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Abstract
This study presents the first report of variable photo-physiology of healthy-looking and bleached corals from the 

upper mesophotic waters of the Mascarene Plateau. In May 2018, during the FAO EAF-Nansen research expedition 

cruise, coral bleaching was visually observed. Five coral species from Saya de Malha Bank, namely Heliopora coerulea, 

Favites sp. and Porites sp. from 27 m and Acropora sp. and Lithophyllon repanda from 30 m, and three coral species from 

the Nazareth Bank, namely Acropora sp. and Galaxea fascicularis from 36 m and Stylophora-like species from 58 m 

were studied using the Video-Assisted Multi-Sampler (VAMS) and collected using a Van Veen grab. Chlorophyll a flu-

orescence parameters such as effective quantum yield at photosystem II (FPSII), relative maximum electron transport 

rate (rETRm), photosynthetic efficiency (a), photoinhibition (b), saturating light level (Ek), and maximum non-pho-

tochemical quenching (NPQm) were measured using a Diving-Pulse-Amplitude-Modulated (D-PAM) fluorometer to 

study variable photo-physiology in bleached and non-bleached corals. All photo-physiological parameters varied 

significantly among coral species tested and between coral conditions, except for b. The interaction between species 

and coral conditions was only significant in the case of b, but generally not significant. A two-way ANOVA indicated 

significant effects of depth and coral conditions in Acropora sp. on almost all photo-physiological parameters, except 

for b, and the effect of depth on rETRmax and a, and the effect of depth along with its interaction with coral condi-

tions on Ek. FPSII did not differ in bleached and healthy-looking coral parts of Porites and Lithophyllon from 27 m,  

Galaxea and Acropora from 36 m while it decreased significantly in Heliopora and Favites at 27 m, Acropora from 30 m, 

and Stylophora-like at 58 m. NPQm did not change for Porites, Acropora (30 m) and Galaxea but it tended to increase 

for Heliopora, Acropora (36 m), Lithophyllon, Galaxea, and decrease for Favities, Acropora (30 m) and Stylophora-like.  

The thermally tolerant coral Porites exhibited normal photo-physiology even in bleached conditions while the 

bleached parts of Favites, Acropora (30 m) and Stylophora-like corals exhibited photo-physiological dysfunctioning. 

This study revealed that the seven studied corals from the upper mesophotic waters of the Mascarene Plateau are 

not spared from the bleaching phenomenon and exhibit variable photo-physiology in bleached and non-bleached 

conditions. Further studies are warranted to thoroughly understand the coral bleaching patterns and severity during 

summer periods at the Saya de Malha and Nazareth Banks.
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Introduction
Coral bleaching has become more frequent and 
severe worldwide (Hoegh-Gulberg et al. 1999; Hughes 
et al. 2018) with variable impacts on reefs (Darling 
et al., 2019). Coral bleaching events have not spared 
the Western Indian Ocean region (Obura et al. 2017) 
including the Islands of the Mascarene Plateau (Bha-
gooli and Taleb-Hossenkhan, 2012; Mattan-Moor-
gawa et al., 2012, 2018; Bhagooli and Kaullysing, 2019; 
McClanahan and Muthiga, 2020). Under environ-
mentally stressful conditions, mainly elevated sea 
temperature and high solar irradiance, corals bleach, 
whereby they lose either their symbiotic zooxanthel-

lae (Hoegh-Guldberg and Smith, 1989; Brown, 1997; 
Le Tissier and Brown, 1996) or their photosynthetic 
pigments, or both (Kleppel et al. 1989), and appear 
white. If corals do not regain their symbiont-associ-
ated pigmentation in due course, they succumb. Sea 
surface temperature-based models indicate that some 
reefs would suffer from “local extinctions” (Sheppard, 
2003; Bhagooli and Sheppard, 2012).

Several studies have suggested that damage to the 
zooxanthellar photosynthetic apparatus and/or its 
repair ( Jones et al., 1998; Warner et al. 1999; Takahashi 
et al., 2004; Bhagooli, 2013) is implicated in the bleach-
ing process. This has led to the increased use of chlo-
rophyll a fluorescence techniques to study the normal 
and stress photo-physiology of the endosymbiont 

dinoflagellates, commonly called zooxanthellae, in 
corals (Bhagooli et al., 2021). Several studies have indi-
cated that different zooxanthellae species (LaJeunesse 
et al., 2018) have variable photo-physiological thermal 
tolerance (Rowan, 2004; Sampayo et al., 2008). How-
ever, other studies have shown that thermal bleaching 
may occur without thermally-induced dysfunctioning 
of the photosystem II as photosynthetically compe-
tent zooxanthellae are released under stress (Ralph et 
al., 2001; Bhagooli and Hidaka, 2004). Observations 
of photosynthetic functioning of zooxanthellae indi-
cated a decline in photochemical efficiency in some 
stressed corals (Rodrigues et al., 2008) and variable 

changes for some corals in the field (Mattan-Moor-
gawa et al., 2012, 2018). These stress photo-physiologi-
cal studies have focused mostly on shallow-water cor-
als while the thermal stress photo-physiology of deep 
water corals is not well documented. 

Ample evidence documenting differential bleaching 
patterns among coral taxa (Marshall and Baird, 2000; 
Loya et al., 2001; Bhagooli and Yakovleva, 2004; Mat-
tan-Moorgawa et al., 2012) and depths (Glynn, 1996; 
Lesser, 2009; Bongaerts et al., 2010; Muir et al., 2017) 
exist. However, with increasing frequency and severity 
of coral bleaching events recently, it appears that coral 
genera that were previously tolerant and/or resilient to 
bleaching in both shallow and deep waters may become 
vulnerable to increasing thermal anomaly severity 

Figure 1.  

Figure 1. A. Mascarene Plateau on the global map. B. Map of Mascarene Plateau indicating the sampling locations for corals 

at Saya de Malha (S4 and S39) and Nazareth Banks (S44 and S47).
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(McClanahan and Muthiga, 2020), and deep water mes-
ophotic coral ecosystems from the Caribbean and 
Great Barrier Reef, for example, may not act as poten-
tial climate refugia (Smith et al., 2016; Frade et al., 2018). 
Though Frade et al. (2018) documented variable bleach-
ing susceptibilities among deep water coral species, 
their stress photo-physiology is almost unchartered.

This study, therefore, aimed at a snap-shot investiga-
tion of the variable photo-physiological performance, 
using a Diving-Pulse Amplitude Modulated (D-PAM) 
fluorometer, in seven coral species collected from 
the upper mesophotic waters of the Saya de Malha 
and Nazareth Banks on the Mascarene Plateau, West-
ern Indian Ocean, a region that has been very poorly 
studied. The objectives were to 1) qualitatively observe 
bleaching in corals, and 2) assess the photo-physiolog-
ical performance of i) healthy-looking corals, and ii) 
their conspecific bleached corals from depths >25 m 
at the Saya de Malha and Nazareth Banks.

Methodology
Sample collection from studied locations 
The studied locations were within the Saya de Malha 
Bank, an area jointly managed by the Republic of 
Mauritius and Seychelles, and the Nazareth Bank, 
which is within the Exclusive Economic Zone of the 
Republic of Mauritius. The samples of the symbiotic 
cnidaria were collected using the van Veen grabs on 
the VAMS at station S4 at Saya de Malha Bank on 8th 
May 2018 at a depth of 27 m, and at S39 at Nazareth 
Bank on 22nd May 2018 at a depth of 30 m. At the Naz-
areth Bank, stations included S44 at a depth of 36 m 
and S47 at a depth of 58 m and collection was carried 
out on 27th May 2018 (Fig. 1). Live coral samples were 
preliminarily identified on the research vessel and 
used for photo-physiological studies onboard. Chlo-
rophyll fluorescence measurements were conducted 
between 09:00 and 14:00 hrs at the studied locations. 
Samples were frozen at -20 oC for further detailed 
identification at a later stage.

Coral morphological identification
Corals (cnidarian) were collected and preliminarily 
identified onboard. After close-up pictures were taken, 
samples were frozen at -20oC for later laboratory 
identification. Advanced identification of corals was 
done using skeletal morphological methods such as 
light and scanning electron microscopy (SEM). Cor-
als were identified from external morphologies using 
Corals of the World (Veron, 2000) and relevant papers 
documenting scanning electron micrographs.

For SEM analyses, the coral samples were treated with 
10 % sodium hypochlorite, washed with water, and 
air-dried prior to SEM. The coral fragments were cut 
into smaller pieces to fit on the SEM stub. The coral 
samples were mounted on the stub using carbon tape 
and sputter coated with a thin layer of gold/platinum. 
SEM observations were performed with a Vega Tescan 
microscope (Stefani et al., 2011). 

Photo-physiology of corals – Chlorophyll a 
fluorescence measurement
The Diving-PAM fluorometer (Submersible Photo-
synthesis Yield Analyzer, Walz, Germany) was used 
to assess the photo-physiology of collected corals by 
measuring, in triplicates, the fluorescence of chloro-
phyll a on-board the ship immediately after collec-
tion. In a non-dark-adapted sample, the initial fluo-
rescence (F) and the maximal fluorescence (Fm′) were 
measured by applying pulses of weak red light (< 1 
µmol quanta m-2 s-1) and a saturating pulse (4000 µmol 
quanta m-2 s-1, 0.8 s duration), respectively. The ratio 
of the change in fluorescence (DF = Fm′- F) caused by 
the saturating pulse to the maximal fluorescence (Fm′), 
in a light adapted sample can be considered as a proxy 
for the effective maximum quantum yield of the pho-
tosystem II (PSII) (Genty et al., 1989). The chlorophyll 
fluorescence parameters included the effective quan-
tum yield (DF/Fm′, ΦPSІІ), the relative electron transport 
rate (rETR) and non-photochemical quenching (NPQ) 
when exposed to a series of rapidly (10 s) changing 
light climates (Rapid Light Curves, RLCs) (Ralph et al. 
1999; Bhagooli and Yakovleva, 2004). The irradiance 
levels were 0, 110, 150, 300, 400, 500, 800, 1000 and 
1325 µmol quanta m-2 s-1. Using the RLCs the rETR 
and NPQ were estimated at each irradiance. 

At each irradiance, the respective relative electron 
transport rate (rETR) was calculated as the product 
of 0.5 x ΦPSІІ x PAR, where PAR is the photosyntheti-
cally active radiance. Non-photochemical quenching 
(NPQ), determined by the ratio of Fm-Fm′ to Fm′, is the 
process by which oxygenic photoautotrophs harm-
lessly dissipate excess light absorbed as heat and flu-
orescence. When light energy absorption exceeds the 
capacity for utilization, there is a need to dissipate the 
energy to protect the light harvesting structures from 
photo-oxidative damage. The maximum rETR and 
NPQ were determined using sigma plots (Platt and 
Jassby, 1976). The initial slope of the light curve prior 
to the onset of saturation (α) and the slope of the light 
curve beyond the onset of photo-inhibition (β), repre-
senting the light-use efficiency and photo-inhibitory 
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Figure 2.  

Figure 2. Fragments and scanning electron micrographs of the studied corals from Saya de Malha (SMB) and 

Nazareth (NB) Banks. A and B – Acropora sp. from SMB; C and D – Acropora sp. from NB; E and F – Heliopora 

coerulea from SMB; G and H – Stylophora-like sp. from NB; and I and J – Porites sp. from SMB.
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factors, respectively, were determined through curve 
fitting of the RLC. The Ek was calculated as rETRmax/α 
and represents the minimum saturating irradiance. 
Chlorophyll fluorescence measurements were done 
in three replicates (n=3). Based on visual observations 
prior to chlorophyll fluorescence measurements, cor-
als were grouped into three categories: healthy-look-
ing; bleached (whitish); and pale (intermediate 
between the former two). Not all coral species studied 
could be categorised into all three conditions and thus 
some had data collection for only two categories.

Statistical analyses
ΦPSІІ, rETRm, NPQmax, a, b, and Ek were statistically 
analysed using the software PASW Statistics 18. The 
data was expressed as mean±SD from three repli-
cates (n=3). The raw data was Arcsine square root 
transformed prior to ANOVA tests. The two-way 
ANOVA was employed to test the effect of species and 
coral conditions in seven coral species. Since Acro-
pora sp. were found at two depths (30 m and 36 m) 
the two-way ANOVA was run twice: 1) with Acropora 
sp. from 30 m; and 2) with Acropora sp. from 36 m. 

A separate two-way ANOVA was conducted to test for 
the effects of depths and coral condition in Acropora sp.  
The Tukey post hoc significance difference test was 
used for multiple comparison of means at P<0.05. 

Results and discussion
Coral identification 
At Saya de Malha Bank, the corals at S4 included Heli-
opora coerulea, Favites sp., and Porites sp. from a depth of 
27 m, while at S39, Acropora sp. and Lithophyllon repanda 
were recorded from a depth of 30 m. At Nazareth Bank, 
the corals recorded at S44 from a depth of 36 m were 
Acropora sp. and Galaxea fascicularis, and at S47 Stylopho-
ra-like sp. From the colony and fragment morpholo-
gies, and scanning electron micrographs, the same 
Acropora sp. was observed at both Saya de Malha S39 
(Fig. 2A, B) and Nazareth S44 (Fig. 2C, D). H. coerulea at 
S4 was confirmed through their colony and fragment 
morphologies, and scanning electron micrograph (Fig. 
2E, F). At S47, the colony/fragment morphologies and 
the SEM analysis revealed a Stylophora-like sp. (Fig. 2G, 
H). At S4, the massive coral was confirmed to be a Porites 
sp. based on the colony morphology and scanning 

Figure 3.  
Figure 3. Healthy-looking and bleached conditions of corals. A. Porites sp. (EAF-Nansen, 2018), 

and B. Acropora sp. healthy and bleached colonies observed via the VAMS in the field at study 

location S39 at Saya de Malha (EAF-Nansen, 2018). The yellow arrows indicate the bleached 

corals in the field; C. Healthy and D. Bleached Heliopora coerulea post-collection observation 

following sampling from S4 at Saya de Malha.
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micrograph (Fig. 2I, J). The morphology of the Acro-
pora, Stylophora-like and Porites species looks quite dif-
ferent from their genera reported around Mauritius 
(Moothien-Pillay et al. 2002; Bhagooli et al. 2017) and 
Rodrigues (Fenner et al., 2004), though these reports 
did not use SEM. The SEM analyses done in this study 
indicated clear fine micro-level details in these coral 
specimens, but they could not be identified clearly at 
the species level. Further molecular level identification 
work is required to be able to reveal the species level 
identity of these specimens. 

Field- and post-collection observed  
bleaching conditions
The VAMS used in the study allowed for qualitative 
observations. Several coral colonies belonging to the 
genera Porites (Fig. 3A) and Acropora (Fig. 3B) could 
be observed in situ through the videos of the VAMS. 
Post-collection, the grabs attached and operated 
through the VAMS provided samples of Heliopora 
(Fig 3C, D), Porites, Acropora, Galaxea fascicularis, Litho-
phyllon repanda, and Stylophora-like species in healthy 
and bleached-conditions. Variable levels of bleaching 

Table 1. Two-way ANOVA for the effect of species (Heliopora coerulea, Favites sp., Porites sp., Acropora sp., Lithophyllon repanda, Galaxea fascicularis and 

Stylophora-like species) and coral condition (healthy-looking and bleached) on photo-physiological features of test corals. Since Acropora sp. was 

found at 30 m and 36 m, the ANOVA test was run with Acropora-30m and Acropora-36m, separately. Asterisks (***) represent significant differences 

at P<0.001.

Parameters
Source of 
Variation

SS df MS F P-value

With 
Acropora  
at 30 m

FPSII Species 0.702 6 0.117 17.675 0.000***

Condition 0.234 1 0.234 35.394 0.000***

Species x Condition 0.290 6 0.048 7.303 0.000***

rETRm Species 0.070 6 0.012 35.601 0.000***

Condition 0.062 1 0.062 190.857 0.000***

Species x Condition 0.021 6 0.004 10.893 0.000***

NPQmax Species 0.060 6 0.010 18.997 0.000***

Condition 0.056 1 0.056 106.523 0.000***

Species x Condition 0.033 6 0.005 10.254 0.000***

α Species 0.322 6 0.054 13.077 0.000***

Condition 0.198 1 0.198 48.179 0.000***

Species x Condition 0.252 6 0.042 10.221 0.000***

β Species 0.140 6 0.023 9.033 0.000***

Condition 0.000 1 0.000 0.082 0.777

Species x Condition 0.033 6 0.006 2.136 0.080

Ek Species 0.292 6 0.049 24.453 0.000***

Condition 0.042 1 0.042 21.199 0.000***

Species x Condition 0.112 6 0.019 9.368 0.000***

With 
Acropora  
at 36 m

FPSII Species 0.774 6 0.129 19.928 0.000***

Condition 0.181 1 0.181 27.896 0.000***

Species x Condition 0.320 6 0.053 8.230 0.000***

rETRm Species 0.071 6 0.012 35.778 0.000***

Condition 0.057 1 0.057 172.034 0.000***

Species x Condition 0.020 6 0.003 10.188 0.000***

NPQmax Species 0.103 6 0.017 32.238 0.000***

Condition 0.044 1 0.044 82.959 0.000***

Species x Condition 0.024 6 0.004 7.669 0.000***

α Species 0.370 6 0.062 13.728 0.000***

Condition 0.186 1 0.186 41.487 0.000***

Species x Condition 0.253 6 0.042 9.378 0.000***

β Species 0.173 6 0.029 10.257 0.000***

Condition 0.001 1 0.001 0.185 0.670

Species x Condition 0.034 6 0.006 2.029 0.095

Ek Species 0.294 6 0.049 24.929 0.000***

Condition 0.035 1 0.035 18.012 0.000***

Species x Condition 0.106 6 0.018 8.973 0.000***
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were observed in these coral species but no quanti-
tative assessments were undertaken. It is noteworthy 
that in other shallow-water locations of the Mas-
carene Plateau, both intra- and inter-species variable 
bleaching observations have been made; for example 
by Hilbertz and Goreau (2002) at the Ritchie Bank of 
the northern Saya de Malha, Bhagooli and Taleb-Hos-
senkhan (2012), Mattan-Moorgawa et al. (2012, 2018) 
and  McClanahan and Muthiga (2020) around Mau-
ritius Island, and Hardman et al. (2004, 2008) around 
Rodrigues Island. These studies in general indicated 
that Porites and Galaxea are more tolerant to bleaching 
than some Acropora species. The present study, for the 
first time, reports qualitative bleaching observations 
from the Mascarene Plateau at depths of 27 and 36 m. 
Further quantitative studies on bleaching vulnerabil-
ity observations in the Saya de Malha and Nazareth 
Banks are necessary to understand the bleaching sta-
tus of corals on the Mascarene Plateau.

Photo-physiological performance  
of healthy-looking and bleached corals
All photo-physiological parameters varied significantly 
among coral species tested and between coral condi-
tions, except for b, irrespective of the analysis including 
Acropora sp. from 30 m or 36 m (Table 1). The inter-
action between species and coral condition was not 
significant; only in the case of b. The two-way ANOVA 
indicated significant effects of depth and coral condi-
tion in Acropora sp. on almost all photo-physiological 

parameters, except for b, and the effect of depth on 
rETRmax and a, and the effects of depth along with its 
interaction with coral condition on Ek (Table 2).

The effective quantum yield at PSII did not differ in 
bleached and healthy samples for Porites and Litho-
phyllon from 27 m, Galaxea and Acropora from 36 m, 
while it decreased significantly in Heliopora (P<0.05) 
and Favites (P<0.01) at 27 m, Acropora  (P<0.001) from 
30 m, and Stylophora-like (P<0.001) at 58 m (Fig. 4A). 
rETRm decreased (P<0.05) or tended to decrease in all 
bleached species except for Porites where it tended to 
increase (Fig. 4B). NPQm did not change (P>0.05) for 
Porites, Acropora (30 m) and Galaxea, while it tended 
to increase for Heliopora, Acropora (36 m) (P<0.05), 
Lithophyllon, Galaxea, and decrease for Favities, Acro-
pora (30 m), Stylophora-like (P<0.05), respectively (Fig. 
4C). Usually, under thermal stress conditions, there 
is a tendency for effective yield at PSII and rETRm to 
decrease and NPQm to increase as a sign of coping 
with thermal stress, and a decrease in all these param-
eters indicates damage to the photosynthetic appara-
tus of the zooxanthellae in the corals. The thermally 
tolerant coral, Porites, exhibited no change in PSII 
effective yield and NPQm and a tendency to have an 
increased rETRm in bleached conditions, which is in 
accordance with Bhagooli and Yakovleva (2004). Con-
versely, Favites, Acropora (30 m) and Stylophora-like 
corals showed a clear decrease in effective yield at PSII, 
rETRm and NPQm suggesting some level of damage to 

Table 2. Two-way ANOVA for the effect of depth (30 m and 36 m) and coral condition (healthy-looking and bleached) on photo-physiological 

features of Acropora sp. Asterisks ***, ** and * represent significant differences at P<0.001, P<0.01 and P<0.05, respectively.

Parameters Source of 
Variation SS df MS F P-value

FPSII Depth 0.021 1 0.021 25.012 0.001**

Condition 0.012 1 0.012 14.649 0.005**

Depth x Condition 0.012 1 0.012 14.886 0.005**

rETRm Depth 0.001 1 0.001 10.017 0.013*

Condition 0.025 1 0.025 250.848 0.000***

Depth x Condition 0.000 1 0.000 4.560 0.065

NPQmax Depth 0.012 1 0.024 59.341 0.000***

Condition 0.046 1 0.039 97.033 0.000***

Depth x Condition 0.001 1 0.003 6.460 0.035*

α Depth 0.007 1 0.012 5.682 0.044*

Condition 0.002 1 0.046 21.931 0.002**

Depth x Condition 0.000 1 0.001 0.285 0.608

b Depth 0.007 1 0.007 1.269 0.293

Condition 0.002 1 0.002 0.333 0.580

Depth x Condition 0.000 1 0.000 0.042 0.843

Ek Depth 0.000 1 0.000 0.012 0.916

Condition 0.040 1 0.040 27.522 0.001**

Depth x Condition 0.001 1 0.001 0.725 0.419
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the photosynthetic capacity of their symbiotic zoox-
anthellae. The other studied corals showed variable 
responses in these tested chlorophyll fluorescence 
parameters. These findings indicate that Porites sym-
bionts may be photosynthetically thermally tolerant 
but still bleach to a certain degree, while Favites, Acro-
pora (30 m) and Stylophora-like symbionts are photo-
synthetically thermally susceptible and bleach. It is 
noteworthy that Ralph et al. (2001) and Bhagooli and 
Hidaka (2004) showed that photosynthetically compe-
tent symbionts were released when corals like Galaxea 
fascicularis and Pocillopora damicornis were exposed to 
elevated temperature. Other studies have proposed 

that the photosynthetic machinery of the symbionts 
broke down or their repair mechanisms are affected 
and thus corals bleached ( Jones et al., 1998; Warner et 
al., 1999; Takahashi et al., 2004; Bhagooli, 2013). Mat-
tan-Moorgawa et al. (2012) studied eight shallow-water 
coral species and indicated a decline in PSII activity 
of four bleached corals that are usually susceptible to 
thermal bleaching, and out of the four thermally tol-
erant corals only pale Pocillopora and Galaxea showed 
a declining tendency in their PSII activities. 

The Ek tended to decrease in bleached samples in most 
studied corals, except for Galaxea and Stylophora-like 

Figure 4. Photo-physiological parameters of healthy-looking and bleached parts of corals. A. Effective quantum yield at PSII (ΦPSІІ); B. Maximum 

relative electron transport rate (rETRm); and C. Maximum non-photochemical quenching (NPQmax). H-Healthy-looking, P-Pale, and B-bleached. 

Bars represent Mean±SD (n=3).
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samples (Fig. 5A), implying a lowering of the light sat-
uration level. Alpha declined in bleached samples of 
Heliopora, and Stylophora-like only (Fig. 5B), suggesting 
a decline in the slope of the photosynthetic rate. Beta 
increased in bleached samples of Heliopora, Porites 
and Acropora-30 m (Fig. 5C), indicating increased 
photo-inhibition of photosynthesis in the symbi-
onts of these corals. These chlorophyll fluorescence 
parameters were variable and not many studies have 
used these parameters in studies on photosynthetic 

marine invertebrates, including corals, and sea plants  
(Bhagooli et al., 2021).

This is the first study to document Stylophora-like spe-
cies at Nazareth Bank, and variable bleaching obser-
vations and their photo-physiological features in 
healthy and bleached conditions from both the Saya 
de Malha and Nazareth Banks. The qualitative field 
observations indicated that bleaching was readily 
spotted through the VAMS video for corals like Porites 

Figure 5. Photo-physiological parameters of healthy-looking and bleached parts of corals. A. Alpha (a, initial slope of the light curve prior to 

onset of saturation); B. Beta (b, the slope of the light curve beyond the onset of photo-inhibition); and C. Ek (the minimum saturating irradiance). 

H-Healthy-looking, P-Pale, and B-bleached. Bars represent Mean±SD (n=3).
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and Acropora, while for other small-colony forming 
corals such as Favites, Galaxea, Heliopora, Lythophyllon, 
Stylophora-like, grab collections revealed their bleach-
ing conditions. For the bleached conditions, the well-
known thermally tolerant coral Porites exhibited nor-
mal photo-physiology, while Favites, Acropora (30 m) 
and Stylophora-like showed some level of photo-physi-
ological dysfunctioning. The water temperatures were 
27.5, 26.8, 27 and 26 oC at S4, S39, S44 and S47, respec-
tively. These were snap-shot measurements available 
from the ROV and are inadequate for explaining the 
intra- and inter-species variability in bleaching sus-
ceptibility at these studied depths on the Mascarene 
Plateau. It is noteworthy that Frade et al. (2008) has 
reported that Madracis spp. from the southern Carib-
bean region exhibit depth-dependent photo-physi-
ological features in some species. Additional vertical 
profiling data or depth-specific data of temperature 
and light intensity for longer periods during summer, 
as done by Frade et al. (2008, 2018), would be needed 
to appropriately determine the influence of these 
parameters on coral bleaching patterns and pho-
to-physiological functioning of corals in this part of 
the world. Further detailed studies undertaken prior- 
and post-field bleaching events at the Banks along with 
a thermal stress experiment may provide insights into 
the photo-physiology of bleaching tolerance and sus-
ceptibility of these corals at Saya de Malha and Naza-
reth Banks. Additionally, determination of the symbi-
ont genetic types will provide important information 
related to the bleaching vulnerabilities among these 
corals from the Mascarene Plateau.
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