfish in the first batch (survival rate 9 %). 
This also makes an annualization difficult to perform, 
as the possible growth over the entire experiment 
duration is unknown.

Questionnaires for farmers’ perception
In total, 30 participants in discrete age groups were 
interviewed, of which 60 % were females (n = 18) and 
40 % males (n = 12), with all females actively engaging 
in seaweed culture. Interviewed people had diver-
sified occupations (small scale business 27.8 %, fish-
ing 26.4 %, mariculture 22.2 %, tourism 15.3 %, the 
rest were involved in crop and animal husbandry). 
This study tried to find out the principal constraints 
in specific aquaculture systems (Table 2). Seaweed 
farmers mentioned their main problems were low 
market prices, die-offs, and high cost of materials. 
Farmers of sea cucumbers suffered because of theft, 
the limited availability of fingerlings, and high cost 
of materials. Almost two-thirds of farmers agreed 
to accept new technologies such as IMTA, but high-
lighted the main obstacles in implementing such 
systems, including the lack of funding, security, and 
knowledge. The majority of participants (n=20, 66.67 
%) stated concerns about the situation of the market 
and frequently mentioned that they are unable to 
directly connect with large consumers since primar-
ily local traders purchased their products, and did 
not agree to pay reasonable prices. They frequently 
voiced specific requirements towards the govern-
ment and NGOs who are involved in coastal aqua-
culture development such as financial support (small 

Figure 5. Nitrogen content in the seaweed thallus on day 0 and 45 in cycle one (A) and two (B). Treatments A-D represent ratios 1:0:0, 1:1:1, 

2:1:1, and 1:2:2, respectively of seaweed, sea cucumbers and pearl oyster. Data are in mean values ± standard deviation, n = 2 for each treat-

ment. (C) Average NH4
+-N concentration (mg L-1) in all three systems over the 70 days. The blue line is from water samples of the control 

system, the grey line from the seaweed system, n = 30 for control and seaweed system, respectively.
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scale credits), instrument and training facilities, secu-
rity for reducing poaching, establishing a hatchery to 
produce fingerlings, introducing new technique (e.g., 
integrated aquaculture), subsidies or allowances (dur-
ing rainy season aquaculture production is hampered 
seriously), collaboration with foreign buyers, availa-
bility of a health facility, interaction and monitoring.

Discussion
Biomass production under different culturing 
conditions
Seaweed cultured in the RAS got infected by the ice-
ice disease shortly after the stocking and the absolute 
biomass therefore decreased in both 35-day intervals. 
The ice-ice disease causes rotting of the stems and  

Table 2. Constraints regarding three farming methods mentioned by the individual farmers and their frequencies (frequency equals 100 % means 

that a reply appeared in all the members in a specific group).

Frequency (%) Constraints

Seaweed farmers (n=12)

100 Low market price of dry seaweed 

75 Seaweed die-offs for ice-ice disease

66.7 High price of equipment, after covid-19, market price suddenly increased

50 Extreme weather, especially December to May, with average temperature 30-360C

41.7 Serious health problems, skin diseases, pain, allergies, injured by sea urchin and other hard-shell species

41.7 Lack of support from government and non-government stakeholders

Sea cucumber farmers (n=10)

100 Poaching is the main problem in open coastal aquaculture

70 Scarcity of fingerlings

50 Escaping, most of the farmers use fish net which have not enough capability to protect fingerling

40 Extreme weather, climate change has a great impact on this sector

40 Limited buyers, mainly China is the major importer and their purchase depends on the best quality of the products

IMTA farmers (n=8)

100 Insufficient capital to facilitate the multi-trophic aquaculture

87.5 Theft, security maintenance more difficult in open area

62.5 Poor knowledge about multiculture, authority had less/no involvement with researchers

50 Lack of goverment support, mainly the funding and monitoring

37.5 High material cost

Table 1. Estimation of yield, return and economic viability from all treatments per square meter cultivation area, and an annualization of these.

Culture type Treatment Cost (US$/
m2)

Total Yield 
(g/m2)

Gross return 
(US$/m2) BCR

Annualization

Total 
Yield  

(g/m2)

Gross return 
(US$/m2)

BCR
value

Seaweed 
mono-culture A 6.04 60 0.05 0.01 360 0.31 0.05

IMTA

B 13.93 300 3.15 0.23 1270 12.65 0.91

C 13.39 430 4.06 0.30 1930 16.44 1.23

D 17.34 640 6.96 0.40 2670 27.95 1.61

E (RAS) 36.19 1350 3.85 0.11 6900 19.37 0.54

Note: 1 US$ = 2322 TZS (25 September 2022)

Total yield of seaweed wet weight (1 wet kg = 0.12 dry kg)

Kappaphycus alvarezii market price= 0.87 US$/ dry kg

Total yield of sea cucumber is given in live weight  

(1 kg of live = 0.54 kg of gutted)

Holothuria scabra market price = 15.07 US$/ gutted kg

Pinctada margaritifera market price = 10.77 US$/ kg

Chanos chanos market price = 2.15 US$/ kg
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a significant loss of tissue. It is usually caused by envi-
ronmental factors such as the warming of sea water, a 
decrease in salinity, low light levels (<125 µmol photon 
m-2 s-1) or slow water movements (Ward et al., 2022). 
Largo et al.(1995b) showed that lower temperatures 
(~25 °C) and salinities between 25 and 35 ‰ increased 
growth rates and inhibited the formation of ice-ice 
when culturing K. alvarezii under laboratory condi-
tions. As temperatures were as high as 28 °C and the 
tanks were under a roof, this further facilitated the 
formation of ice-ice. Furthermore, the low fish feed 
input of 4 % bodyweight d-1, as the main source of 
phosphate in aquaculture (Nora’aini et al. 2005), was 
most likely not sufficient. Only with the higher input 
of fish feed after stocking the second batch of milkfish, 
was the phosphate availability sufficient. With a 100 % 
survival of the first batch and a consistently high input 
of feed, phosphate levels probably would have been 
higher compared to what was found, which could 
have facilitated a better growth, as it has been shown 
that P can be a growth limiting factor in seaweed cul-
ture (Lapointe, 1987; Pedersen et al., 2010). 

As for the seaweed cultured in the IMTA design, 
SGRs in the first cycle were all positive, with treat-
ment D (high sea cucumber and sea oyster stocking 
density) showing the best performance. However, the 
observed SGRs, with max. 2.3 % d-1, were well below 
the recommended 3.5 % d-1 for commercial eucheu-
matoid farming (Doty, 1987; Wakibia et al., 2006). Sev-
eral factors could have limited the seaweeds growth, 
such as low light availability, low water movement or 
too little nutrient input. Additionally, because of the 
type of tank, the seaweed was only suspended around 
20 cm from the surface, well below the recommended 
0.5 to 1 m for Kappaphycus culture (Sahoo and Yarish, 
2005; Zuldin et al., 2016). Looking at the individual 
treatments, it is observable that seaweed growth was 
facilitated by the presence of sea cucumbers and sea 
oysters. This positive effect of sea cucumbers was also 
reported by Uthicke (2001) and Wolkenhauer et al. 
(2010), showing that  they boost primary producers’ 
productivity through recycling of nutrients. This is 
in contrast to Davis et al. (2011), who discovered that 
the survival of seaweed appeared to be little/not influ-
enced by the presence of sea cucumbers. 

In contrast, the performance in the second cycle of the 
present study strongly declined, with all treatments 
showing a decrease in absolute biomass. The more 
optimal water parameters in the first batch facilitated 
the growth, compared to the higher water temperatures 

in the second cycle. This led to higher environmental 
stress and more opportunities for pathogenic bacteria 
(Glenn and Doty, 1990; Ward et al., 2020; Faisan et al., 
2021). The ice-ice disease and unwanted algae growth 
were noticed more severely in the second cycle. Sea-
weed growth and carrageenan yields are frequently 
hampered by the growth of epiphytes (Ask and Azanza, 
2002), and infestation by the algae Neosiphonia spp. on 
grown Kappaphycus spp. has already been observed for 
seaweed farms in Tanzania (Msuya and Kyewalyanga, 
2006; Vairappan et al., 2008). 

As temperatures in the two designs (RAS and IMTA) 
were similar and both situated underneath a roof, 
the occurrence of ice-ice in the first half of the RAS 
experiment cannot only be linked to high water tem-
peratures and low light setting. While the water in the 
IMTA systems was changed regularly, the water in the 
RAS was only changed once during the entire 70 days, 
which was necessary to establish the microbial com-
munity to drive nitrification and denitrification (Keu-
ter et al., 2015). This, however, could also have ena-
bled the bacteria responsible for the ice-ice disease to 
accumulate (Largo et al., 1995a). As Ward et al. (2022) 
showed, the presence of ice-ice does not originate 
from only one stressor, but most likely a ‘complex 
pathobiotic syndrome’. This means that both abiotic 
and biotic factors combined are responsible for the 
ice-ice disease.

Although overall water quality remained within toler-
able limits in both experimental designs, parameters 
such as temperature, salinity, pH and DO need to be 
observed more tightly and adjusted if necessary. Spe-
cifically, water temperatures rose in the second half 
of the experiments, as the months of December and 
January are the hottest in Zanzibar (Muhando, 2002). 
As water temperature is one of the most important 
parameters in seaweed culture (Breeman, 1988; Wie-
ncke and Bischof, 2012), it is necessary to adjust the 
temperature to the seasonal variations, to increase the 
possible yield. 

Sea cucumber performance varied strongly between 
the treatments; while in the RAS they showed a high 
growth rate in the first 35 days, it dropped to almost 
zero for the second half. For the other treatments, 
only treatment C showed a positive growth rate in 
the second half. The IMTA systems had much higher 
stocking densities and less space available for the sea 
cucumbers, which could have resulted in the negative 
growth, as these factors have a significant impact on 
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sea cucumber growth rates (Slater and Carton, 2007; 
Davis et al., 2011; Namukose et al., 2016). This phenom-
enon has been called ‘aestivation’, and links the limited 
space with low metabolic rates and a stop of feeding 
(Li et al., 2013). Furthermore, studies showed, that the 
growth of sea cucumber individuals can greatly vary 
and is dependent on multiple environmental factors 
and individual genetics (Qiu et al., 2014; Dumalan et 
al., 2019). Also, depending on the type of tank and sed-
iment, sea cucumber SGRs were found to be negative, 
meaning a weight loss over the time of rearing further 
showing that sea cucumber growth is unpredictable in 
tank culture (Robinson et al., 2013).

Nitrogen uptake by seaweed
Even though the thallus nitrogen content did not show 
any significant difference between days 1 and 45 of the 
respective cycles, a clear trend was apparent that the 
seaweed took up inorganic nitrogen over time. It is 
well reported that Kappaphycus assimilates dissolved 
inorganic nutrients and uses them as a source of N for 
assimilation (Rosenberg and Ramus, 1984; Smith et al., 
1999; Dy and Yap, 2001; Granbom et al., 2004). Look-
ing at the treatments individually, it shows that sea-
weed in treatment D had the highest mean uptake of 
nitrogen after 45 days, originating from a higher nitro-
gen availability. With higher sea cucumber and oyster 
stocking densities the quantity of excretory products 
and therefore of inorganic nutrients was higher com-
pared to the other treatments (Taylor and Rees, 1998). 

Especially ammonium, excreted by sea cucumbers, 
but also milkfish (Mook et al. 2012), plays an impor-
tant role in intensive aquaculture and was therefore, 
together with nitrite and nitrate, measured three 
times a week in the RAS. The build-up of ammonium 
right after the first stocking, observed in both the sea-
weed and control system, is normal in recirculating 
aquaculture. Removal of ammonium by nitrification 
takes up to 14 days, as the responsible bacterial com-
munities first have to establish themselves in the sys-
tem (Keuter et al., 2015). The observed ammonium 
levels decreased even earlier than that, most likely due 
to the filtration properties of the seaweed (Neori et al., 
2003; Quintã et al., 2015). In the first step of nitrifi-
cation, ammonium is oxidized into nitrite by aerobic 
chemoautotrophic bacteria (Sharma and Ahlert, 1977; 
Camargo et al., 2005). This is observable in the meas-
ured nitrite concentration, as about 5 to 10 days after 
the ammonium peaked, the nitrite also showed peak 
concentrations. Nitrite concentrations measured in 
the two systems are quite similar to the ones reported 

by Senff et al. (2020), and highly likely not lethal. The 
observed concentrations of nitrate (NO3

--N < 5 mg L-1) 
were well below critical limits of 10 to 20 mg L-1 (Spotte, 
1979; Ward et al., 2005). The regular water changes in 
the control system probably kept the nitrate levels low 
and stopped a built-up of nitrate, while in the sea-
weed system the seaweed could filter out the nitrate. 
Although, the nitrogen content in the seaweed thallus 
and the inorganic nutrient measurements in the water 
come from two different systems, the assimilation of 
ammonium and nitrate by the seaweed can be seen 
in both. The seaweed kept the nitrogen levels in the 
water low, while incorporating it in its thallus. 

Economic viability and farmers’ perception
IMTA can enhance production sustainability, mitigate 
the negative effects of intensive aquaculture opera-
tions, and generate financial gains through diverse 
products and faster production cycles (Knowler et al., 
2020). In this study, gross return and BCR were calcu-
lated and converted to annual figures to understand 
the experimental viability of the designs used. In com-
parison, seaweed monoculture had a low return, while 
having the same construction costs as the other IMTA 
systems. In the IMTA systems, the high-density treat-
ment showed the highest return of US$ 6.96 per m2. 
Whereas the RAS was found to have a comparatively 
low return of US$ 3.85 per m2, while having the high-
est cost of US$ 36.00 per m2 due to high initial con-
struction and material costs. By annualizing the pro-
duction of seaweed monoculture, it was shown that it 
is impossible to generate revenue over the long-term, 
while the IMTA system with high stocks of seaweed, 
sea cucumber, and sea oyster, generates an income of 
27.95 US$ m-2 per year with initial costs being approxi-
mately 17.34 US$ m-2, achieving a BCR of 1.61 over one 
year. The RAS had initial costs of 36.19 US$ m-2, how-
ever, when calculating the yearly income, it was deter-
mined to be 19.37 US$ m-2 with a BCR of 0.54. This 
indicates that the system needs to continue for almost 
two years in order to recover its losses. A 100 % survival 
of milkfish could achieve a BCR above 1, although this 
would require further research and investment.

By conducting questionnaires on the perception of 
farmers, this study found that seaweed farming is 
largely female dominated, while men were more 
actively engaged in fishing, following the observa-
tions of Msuya et al. (2007). The fishing industry, not 
only in Zanzibar, but in Tanzania in general, is dom-
inated by men (Shao et al., 2003). During the survey, 
seaweed farmers claimed to have the lowest market 
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price, though Msuya (2020) reported that the seaweed 
(dry) price has increased to approximately 1800 TZS 
per kg, most likely due the establishment of a process-
ing plant in Pemba Island. In contrast, Makame et al. 
(2021) found that the seaweed price is fixed by buyers 
and 76.4 % of farmers are not satisfied with it. Addi-
tionally, the production of Kappaphycus has been sig-
nificantly impaired by diseases, such as the ice-ice dis-
ease, as well as epiphyte outbreaks that are now more 
severe through rising sea surface temperatures asso-
ciated with climate change (Msuya and Porter, 2014; 
Largo et al., 2020). 

To alleviate the above mentioned problems in the 
local seaweed industry, it is vital that different stake-
holders should come forward in proposing solutions. 
One of which could be the regulation of prices of 
unprocessed seaweed by the local government on 
the basis of current instrument cost, as Jong Cleyn-
dert et al. (2021) reported that weak bargaining power 
of farmers is the reason why they receive a low sale 
price. To improve the seaweed market’s attractive-
ness, Msuya (2021) suggested value adding initiatives, 
such as training to process seaweed into more valu-
able products such as soap, shampoo, cookies, and 
juice. To further overcome the challenges induced 
by climate change and the associated rise in sea sur-
face temperature, the SeaPoWer project, proposed a 
new technology for seaweed farming in deeper waters 
(>8m) using tubular nets (Brugere et al., 2020). 

Another obstacle for farmers in Zanzibar is the regular 
poaching of sea cucumbers due to their high market 
value. In this study, sea cucumber farmers frequently 
mentioned their main constraints being poaching and 
fingerling scarcity, high pressure on natural sources 
reducing fingerling availability and the lack of a rec-
ognized hatchery. Kunzmann et al. (2018) reported 
that fingerling production was initiated by the FAO 
hatchery supported by the Korean International 
Cooperation Agency (KOICA), but during this study 
they stopped the sea cucumber fingerling production 
(personal observation).

The pearl oyster is mainly cultured for producing 
half-pearl, which was initiated in Zanzibar in 2005 
(Mmochi, 2015). There were two farmers found dur-
ing this study, who are mainly fishermen, but they 
also cultured oysters to produce half pearl and make 
jewellery, which are sold to the local market. Farm-
ers mentioned that the main constraints to producing 
half pearls are poaching, inadequate spat (Ishengoma 

et al., 2011), an irregular and unreliable market, and 
lack of expertise (Charisiadou et al., 2022). In Zanzibar 
there is a great potential for producing half pearl, as 
in the south pacific countries, where oyster culture is 
popular for forming valuable pearls due to less labour 
input, capital, and training requirements ( Johnston et 
al., 2020). To get a broader view of the local commu-
nities’ perception of the introduction of new aquacul-
ture practices, a more detailed survey would be nec-
essary, as the current questionnaire only reflects the 
local farmers perception.

Improvements to the systems
Some improvements to the IMTA and RAS systems 
have already been mentioned, but this section aims to 
highlight them in detail and give recommendations 
for future systems. The biggest constraint found in this 
study was the appearance of the ice-ice disease and 
the subsequently fouling of seaweed. This reduced the 
economic viability of all treatments. There are already 
several suggestions how to overcome this disease, 
including a stricter control and adjustment of water 
parameters, such as temperature and salinity as well 
as light intensity (Largo, 2002; Tahiluddin and Terzi, 
2021). Another potential method is to manually clean 
the seaweed from macroalgae epiphytes and fila-
mentous epi-endophytes, which can cause the ice-ice 
disease (Largo et al., 2020; Kambey et al., 2021). The 
setup of tanks also seems to play an important role; 
seaweed should be able to be suspended at least 50 cm 
into the water column (Sahoo and Yarish, 2005; Zul-
din et al., 2016) and steady water movement should be 
maintained (Ward et al., 2022). Furthermore, there are 
suggestions that E. denticulatum can withstand adverse 
environmental factors better, and would therefore be 
better suited for this type of aquaculture (Tisera and 
Naguit, 2009; Pang et al., 2015). Kambey et al. (2021) 
showed that seaweed farms integrating various biose-
curity measurements, not only achieve higher growth 
rates and reduced infection rates, but also increase 
the quality of the carrageenan yield and therefore 
the products value. Apart from biosecurity measure-
ments, it would be beneficial to increase the tank size 
and change the tank shape, not only for seaweed, but 
also for the sea cucumbers (Slater and Carton, 2007; 
Davis et al., 2011; Li et al., 2013) and milkfish (Oca et al., 
2004; Duarte et al., 2011; McLean, 2021). Large circu-
lar tanks/ponds or raceway systems would be possible 
solutions. In particular for the RAS, a possible solution 
could be the use of just one big tank, which can be 
divided into compartments for each species, ensuring 
a better dispersion of nutrients and diminish technical 
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failures due to power failures and broken equipment, 
which is especially important in developing countries 
lacking infrastructure. Furthermore, it seemed that 
the sea cucumbers in the IMTA were lacking a source 
of nutrients, which could be overcome by artificially 
feeding them, either with algal extracts or sludge from 
fish cultures. Because of the type of tank used for the 
fish, the removal of sludge was not possible. This is, 
therefore, another possible improvement to boost the 
sea cucumbers growth. Overall, more testing is neces-
sary for both types of systems to overcome the ice-ice 
issue and to boost growth rates. However, as this study 
demonstrated, sustainable tank culture of seaweed 
in IMTA can be economically feasible and provide 
farmers with a secure income. Seaweed farming has 
been a profitable business for local farmers over the 
last decades and will likely stay that way (Msuya and 
Kyewalyanga, 2006) and farmers are willing to adapt 
to new farming techniques (Lumenyela et al., 2023). 
Improved versions of the systems used could be viable 
options for farmers not only on Zanzibar but in many 
developing tropical countries. The initial investments 
would need to be covered by microcredit schemes 
from local government or NGOs.

Conclusions
In conclusion, the study highlights the importance 
of developing sustainable aquaculture systems to 
meet the increasing demand for food, especially in 
developing countries, as well as the complexities and 
challenges that are associated with this. Both exper-
imental designs, IMTA and RAS, show promising 
results to be used as low-tech and sustainable alterna-
tives to already existing practices. However, for both 
designs, there are still a lot of improvements neces-
sary, especially regarding the seaweed culturing. The 
prevalence of the ice-ice disease, driven by high water 
temperatures and inadequate nutrient input, signif-
icantly hampered seaweed growth. Only the IMTA 
system in the first growth cycle showed more robust 
growth, most likely attributed to the beneficial effects 
of nutrient recycling from sea cucumbers and oysters. 
The results of the economic analysis revealed that the 
IMTA system, particularly with high-density seaweed, 
sea cucumber, and pearl oyster stocks, was more prof-
itable compared to RAS and monoculture systems, 
thus IMTA is a more practical system for Zanzibar 
and Tanzania in general. Equally, IMTA can be a bet-
ter choice for Zanzibar given that the IMTA system 
achieved a higher BCR, indicating better financial via-
bility over time. Socially, seaweed farming remains 
a crucial livelihood for many, particularly women, 

though market challenges such as low prices and 
disease outbreaks persist. With appropriate support 
and investments, these novel aquaculture practices 
can mitigate the impacts of environmental stressors, 
enhance production, and ensure long-term viability.
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