

مجلة جامعة وادي الشاطئ للعلوم البحتة والتطبيقية

Volume 2, No. 1, January-June 2024

بر - يونيو. 2024 Online ISSN: 3006-0877

المجلد 2، الاصدار 1، يناير - يونيو 2024

SOLID STATE PHYSICS

A Comparative Study of Gamma Radiation Shielding Parameters for Sodium Silicate Glass Containing Bismuth, Barium and Lead Oxide in the Energy Range (0.6 - 1.5 MeV)

Abdelkhader Ali^{1,*}, Wesam Zeyara², Sameh Nagem³, Emhemmad Jumha⁴, Tarek Fayez⁵

¹Department of Renewable Energy, Faculty of Engineering, Sebha University, Sebha-Libya ²Department of Physics, Faculty of Education, University of Fezzan, Taraghin-Libya ³Department of Physics, Faculty of Science, University of Benghazi, Benghazi-Libya ⁴Department of Chemistry, Faculty of Education, University of Fezzan, Taraghin-Libya

⁵Department of Physics, Faculty of Science, Sebha University, Sebha-Libya

ARTICLE HISTORY	ABSTRACT
Received 10 October 2023 Revised 01 November 2023 Accepted 15 December 2023 Online 01 January 2024	This research focused on studying various parameters of radiation shielding, including Linear Attenuation Coefficient (LAC), Mass Attenuation Coefficient (MAC), Mean Free Path (MFP), Half-Value Layer (HVL), Tenth Value Layer (TVL), Effective Atomic Number (Zeff), and Effective Electron Density (Neff). The simulations were conducted using the PHY-X/PSD simulation program at energies of 0.662, 1.17, and 1.33 MeV for two compounds of bismuth and barium silicates (S1 and S2) with different weight percentages, as well as a bismuth and lead
KEYWORDS	silicate compound (S3) with the following compositions: S1: 12Bi2O3 12BaO 40SiO2 20ZnO 16Na2SO4, S2: 12Bi2O3 12PbO2 40 SiO2 20ZnO 16
Radiation shielding; Silica glass; Mass attenuation coefficient; Bismuth silicate; Barium silicate; Lead silicate.	Na2SO4, S3: 30Bi2O3 30BaO 30 SiO2 5ZnO 5 Na2SO4. Radiation interactions with the material were calculated using the X-COM program in a specified energy range ranging from 0.6 to 1.5 MeV. This range includes selected energy values commonly used in radiation therapy and scientific research, typically emitted by cobalt-60 and cesium-137. The results indicated that all attenuation parameters for sample S1 were close to those of sample S2 at the specified energies. With an increase in the concentration of bismuth and barium in sample S3, relative to other oxides, the results were better compared to samples S1 and S2. This suggests that environmentally friendly lead-free glass shielding systems can be manufactured using high-concentration bismuth and barium oxide alloss to avoid toxic effect associated with lead.

دراسة مقارنة بارامترات التدريع الأشعاعي لأشعة جاما لزجاج سيليكات الصوديوم المحتوي على أكاسيد البزموث والباريوم والرصاص في مدى طاقة ($0.6-1.5~{ m MeV}$)

عبد القادر علي^{1،*} ، وسام زيارة² ، سامح نجم³ ، الحجد جمعة⁴ ، طارق فايز⁵

للخص	الكلمات المفتاحية
, هذا البحث تمت دراسة بارامترات التدريع الاشعاعي المختلفة معامل التوهين الخطي(LAC) ، ومعامل التوهين الكتلي	التدريع الاشعاعي
MAC)، و متوسط المسار الحر (MFP) ، وطبقة نصف القيمة (HVL) ، وطبقة السمك العاشر (TVL) ، والعدد الذري	زجاج السليكا
فعال (Zeff) ،والكثافة الالكترونية الفعالة (Neff) ، باستخدام برنامج المحاكاة PHY-X/PSD عند الطاقات , 0.662)	معامل التوهين الكتلي
1.17 , 1.33 MeV لمركبين من سيليكات البزموث والباريوم)بنس وزنية مختلفة ، ومركب سيليكات البزموث والرصاص	سيليكات البزموث
حسب التركيب	سيليكات الباريوم
S1:12Bi2O3 12BaO 40SiO2 20ZnO 16Na2SO4, S2: 12Bi2O3 12PbO2 40 SiO2 20ZnO 16 Na2SO4, S3: 30Bi2O3 30BaO 30 SiO2 5ZnO 5 Na2SO4	سيليكات الرصاص
عاعلات الأسعاع مع المادة مرحسامها باستحدام برنامج COIVI-A في تطاق محدد من الطاقة يأراقح من (V TIJ LI I - 0.0) ، مساليه الذي مع مد المالية المناسبة الكرمات وينه سالية في مال المالة 44 مام مالي من (V TIJ LI I - 0.0) ،	
هو المدى الذي يحوي فيم الطاقة المعتارة لدونها نستخدم عادة في مجال العلاج الأسعاعي والبحث العلمي ، والتي التي تصدر عادة من الذي يحوي فيم الطاقة المعتارة لدونها نستخدم عادة في مجال العلاج الأسعاعي والبحث العلمي ، والتي التي تصدر عادة	
ن عنصري الكوبالت 00 والسيزيوم / 15. بيلت النتائج أن جميع بارامترات التوهين للعينة (11) كانت متقاربة مع بارامترات العينة مريد	
S2) عند الطاقات المحددة، وبزيادة تركيز البزموث والباريوم في العينة (S3) على حساب الاكاسيد الأخرى، كانت النتائج افضل	
قارنة بالعينتين(S1) (S2) . هذا يعني انه بالإمكان تصنيع أنظمة تدريع زجاجية خالية من الرصاص صديقة للبيئة باستخدام	
جاج أكسيد البزموث والباريوم عالي التركيز لتجنب التأثيرات السمية الناتجة عن عنصر الرصاص.	

المقدمة

التدريع الإشعاعي جاما هو عبارة عن تغطية معدنية مصممة لحماية الأشخاص من اشعة جاما الخطرة، ويكثر استخدامها في مستشفيات الأورام ومحطات الطاقة النووية ومعامل الأبحاث وغيرها. في هذا النوع من التدريع يتم إستخدام مواد مختلفة، مثل الحجر والخرسانة والرصاص والحديد والتيتانيوم والبلاديوم والمعادن الأخرى. حيث تعمل هذه التغطية على تقليل التعرض للأشعة الضارة، ويعتبر استخدامها ضروري لتقليل المخاطر الناتجة عن التعرض لأشعة الجاما الخطرة. وعلى الرغم من أن التدريع الإشعاع عن التعرض لأشعة الجاما الخطرة. وعلى الرغم من أن التدريع الإشعاع يمكن أن يكون فعالًا في تقليل التأثيرات السلبية للإشعاع، إلا أنه لا يمكنه حماية الأشخاص من جميع أشكال الإشعاع إذا كان السبب في التعرض للإشعاع هو نشاط ذري طبيعي، فقد يكون التدريع الإشعاعي غير فعال للحد من التأثيرات السلبية للإشعاع. وبالتالي تشير الدراسات العلمية إلى ضرورة تطوير مواد تدريع إشعاعي جديدة وآمنة وصديقة للبيئة وفعالة في حماية الأفراد من مخاطر التعرض للإشعاع، الذي من شأنه المساهمة في تعزيز ومنع حدوث الأمراض الخطرة المرتبطة بالإشعاع.

يتم استخدام الخرسانة كمواد تدريع للإشعاع لأنها رخيصة الثمن ويمكن تشكيلها بسهولة في أي تصميم مرغوب. وعلى الرغم من هذه المزايا إلا انه هناك بعض القيود المرتبطة بالخرسانة، حيث أنها غير شفافة للضوء المرئي مما يعيق الرؤية من خلالها. وإذا تعرضت للإشعاعات لفترة طويلة تقل قوتها الميكانيكية. لذلك يفضل أن تكون المواد المستخدمة للتدريع شفافة ولها خصائص حماية أفضل من حيث متطلبات الحجم الأقل. حديثا أثبتت الأنظمة الزجاجية المعدنية الثقيلة أنها مواد تدريع واعدة كبديل لمواد التدريع التقليدية مثل الخرسانة [1-8].

تعتبر دراسة تفاعل الإشعاعات النووية مع المادة مجال بحثي مهم لتطوير المواد التي يمكن استخدامها في البيئات ذات الإشعاع العالي [1-19].

يحدث التدريع الأشعاعي أو تخفيف إشعاع جاما من خلال تفاعل إشعاع جاما مع المادة. حيث تعتمد درجة توهين إشعاع جاما على طاقة الأشعاع الساقط، والعدد الذري وكثافة العناصر الموجودة في مادة التدريع، وسمك الدرع. وقد توفر المواد المركبة فوائد إضافية في المقاومة الكيميائية، والمتانة المادية، وسهولة الحمل [12].

تعتبر المواد الزجاجية خيارًا جيدًا لهذا الغرض لأنها قابلة لإعادة التدوير بنسبة 100%، كما انها تتميز بشفافيتها ونفاذيتها للضوء المرئي، كما يمكن تعديل وتغيير خصائصها الفيزيائية والكيمائية بإضافة مركبات أخرى [13.4].

يعد أكسيد الرصاص (PbO) من المواد الفعالة والأكثر استخداما في مجال الوقاية من أشعة جاما نظرًا لأمتصاصه القوي لفوتونات جاما [14]. ولكن نظرًا للتأثيرات السلبية للرصاص على البيئة والأشخاص، فان الأنظمة الزجاجية المبنية على عناصر ذات الوزن الذري الأكبر من (100) كالبزموث (209)، والباريوم (137)، قد اثبتت كفاءتها كبدائل للرصاص في الحماية من الإشعاع، بالإضافة لذلك فأنها تساهم في تثبيت الهيكل الزجاجي وتحسين المتانة الكيميائية [4،15].

وعليه فان الخوف من التطبيقات الأشعاعية المستخدمة في الكثير من المجالات الطبية والبحثية والصناعية، أدى الي البحث عن وسائل حماية اشعاعية ذات فاعلية جيدة وتصلح للتطبيق في مختلف المجالات، ولذلك كان الهدف من هذه الدراسة هو إيجاد تركيب مناسب من زجاج سيليكات الصوديوم خالي من الرصاص وصديقا للبيئة ويوفر معاملات حماية اشعاعية جيدة باستخدام اكسيدي البزموث والباريوم

الدراسات السابقة

دراسة [2] عن مقارنة بين الأفضلية لزجاج الفوسفات المحتوي على أكاسيد الرصاص والبزموث والباريوم ذات التركيب: xR_mO_n: (100-x)P₂O₅، حيث (R_mO_n=Bi₂O₃, PbO and BaO)، Cobe x عند طاقة 662 KeV، وهي الطاقة المنبعثة من مصدر cs 137 المشع لما له من استخدامات في مجالات متعددة كالطب والبحث والتعليم والصناعة، وجد أن معاملات التوهين الكلي تزداد في العينات المحتوية على اكسيد البزموث والرصاص عن أكسيد الباريوم بسبب زيادة معامل التأثير الكهروضوئي عند هذه الطاقة.

في دراسة أخرى عن مقارنة بارامترات التدريع والخواص البصرية لأنظمة من زجاج البوروسيليكات المتكون من البزموث والباريوم، والرصاص الباريوم لاحد عشر عينة بنسب وزنية مختلفة عند الطاقات 1.33- 0.67 – 0.66) (MeV باستخدام برامج MeV Model MCNP & Monte Carlo Model MCNP و وجد أن معامل التوهين الكتلي للعينات الزجاجية المدروسة يزداد بزيادة تركيز Bi₂O₃ وPbO بسبب زيادة تفاعل الامتصاص الكهروضوئي لجميع عينات الزجاج. وأن قيم معاملات التوهين الكتلي لعينات زجاج المحتوية على Bi₂O₃ وBi₂O عند التركيزات المختلفة قريبة من بعضها البعض. بالإضافة الي ذلك ذكرت الدراسة ان الأنظمة الزجاجية المحتوية على Gi₂O₃ وBi₂O سيكون لها دور في انتاج زجاج حماية خالي من الرصاص وغير ضار بالبيئة [16]

دراسة [17] عن تأثير إضافة أكسيد الرصاص عن الخواص التدريعية والبصرية لسلسة من الأنظمة الزجاجية المصنعة بتركيبة جديدة تحتوي (ستة اكاسيد) هي أكسيد البزموث واكسيد الباريوم واكسيد الزنك واكسيد الصوديوم واكسيد السيلكون واكسيد الرصاص ذات الصيغة:

10ZnO – 20Bi₂O₃ – 5BaO – 15Na₂O – (50-x) SiO₂ – x PbO حيث 2, 3 (5, 10, 15, 2 = x. أظهرت الدراسة ان إضافة أكسيد الرصاص على حساب أكسيد السيلكون تزيد من قيمة معامل الامتصاص الخطي والكتلي وتخفض قيمة طبقة نصف القيمة ومتوسط المسار الحر عند جميع الطاقات وبزيادة أكسيد الرصاص يزداد معامل التوهين الكتلي للنظام الزجاجي. كما ذكرت الدراسة ان زجاج سيليكات الصوديوم (SS) لا يستطيع تلبية متطلبات الحماية من الإشعاع بسبب كثافته المنخفضة. لذلك تمت إضافة بعض أكاسيد العناصر الثقيلة لتحسين كفاءة هذا الزجاج، كذلك اختيار مادة بديلة للرصاص للحماية من الإشعاع المؤين كان أحد اهداف في هذه الدراسة، فكان اختيار أكسيد الباريوم واكسيد البزموث لمقارنة النتائج التي سوف تنتج عن هذه الإضافة لزجاج سيليكات الصوديوم (SS) . اما محمد الباريوم BaO يتم اختياره عادة لتعزيز الكثافة لنظام زجاج سيليكات الصوديوم. واعتمدت هذه الدراسة على دراسات سابقة استخدمت

لتطوير الخصائص الفيزيائية وكفاءات الحماية من الإشعاع [18]–[20]. علاوة على ذلك، فإن أكسيد البزموث Bi₂O₃ الذي تم التحقق من كفاءته من خلال العديد من الدراسات [21]–[23]، حيث يوفر زيادة إضافية في الكثافة، ويؤدي إلى تكوين شبكة زجاجية من سيليكات البزموث والباريوم والصوديوم (BBSS). كما يستخدم أكسيد الزنك ZnO لتحسين الخصائص البصرية في الهيكل الزجاجي [23]، [24]. نتيجة لهذا، فإن تركيبة زجاج الزنك والبزموث والباريوم والصوديوم والسيليكات (ZBBSS) تستحق الدراسة لتوسيع الدراسات الموجودة حول إنتاج أنظمة زجاجية للحماية من الإشعاع عالية الأداء.

دراسة [25] عن تفاعلات اكاسيد Bi₂O₃ وBb وBa في نظام زجاج السيليكات باستخدام برنامج WinXCom حسب التركيب:-100 x RmOn: (100 x) SiO₂ مند طاقة 662 كيلو فولت لتطوير مواد الحماية من أشعة جاما حيث RmOn هي X = 30, 40, 50, 60, 70 ، Bi₂O₃, PbO , BaO هي X = 30, 40, 50, 60, 70 ، النتائج زجاج Bi₂O₃ وPbO كان أكثر فاعلية في عملية توهين اشعة جاما مقارنة بزجاج BaO. وان معاملات التوهين الكتلى الكلى تزداد مع زبادة مكون Bi₂O₃ وPbO في النظام الزجاجي بسبب زيادة الامتصاص الكهروضوئي. ولم يكن هناك تغير كبير في معامل التوهين الشامل عند زيادة نسبة BaO. بالإضافة الى ذلك اشارت النتائج وجود افضلية لقيم طبقة نصف القيمة (HVL) والعدد الذري الفعال في عينة زجاج البزموث عن عينة الرصاص، وهذا يعني أن أكسيد البزموث يمكن أن يحل محل أكسيد الرصاص عند الطاقة (662 KeV) كمادة حماية من أشعة جاما. اما بالنسبة لـ BaO، كانت قيمة طبقة نصف القيمة (HVL) أفضل عن قيم طبقات نصف القيمة للنوافذ الخرسانية والتجاربة العادية. وهذا يشير إلى أنه يمكن استخدام زجاج BaO لحماية أشعة جاما بدلاً من كليهما عند هذه الطاقة. كما ذكرت الدراسة ان زجاج المكون من Bi₂O₃ وBaO سيتيح إمكانية جديدة للحصول

على أنظمة زجاجية خالية من الرصاص ذو التأثير السمي والضار بالبيئة. دراسة اخرى [26] عن تطبيقات الحماية من الاشعاع للأنظمة الزجاجية المكونة من Bi₂O₃-B₂O₃-BaO، متوسط المسار الحر، طبقة نصف القيمة، طبقة القيمة العاشرة، الأعداد الذرية الفعالة، كثافة الإلكترون الفعالة لفوتونات الأشعة السينية وأشعة جاما والفعالة، كثافة الإلكترون الفعالة لفوتونات الأشعة السينية وأشعة جاما بأستخدام برنامج المحاكاة XCOM في مدى الطاقة (NeV 5 – 2000) للنظام الزجاجي حسب التركيب: BaO3 5BaO (95-x) (حيث = x بالنظام الزجاجي حسب التركيب: Rai₂O₃ 5BaO (95-x) (حيث على 20, 70 وان أفضل قيم لطبقة السمك النصفي كانت للعينة التي تحتوي على اعلى قيمة من Bi₂O₃. لذلك يمكن إستنتاج أن النظام الزجاجي المدروس -Bi₂O₃ BaO₃ - BaO هذا النظام الزجاجي كبديل للمواد التقليدية بالتركيب المولي المناسب في هذا النظام الزجاجي كبديل للمواد التقليدية بالتركيب المولي المناسب في تكوينه الكيميائي.

منهجية البحث

يمكن تلخيص منهجية البحث في التالي:

- الحصول عمليا على زجاجي سيليكات الصوديوم بالنسب المحددة.
 - حساب كثافة جميع العينات الناتجة عملياً.

- اختيار مدى طاقة تحاكي طاقات أشعة جاما المنبعثة من عنصري الكوبالت 60 والسيزيوم 137 المشعين.
- PHY- المترات التدريع الاشعاعي باستخدام برنامج المحاكاة -PHY
 .X/PSD
 - حساب تفاعلات التوهين باستخدام برنامج المحاكاة X-COM.
- استخدام برنامج Prism لمقارنة النتائج المتحصل عليها من برامج المحاكاة بيانياً.

شمولية الدراسة

يعتبر زجاج سيليكات الصوديوم المستخدم في الدراسة الحالية، أحد أفضل الأنظمة الزجاجية التي تستخدم في عملية التدريع الإشعاعي. وبعد تحليل النتائج المتحصل عليها، نستطيع القول ان التركيبات الزجاجية الأربعة المتحصل عليها تصلح للاستخدام في مختلف تطبيقات التدريع الاشعاعي وعمل هياكل تدريع فعالة مختلفة ضد اشعاع جاما.

النظربة

تختلف طرق انتقال الطاقة من إشعاعات جاما الي المادة بشكل كبير عن انتقال الطاقة من الجسيمات المشحونة الي المادة. فعندما يسقط فوتون جاما على المادة فانه يمكن أن يفقد طاقته ويمنحها الي المادة عن طريق احدى العمليات الرئيسية الثلاثة التالية والموضحة بالشكل (1):

أ-التأثير الكهروضوئي: وخلاله يفقد فوتون جاما طاقته بالكامل ويمنحها لأحد الإلكترونات الشديدة الأرتباط بنواة الذرة وعادة ما تكون لاحد الكترونات المدارات الداخلية للذرة وبالتالي يفنى الفوتون.

ب-تأثير كومتون: وخلاله بفقد فوتون جاما جزء من طاقته ويمنحها لاحد الالكترونات الحرة الضعيفة الارتباط بالذرة وعادة ما يكون أحد الكترونات المدارات الخارجية وبالتالي ينحرف هذا الفوتون عن مساره

ج-انتاج الأزواج: ويمكن ان يحدث عندما يقترب الفوتون إقتراباً كبيراً من نواة الذرة ويتفاعل مع المجال الكهربي الشديد لها. وخلال هذا التفاعل يفقد فوتون جاما طاقته بالكامل منتجا زوجا الكترونيا -بوزيترونيا، وبالتالي يفنى الفوتون. ولا يحدث تفاعل مع مجال الذرة الكهربي الا إذا كانت طاقة الفوتون اعلى من MeV وهي الطاقة اللازمة لإنتاج كتلتي السكون لكل من الالكترون والبوزيترون.

الشكل 1: طرق تفاعل الفوتونات مع المادة

يستخدم مصطلح Attenuation للتعبير عن خسارة او إضعاف كثافة الإشعاع الساقط على المادة وعليه يمكن أن نصف مصطلح توهين شعاع الفوتون داخل المادة انه عبارة عن مزيجًا من عمليات التشتت والامتصاص أى ان: (التوهين = التشتت + الامتصاص). فعند سقوط حزمة متوازية من

أشعة جاما على المادة الممتصة كما موضح في الشكل (2) يخرج الفوتون الذي يتفاعل مع ذرات المادة بأي من العمليات الثلاث السابقة معتمدا على طاقة سقوطه، وكثافة المادة الماصة، وطبقة السمك النصفي، والعدد الذري الفعال.

الشكل 2: العوامل المؤثرة على انتقال الفوتون وتوهينه داخل المادة

وعليه تكتب معادلة التوهين بالشكل:

$$I = I_0 e^{-\mu x} \tag{1}$$

 I_0 شدة الأشعة الساقطة على المادة. I شدة الأشعة التي اخترقت سمكا من المادة قدره X، ولا تشمل أية إشعاعات ثانوية قد تنتج بسبب التفاعل داخل هذا السمك. μ يسعى معامل التوهين الخطي(LAC) ، وهو احتمال ان يتفاعل فوتون واحد ساقط بطاقة معينة مع أي من الذرات الموجودة في وحدة الحجوم (أي بمساحة cm^2 وعمق cm 1 cm) من هذه المادة بأي من العمليات الثلاثة، و يعتمد على طاقة اشعة جاما وعلى نوع المادة، ويعتبر هو البارامتر الرئيسي الذي من خلاله يتم الحصول على باقي البارامترات.

ولما كانت أشعة جاما تتفاعل مع المادة بأحد بالعمليات الثلاثة التي ذكرناها سابقا، فان تعريف معامل التوهين الخطي الكلي يكون هو مجموع مساهمة معاملات الامتصاص الناتجة عن الثلاث عمليات عند طاقة E معينة ويكتب:

$$\mu(E) = \mu_{Ph} + \mu_C + \mu_P \tag{2}$$

ولكن عندما تكون المادة الموهنة مكونة من عدة مركبات مختلفة في الكثافة، فأننا نستبدل معامل التوهين الخطي بمعامل أخر أشمل يعرف بمعامل التوهين الكتلي (MAC)، وهو مقياس لاحتمال التفاعل الذي يحدث بين الفوتونات الساقطة ووحدة الكتلة لكل وحدة مساحة، ويمكن الحصول عليه بقسمة معامل التوهين الخطى على الكثافة.

الشكل 3: توضح ارتباط طبقة نصف القيمة بالطاقة وكثافة المادة

أيضا من أحد اهم العلامات التي تميز المواد التي تصمم منها الدروع الاشعاعية هو العدد الذري الفعال (Z_{eff}). فالقيمة العالية لهذا العدد تعني قدرة أكبر للمادة الماصة على توهين اشعة جاما المارة خلالها. ويتناسب هذا العدد طرديا مع الكثافة الإلكترونية القعالة(N_{eff}) ، التي تعبر عن عدد الإلكترونات لكل وحدة كتلة من مادة التفاعل وكلما زادت قيمتها كان ذلك أفضل لزبادة فرص تفاعل الفوتون.

وعليه تكون قدرة التدريع لأشعة جاما لمادة معينة هي مجموع مساهمات التفاعلات الفيزيائية المختلفة مثل التأثير الكهروضوئي، وتأثير كومبتون، والإنتاج المزدوج، وما إلى ذلك التي يمكنها إزالة الفوتونات من شعاع معين من أشعة جاما. وتتناسب احتمالات هذه التفاعلات بشكل مباشر مع عدد الكتلة الذرية وكثافة المادة التي تنتقل إليها أشعة جاما. ومن ثم، يتم تنفيذ التدريع بأشعة جاما بشكل أكثر فعالية بواسطة المواد ذات العدد الكتلي الذري العالي والكثافة العادية[27]. ولذلك فان تقييم معاملات التماعل المختلفة لأشعة جاما مثل معامل التوهين الكتلي (μ/ρ) ، والعدد الذري الفعال لأشعة جاما مثل معامل التوهين الكتلي (μ/ρ)، والعدد الذري الفعال الغمية لوصف مدى جودة المادة في الحماية من أشعة غاما[23]–[30].

من البارامترات المهمة أيضا ما يعرف ما يعرف بمتوسط المسار الحر (MFP) وطبقة السمك العاشر (TVL) فالقيمة الصغيرة لهذه البارامترات تعني تحسن في أداء الحماية من وجهة نظر التدريع. فبينما يمثل الأول (MFP) متوسط المسافة التي يستطيع الفوتون التي ينتقل خلالها في المادة قبل التفاعل معها ويتم تحديده من خلال معامل التوهين الخطي حسب العلاقة التالية:

$$MFP = 1/\mu \tag{3}$$

فان طبقة السمك العاشر (TVL) تعبر سمك المادة الماصة التي توهن شدة شعاع جاما الي % 10 من قيمته الاصلية. وهو يرتبط حسابيا بطبقة السمك النصفي حسب العلاقة:

$$TVL = 3.32 \ HVL \tag{4}$$

اعداد العينة

تم خلط المركبات المستخدمة في هذه الدراسة جيدًا في بواتق خزفية لمدة ربع ساعة، ثم وضعت داخل الفرن عند درجة حرارة Com 300 °

لمدة ساعتين، بعد ذلك رفعت درجة حرارة الفرن إلى 2° 1150 درجة مئوية لمدة ثلاث ساعات ونصف. بعد ذوبان الخليط تم سكبه بسرعة في قوالب مسخنة عند درجة حرارة 2° 200، تلتها عملية التبريد إلى درجة حرارة الغرفة. بعد الحصول على العينات الزجاجية تم حساب كثافتها بطريقة ارشيميدس، وقيم الكثافة المحسوبة تم وضعها في الجدول (1) مع قيم متوسط الوزن الجزيئي المحسوبة بواسطة برنامج المحاكاة Phy-x/PSD.

الجدول 1: قيم الكثافة المحسوبة بطريقة ارشيميدس ومتوسط الوزن الجزيئي للعينات الثلاث حسب برنامج Phy-X/PSD

	S1	S 2	53
Density (g/cm ³)	2.97	3.4	4.68
Average molecular weight	137.35	147.66	214.98
(g/mol)			

النتائج والمناقشة

من أجل تقييم خصائص التدربع الإشعاعي لأي عينة زجاجية يجب تحديد معامل التوهين الكتلى، فهو البارامتر الأساسي المستخدم لهذا الغرض، حيث تتأثر خصائص أنظمة زجاج التدريع بشكل أساسى بالتركيب الكيمائى وبكثافة العينات. فالقيمة العالية لمعامل التوهين الكتلى تعنى احتمالية عالية لتفاعل فوتونات جاما مع المادة وبالتالى تكون هناك فرصة أفضل للتوهين[31]. كذلك فان استخدام المواد التي لها أكبر عدد ذرى فعال وكثافة الالكترونية فعالة اعلى في صناعة الدروع الاشعاعية يعزز الحماية ضد الإشعاع، حيث تعمل هذه المواد على تشتيت الإشعاع وامتصاصه، ومن هذا المنطلق فإن العدد الذرى الفعال والكثافة الالكترونية الفعالة وطبقة نصف

القيمة تعتبر واحدة من اهم العوامل الرئيسية في صناعة الدروع الاشعاعية. قيم بارامترات التوهين تم حسابها باستخدام برنامج المحاكاة Phy-x والموضحة في الجدول (2) عند ثلاث طاقات محددة لأشعة جاما.

تفاعلات الإشعاع مع المادة والتي تؤدي إلى القضاء على فوتونات جاما كليا او جزئيا تم حسابها باستخدام برنامج X-COM في نطاق محدد من الطاقة يتراوح من (1.5 MeV) وهو المدى الذي يحوى قيم الطاقة المختارة، موضحة في الجدول (3) ومن ثم اعيد رسمها في الأشكال (6,5,4) لتوضيح تأثير التفاعلات المسيطرة على عملية التوهين.

الجدول 2: يبين بارامترات التدريع عند الطاقات المحددة باستخدام برنامج Phy-x/PSD

Radiation	Energy (MeV)									
Shielding		0.662 MeV		1.17 MeV				1.33 MeV		
Parameter	S1	S2	\$3	S 1	S2	\$3	S1	S2	\$3	
LAC (cm ⁻¹)	0.266	0.321	0.458	0.175	0.204	0.279	0.162	0.188	0.257	
MAC (cm ² /g)	0.090	0.094	0.098	0.059	0.060	0.060	0.054	0.055	0.055	
MFP (cm)	3.755	3,119	2.184	5.716	4.893	3.578	6.178	5.308	3,897	
HVL (cm)	2.603	2.162	1,514	3.962	3.392	2.480	4.283	3.679	2.701	
TVL (cm)	8.646	7.181	5.028	13.161	11.267	8.239	14.226	12.221	8.973	
Z _{eff}	20.99	22.61	33.83	18.81	19.83	29.62	18.62	19.58	29.25	
N _{eff} (E+23)	3.28	3.39	3.27	2.94	2.98	2.86	2.91	2.94	2.83	

الجدول 3: يوضح تفاعلات التوهين للعينات الزجاجية 51 و 52 و 53

16Na₂SO₄ قبل ان نبدأ بالمناقشة يجب معرفة أن القيم الكبيرة لمعامل التوهين الكتلى (MAC)، والعدد الذرى الفعال (Z_{eff})، والكثافة الالكترونية الفعالة (N_{eff})،

الشكل 5: تفاعلات التوهين للنظام الزجاجي Bi₂O₃ 12PbO₂ 40SiO₂ 20ZnO 1216Na₂SO₄

مطلوبة لأجل الحصول على خصائص حماية إشعاعية أفضل، وبالمقابل فان القيم الصغيرة لطبقة نصف القيمة (HVL)، ومتوسط المسار الحر (MFP)،

وطبقة السمك العاشر (TVL) مهمة لأجل الحصول على دروع اشعاعية ذات

صفات جيدة.

الشكل 6: تفاعلات التوهين للنظام الزجاجي 308iO₂ 5ZnO 30Bi₂O₃ 30SiO₂ 5ZnO 5Na₂SO₄

بمقارنة النتائج المتحصل عليها في الجدول (2) للبارامترات الإشعاعية، ومن خلال تفاعلات التوهين في الأشكال (6,5,4) للأنظمة الزجاجية المدروسة، نجد أن هناك تقارب في بارامترات التوهين للعينتين (\$\$1,\$2) بأفضلية بسيطة للعينة (52) عند جميع الطاقات المحددة وتتناقص هذه البارامترات بزبادة طاقة الاشعاع. ويزيادة تركيز نسبة أكسيد البزموث واكسيد الباريوم في التركيب (53)، تحصلنا على بارامترات توهين هي الأفضل مقارنة بالتركيبين (\$1,\$2) كما هو موضح في الجدول (2). هذا يعنى النظام الزجاجي لسيليكات الصوديوم المعتمدة على أكاسيد البزموث باربوم مع التركيزات العالية سوف يتمتع بحماية اشعاعية أفضل، وقد يكون هو البديل الأنسب للأنظمة الزجاجية المحتوبة على الرصاص. وهذا يعود إلى تأثير قيمة العدد الذرى الفعال الذي يكون أكبر في هذه العينة، الأمر الذي يسمح بمزيد من تفاعلات الامتصاص او التشتت للإشعاع، حيث ان جميع تفاعلات الفوتون تحدث مع الإلكترونات داخل المادة وأن معدل فناء الفوتون او استمرار توغله داخل المادة يعتمد على كثافة الإلكترونات داخل المادة، فكلما زاد تركيز كثافة الإلكترونات زادت فرصة الفوتون للتفاعل [31]-[35]. فالمواد ذات الكثافات الإلكترونية العالية تكون أفضل في الحماية من الإشعاع منخفض الطاقة، بينما المواد ذات الكثافات الإلكترونية المنخفضة تكون أفضل في الحماية من الإشعاع عالى الطاقة [36]، [37].

الحصول على قيم صغيرة لطبقة نصف القيمة ومتوسط المسار الحر وطبقة السمك العاشر، يرتبط بكثافة العينات ومتوسط اوزانها الجزيئية الموضحة في الجدول (1)، فكلما كانت كثافة العينة الزجاجية اعلى فانه بإمكاننا الحصول على قيم أفضل لهذه البارامترات. وعليه جاءت أفضل قيم لهذه البارامترات للعينة 23 تلتها 22 وأخيرا 31.

المدى المختار من الطاقات في هذه الدراسة يقع ضمن مدى الطاقات المتوسطة الذي يتراوح ما بين (MeV 3 – 30.20)، وعليه فإن تفاعلات تأثير كومتون التي تكون فعالة في مدى الطاقات المتوسطة تكون هي المسيطرة على عملية التوهين خلال المدروس من الطاقة (MeV – 0.6) وهذا يتضح من الاشكال (6,5,4). اما التأثير الكهروضوئي فتكون مساهمته ضعيفة في عملية

التوهين في هذه المنطقة حيث تكون مساهمة التأثير الكهروضوئي فعالة في عملية التوهين عند القيم الصغيرة من طاقات الاشعاع.

مساهمة تفاعل تأثير انتاج الزوج في عملية توهين الإشعاع ليس له أي قيمة تذكر في المدى المحدد من الطاقة المدروسة، حيث تبدأ مشاركة عملية إنتاج الزوج في توهين أشعة جاما عند طاقة جاما أكبر من القيمة MeV 1.022 وهذا ما نراه واضحا في الاشكال (6,5,4)، ولكن بزيادة طاقة إشعاع جاما الي قيمة عالية فانه سرعان ما تصبح عملية إنتاج الزوج أهم عملية بين العمليات الثلاث ولا وجود لأي مساهمة لتفاعل التأثير الكهروضوئي وتأثير كومتون. وعليه نقول ان عملية توهين اشعة جاما خلال هذا النظام المدروس كان مسيطر عليها تفاعل تأثير كومتون مع مشاركة قليلة جدا لتفاعل التأثير الكهروضوئي الذي كان سرعان ما ينخفض بزيادة قيمة طاقة الأشعاع.

الخلاصة

في هذا البحث تمت دراسة بارامترات التدريع الأشعاعي المختلفة (معامل التوهين المعين الكتلي(Mass attenuation coefficient (MAC)، و متوسط المسار الحر الخطي(Linear attenuation coefficient (LAC)، و متوسط المسار الحر Malf –value layer (HVL)، و متوسط المسار الحر (Meff) وطبقة نصف القيمة (Value layer (TVL)، والعدد الذري الفعال وطبقة السمك العاشر (Tother value layer (TVL)، والعدد الذري الفعال (Neff)، والمعاد الالكترونية الفعالة (Neff)، والعدد الذري الفعال وطبقة السمك العاشر (Tother value layer (TVL)، والعدد الذري الفعال (Neff)، والمعاد المحاكة الالكترونية الفعالة (Neff)، والمعاد الذري الفعال والطاقات (PHY-X/PSD)، لثلاثة تركيبات لنظام زجاج الطاقات (S)، ومركب الطاقات (S)، ومركب الميليكات البرموث والباريوم(S) (S)، ومركب ميليكات البرموث والرصاص (S)، تفاعلات الاشعاع مع المادة، تم حسابها السيليكات البرموث والرصاص (S)، تفاعلات الاشعاع مع المادة، تم حسابها السيليكات البرموث والرصاص (S)، تفاعلات الاشعاع مع المادة، تم حسابها السيليكات البرموث والرصاص (S)، تفاعلات الاشعاع مع المادة، تم حسابها السيليكات البرموث والرصاص (S)، تفاعلات الاشعاع مع المادة المحدد من الطاقة يتراوح من 5.1 – 0.6). سيليكات البرموث والرصاص (S)، تفاعلات الاشعاع مع المادة، تم حسابها ميليكات البرموث والرصاص (S)، تفاعلات الاشعاع مع المادة، تم حسابها السيليكات البرموث والرصاص (S)، ومركب محمابها معدد من الطاقة يتراوح من 5.1 – 0.6). MeV).

أظهرت النتائج أن زجاج سيليكات الصوديوم المكون من البزموث والباريوم أعطى بارامترات توهي جيدة بالمقارنة مع زجاج سيليكات الصوديوم المكون من البزموث والرصاص العينة (S2) ، لاسيما بزيادة تركيز اكاسيد البزموث والباريوم وهذا ما كان واضحا في العينة (S3)، تفاعل تأثير كومتون كان مسيطرا على عملية توهين فوتونات جاما خلال المنطقة المدروسة من الطاقة مع مساهمة قليلة لتفاعل التأثير الكهروضوئي. وعليه نتوقع أن زجاج سيليكات الصوديوم المكون من اكاسيد البزموث والباريوم يستطيع ان يقدم حماية إشعاعية أفضل بزيادة نسبة البزموث والباريوم في النظام وهذا يعني أن لدينا نظام حماية جديد خالي من الرصاص صديقا للبيئة.

Author Contributions: "All authors have made a substantial, direct, and intellectual contribution to the work and approved it for publication."

Funding: "This research received no external funding."

Data Availability Statement: "No data were used to support this study."

Conflicts of Interest: "The authors declare that they have no conflict of interest.

Acknowledgments: " The authors would like to thank the University of Fezzan for allowing the use of the laboratory equipment that helped carry out this work".

- [16] A. A. El-Sawy and A. M. Madbouly, "Comparative Study of Gamma Radiation Shielding Parameters for Different Oxide Glasses", Accessed: Dec. 02, 2023. [Online]. Available: www.euacademic.org
- [17] T. Kavas, Z. N. Kuluozturk, R. Kurtulus, and N. Demir, "Newly-formulated zinc-bismuth-barium-sodium-silicate glass system with lead oxide addition: Probing radiation shielding characteristics via triple methodology," Optik (Stuttg), vol. 290, Oct. 2023.
- [18] Z. N. Kuluozturk, R. Kurtulus, N. Demir, and T. Kavas, "Barium-lead-borosilicate glass containing lanthanum oxide: fabrication, physical properties, and photon shielding characteristics," Appl Phys A Mater Sci Process, vol. 128, no. 2, Feb. 2022.
- [19] M. Almatari, O. Agar, E. E. Altunsoy, O. Kilicoglu, M. I. Sayyed, and H. O. Tekin, "Photon and neutron shielding characteristics of samarium doped lead alumino borate glasses containing barium, lithium and zinc oxides determined at medical diagnostic energies," Results Phys, vol. 12, pp. 2123– 2128, Mar. 2019.
- [20] H. O. Tekin et al., "Nuclear radiation shielding competences of barium-reinforced borosilicate glasses," Emerging Materials Research, vol. 9, no. 4, pp. 1131–1144, Nov. 2020.
- [21] K. A. Naseer, K. Marimuthu, M. S. Al-Buriahi, A. Alalawi, and H. O. Tekin, "Influence of Bi2O3 concentration on barium-telluro-borate glasses: Physical, structural and radiation-shielding properties," Ceram Int, vol. 47, no. 1, pp. 329–340, Jan. 2021.
- [22] M. I. Sayyed et al., "Bi2O3-B2O3-ZnO-BaO-Li2O glass system for gamma ray shielding applications," Optik (Stuttg), vol. 201, Jan. 2020.
- [23] J. S. Alzahrani, T. Kavas, R. Kurtulus, and M. S. Al-Buriahi, "Evaluations of physical and mechanical properties, and photon attenuation characteristics on lithium-germanate glass containing ZnO," Optik (Stuttg), vol. 248, p. 168078, Dec. 2021.
- [24] Y. S. Rammah, F. I. El-Agawany, K. A. Mahmoud, R. El-Mallawany, E. Ilik, and G. Kilic, "FTIR, UV–Vis–NIR spectroscopy, and gamma rays shielding competence of novel ZnO-doped vanadium borophosphate glasses," Journal of Materials Science: Materials in Electronics, vol. 31, no. 12, pp. 9099–9113, Jun. 2020.
- [25] N. Chanthima, J. Kaewkhao, C. Kedkaew, W. Chewpraditkul,
 A. Pokaipisit, and P. Limsuwan, "Study on Interaction of Bi 2
 O 3 , PbO and BaO in Silicate Glass System at 662 keV for Development of Gamma-Rays Shielding Materials".
- [26] M. Gülmen and Y. Bükte, "Investigating Bi 2 O 3-B 2 O 3-BaO Glass Systems for Radiation Shielding Applications," Journal of Physical Science, vol. 33, no. 1, pp. 51–64, 2022.
- [27] M. I. Sayyed et al., "Radiation shielding and mechanical properties of Bi2O3–Na2O–TiO2–ZnO–TeO2 glass system," Radiation Physics and Chemistry, vol. 186, p. 109556, Sep. 2021.
- [28] B. O. Elbashir, M. G. Dong, M. I. Sayyed, S. A. M. Issa, K. A. Matori, and M. H. M. Zaid, "Comparison of Monte Carlo simulation of gamma ray attenuation coefficients of amino acids with XCOM program and experimental data," Results Phys, vol. 9, pp. 6–11, Jun. 2018.
- [29] S. A. M. Issa, M. I. Sayyed, M. H. M. Zaid, and K. A. Matori, "Photon parameters for gamma-rays sensing properties of some oxide of lanthanides," Results Phys, vol. 9, pp. 206–210, Jun. 2018.
- [30] A. M. A. Mostafa, S. A. M. Issa, and M. I. Sayyed, "Gamma ray shielding properties of PbO-B2O3-P2O5 doped with WO3," J Alloys Compd, vol. 708, pp. 294–300, Jun. 2017.

References

- N. Singh, K. J. Singh, K. Singh, and H. Singh, "Gamma-ray attenuation studies of PbO-BaO-B2O3 glass system," Radiat Meas, vol. 41, no. 1, pp. 84–88, Jan. 2006.
- [2] J. Kaewkhao and P. Limsuwan, "Mass attenuation coefficients and effective atomic numbers in phosphate glass containing Bi2O3, PbO and BaO at 662 keV," Nucl Instrum Methods Phys Res A, vol. 619, no. 1–3, pp. 295–297, Jul. 2010.
- [3] M. Kurudirek, Y. Özdemir, Ö. Imek, and R. Durak, "Comparison of some lead and non-lead based glass systems, standard shielding concretes and commercial window glasses in terms of shielding parameters in the energy region of 1 keV-100 GeV: A comparative study," JNuM, vol. 407, no. 2, pp. 110–115, Dec. 2010.
- [4] K. Kirdsiri, J. Kaewkhao, N. Chanthima, and P. Limsuwan, "Comparative study of silicate glasses containing Bi2O 3, PbO and BaO: Radiation shielding and optical properties," Ann Nucl Energy, vol. 38, no. 6, pp. 1438–1441, Jun. 2011.
- [5] K. Singh et al., "Gamma-ray attenuation coefficients in bismuth borate glasses," Nucl Instrum Methods Phys Res B, vol. 194, no. 1, pp. 1–6, 2002.
- [6] K. Singh et al., "Gamma-ray shielding properties of CaO– SrO–B2O3 glasses," Radiation Physics and Chemistry, vol. 72, no. 2–3, pp. 225–228, 2005.
- [7] S. Singh, A. Kumar, D. Singh, K. S. Thind, and G. S. Mudahar, "Barium-borate-flyash glasses: As radiation shielding materials," Nucl Instrum Methods Phys Res B, vol. 266, no. 1, pp. 140–146, Jan. 2008.
- [8] P. Limkitjaroenporn, J. Kaewkhao, P. Limsuwan, and W. Chewpraditkul, "Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses," Journal of Physics and Chemistry of Solids, vol. 72, no. 4, pp. 245–251, Apr. 2011.
- [9] C. Singh, T. Singh, A. Kumar, and G. S. Mudahar, "Energy and chemical composition dependence of mass attenuation coefficients of building materials," Ann Nucl Energy, vol. 31, no. 10, pp. 1199–1205, Jul. 2004.
- [10] I. I. Bashter, "Calculation of radiation attenuation coefficients for shielding concretes," Ann Nucl Energy, vol. 24, no. 17, pp. 1389–1401, 1997.
- [11] U. Kaur, J. K. Sharma, P. S. Singh, and T. Singh, "Comparative studies of different concretes on the basis of some photon interaction parameters," Appl Radiat Isot, vol. 70, no. 1, pp. 233–240, Jan. 2012.
- [12] S. Gupta and G. Singh Sidhu, "Study of Photon Interaction Parameters for Some Oxide Glasses as Gamma Ray Shielding Materials," International Journal of Innovative Research in Science, Engineering and Technology (An ISO, vol. 3297, no. 2, 2007.
- [13] A. J. Al-Saadi and A. K. Saadon, "Gamma Ray Attenuation Coefficients for Lead Oxide and Iron Oxide Reinforced In Silicate Glasses as Radiation Shielding Windows," Ibn Al-Haitham Jour. for Pure & Appl. Sci, vol. 27, no. 3, p. 2014, 2014.
- [14] K. J. Singh, N. Singh, R. S. Kaundal, and K. Singh, "Gammray shielding and structural properties of PbO–SiO2 glasses," Nucl Instrum Methods Phys Res B, vol. 266, no. 6, pp. 944– 948, Mar. 2008.
- [15] P. Dararutana, J. Duchaneephet, S. Pongkrapan, N. Sirikulrat, and P. Wathanakul, "Effect of Bi 2 O 3 content on optical and radiation shielding properties of (Na 2 O, K 2 O)-SiO 2-CaO-Al 2 O 3-B 2 O 3 glass system," optoelectronics and advanced materials-rapid communications, vol. 3, no. 6, pp. 525–527, 2009.

- [35] R. Biswas, H. Sahadath, A. Sattar Mollah, and M. Fazlul Huq, "Calculation of gamma-ray attenuation parameters for locally developed shielding material: Polyboron," J Radiat Res Appl Sci, vol. 9, pp. 26–34, 2016.
- [36] I. Akkurt, A. Alomari, M. Y. Imamoglu, and I. Ekmekçi, "Medical radiation shielding in terms of effective atomic numbers and electron densities of some glasses," Radiation Physics and Chemistry, vol. 206, May 2023.
- [37] S. Kaginelli, T. Rajeshwari, Sharanabasappa, B. Kerur, and A. Kumar, "Effective atomic numbers and electron density of dosimetric material," Journal of Medical Physics / Association of Medical Physicists of India, vol. 34, no. 3, p. 176, Jul. 2009.
- [31] P. Kaur, D. Singh, and T. Singh, "Heavy metal oxide glasses as gamma rays shielding material," Nuclear Engineering and Design, vol. 307, pp. 364–376, Oct. 2016.
- [32] M. I. Sayyed, "Bismuth modified shielding properties of zinc boro-tellurite glasses," J Alloys Compd, vol. 688, pp. 111– 117, Dec. 2016.
- [33] M. K. Halimah, A. Azuraida, M. Ishak, and L. Hasnimulyati, "Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass," J Non Cryst Solids, vol. 512, pp. 140–147, May 2019.
- [34] J. H. Hubbell, "Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV," 1969.