

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 81

Software Maintenance and Evolution: The Implication for

Software Development

Ogheneovo, Edward Erhieyovwe.
Department of Computer Science, University of Port Harcourt, Nigeria.

edward_ogheneovo@yahoo.com

Abstract
Software maintenance is the process of modifying existing operational software by correcting

errors, migration of the software to new technologies and platforms, and adapting it to deal with

new environmental requirements. It denotes any change made to a software product before and

after delivery to customer or user. Software maintenance is an important activity of many of

organizations today. This is no surprise given the rate of hardware obsolescence, the

immortality of a software product, and the demand of users to ensure that existing software

products run on newer platforms, run on newer environments, and or with enhanced features.

Software maintenance forms an essential component of software development. Therefore, with

an increasing use of computers in almost every organization whether big or small, there has

emerged the need for software maintenance. In this paper, we argue that software maintenance

and evolution are characterized by huge costs, slow speed of implementation, increased

complexity, requires technical expertise, be in line with new technologies, may introduce new

faults, yet changes and improvements are inevitable if software must stand the test of time.

Keywords: Software, software maintenance, software evolution, reverse engineering,

1.0 Introduction
 Software maintenance is an essential
component of software development process
[25]. It is the process of modifying existing
operational software by way of correcting
errors, migration of the software to new
technologies and platforms, and adapting it
to deal with new environmental
requirements. As software grows in size, it
becomes necessary to determine the
complexity of such software [2]. The size of
software increases as the complexity
increases [18]. Software maintenance is the
general process of changing a system after it
has been delivered. As noted by [26],
software evolution is important because
organizations are now completely dependent
on their software systems and have invested
millions of dollars in these systems. Their

systems are critical business assets and they
must invest in system change to maintain
the value of these assets. Thus, the majority
of the software budget in large companies is
devoted to maintaining existing systems.
Erlikh [5] suggest that about 90% of
software costs are evolution costs. Although
this percentage may not be exactly correct,
but the fact remains that the large chunk of
software costs is expended on software
maintenance.
 As the 21st century advances, more than
50% of the global software population is
engaged in modifying existing applications
rather than writing new applications. As
noted by [9], this should not be a surprise
because as an industry grows in size,

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 82

capacity, and aging, the number of
personnel who does repair often outnumbers
the number of personnel who build new
products. This is very common in almost all
area of human endeavour be it automobile,
software, etc. at the end of the 20th century,
software maintenance grew rapidly
especially the year culminating the Y2K.
This was largely due to need for updates in
software to be able to meet the required
modifications needed for software that
meets about 85% of the world’s supply of
existing software application. So two mass
update were required to ensure that these
software are not obsolete. The first was the
set of changes needed to support the new
unified European currency (euro) which
came into existence in January 1999. Due to
the introduction of the Euro currency, about
10% of the world software needed
modifications to meet this new currency and
also, in the European Monetary Union,

about 50% of the information systems
required modification in order to support the
euro. Secondly, there was the Y2K problem
which affected about 75% of the installed
software applications operating throughout
the world. The Y2K problem also affected
not just these software but also some
embedded computers inside physical
devices such as medical equipments,
telephone switching systems, oil wells, and
electric generating plants. With software
maintenance, these two problems were
taking care of although with some penalties
such as time wastage as a result of the
delays that was triggered in other kinds of
software and also in other organizations that
depended directly and indirectly in these
products. Therefore, concerns for Y2K
compliance emphasize the need for
understanding and improving the
management of software activities.
 With an increasing use of computers and
software, there has emerged a need for
software maintenance in almost every

organization [25]. Therefore, software must
evolve and be maintained over time [22] and
the only way this can be done is to maintain
them if they must meet the current and even
new challenges. Technology is changing on
daily basis and software cannot be left
behind if they must be in line with new
technologies. It is no longer new that on
daily basis, several new communication and
security gadgets are being produced and
new features are added to them. With these
new features, existing software must be
modified and new changes must be made to
them in order to keep pace with these new
technologies and stand the test of time.

2.0 Background of Software Maintenance

and Evolution
 Maintenance is generally used to describe
all changes made to a program after its first
installation. It differs significantly from
restoration of a system or systems
component to its former state [12]. Software
evolution plays an important role in software
engineering. In fact, most development
effort and expenditure is allocated to the
evolution and update of these existing
versions. Software is ceaselessly changed –
maintained, evolved and updated – more
often than it is written, and changing
software is extremely costly [16]. Normally,
the software systems become more and more
complex as the evolution and updates of the
software systems. Such increasing
complexity confronts much more challenges
in system robustness and adaptability, which
depends on predetermined factor to ensure
that long-term safety and reduce the cost of
maintenance. Maintenance plays an
important role in the life cycle of a software
product. It is estimated that there are more
than one billion lines of code in production
in the world. As much as 80% of it is
unstructured, patched and not well
documented. It is through the process of
maintenance that these problems are
alleviated.

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 83

2.1 What is Software Maintenance?
 Software products must satisfy user’s
requirements. Software products must
change or evolve. As software products are
used, faults must be discovered, operating
environments may change, and new user
requirements will surface. In fact, most of

the maintenance processes are often
requested by software user(s). Although the
maintenance phase of a software life cycle
commences after delivery, however,
maintenance activities occur much earlier.
Maintenance is one of the primary life cycle
processes.
 Software maintenance is defined in the
IEEE Standard and Software Maintenance,
IEEE 1219, as the modification of a
software product after delivery to correct
faults, to improve performance or other
attributes, or to adapt the product to a
changed environment (IEEE STD 1219,
1998). According to the ISO/IEC 12207
Standard for Life Cycle Processes,
maintenance is the process of a software
product undergoing modification to code
and associated documentation due to a
problem or the need for improvement.
According to them, the main objective is to
modify existing software product while
preserving its integrity. However, a more
generally accepted definition of software
maintenance by researcher and practitioners
is that provided by SWEBOK. It defines
software maintenance as totality of activities
required to provide cost effective support to
a software system. Based on this definition,
activities are performed during the pre-
delivery and post-delivery stages. Pre-
delivery activities include: planning for
post-delivery stage, supportability, and
logistics while post-delivery activities
include modification, training, and operating
a help desk [23].
 Again we define maintainability as the
quality factor which includes all features of
the software to make it easier to maintain or

which makes the maintenance stage more
productive [8]. Granja-Alvarez and
Barranco-Garcia [7] notes that
maintainability is the quality factor
including all those software characteristics
designed to make the product easier to
maintain towards the end of achieving
greater efficiency and productivity in the
maintenance stage.

2.1.1 Characteristics of Software

Maintenance and Evolution
 As software ages, it becomes increasingly
difficult to keep them up and running
without maintenance. Thus there is need to
maintain software to keep it is good shape in
order to be able to meet new challenges.
Some characteristics of software that affect
maintenance are system size, age, slow in
implementation, support new technology,
and structure.

• Size: As software is being
maintained, it continues to grow in
size and as a result becomes more
and more complex. Just imagine
software with a few hundred lines of
code designed to handle a particular
application, such software will not be
very complex. Consider software
such as an operating system with
several millions of lines of code
(LOC) and developed by about a
thousand software engineers. There
is no doubt that such software will be
very complex due to its large size.
As a result, maintaining large
software will be very difficult and
cumbersome than maintaining small
size software.

• Age: Software must evolve over
time. That is, every software product
continues to evolve after its
development through maintenance
efforts. As the age of software
increases, so also the software
depreciates. So in order to ensure
that the software remain useful and
valid, there is the need to maintain it.

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 84

• Slow in Implementation: Software
maintenance takes time. This is so
because the maintainer may not be
the person who first developed the
software. So before the maintainer
can begin to maintain the software,
there is the need to properly study
the software using the program
documentation if it exists or try to
study the software for some time
before the maintenance process can
begin. This will in no doubt take
some time and effort which will slow
down implementation process in an
organization

• Support New Technology: For
software to evolve and support new
technology, it must be properly
maintained. This is to ensure that it
meets the requirements of users of
the new system. This way, the
software will have to be properly
redesigned and possibly re-
engineered.

• Structure:
The structure of software system
does affect its maintenance
especially if the software is not well
structured as at the time it was
initially developed. Software system
developed using spaghetti code will
give the maintainer problems in
trying to change it to a structured
program that can easily be
understood by future maintainer.

2.1.2 Types of Software Maintenance
 Software must evolve over time. That is,
every software product continues to evolve
after its development through maintenance
efforts. ISO/IEC 14764 and IEEE Computer
Society IEEE 1219 classify software
maintenance as: corrective, adaptive,
perfective, and preventive maintenance.

• Corrective Maintenance: This
form of maintenance involves the
software product after delivery to
correct errors e. g., fixing of bugs.

Usually, in corrective maintenance,
errors are corrected and the cost of
corrective maintenance is bored by
the developer.

• Adaptive Maintenance: Adaptive
maintenance involves modifications
to the software as a result of changes
in operating environments. This is
because software must adapt to its
environment after delivery. These
operating environments could result
as a result of database upgrades,
operating system upgrade, changes
in compiler version, etc. Usually, the
organization requesting for adaptive
maintenance usually bear the costs.

• Perfective Maintenance: Perfective
maintenance often involves changes
to the code to allow the software to
meet the same requirements but in a
significantly more acceptable

• manner. This form of maintenance is
usually carried out after the software
product has been delivered to
improve performance.

• Preventive Maintenance: In
preventive maintenance, software
usually modified after delivery to
detect and correct latent faults before
they become effective faults that can
now affect the result of users.

2.1.3 The Nature of Software

Maintenance
 Software maintenance forms an essential
component of software development. Its
planning includes estimation of maintenance
effort, personnel and costs [25].
Maintenance has a very broad scope. In
encompasses a lot of changes both for
tracking and controlling software. It is
generally used to describe all changes to a
program after its first installation. It differs
significantly from restoration of a system or
system component too its former state [12]
[10]. Software maintenance involves the
modification of a software product after
delivery to correct faults, to improve

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 85

performance or other attributes. When we
talk about software maintenance, people do
think that it is merely the process of fixing
bugs. This is a wrong notion. Software
maintenance involves much more, it is not
just about fixing bugs. Studies have shown
that over 80% of the maintenance effort is
expended on non-corrective actions [23].
 Software maintenance and evolution of
systems was first proposed by Lehman in
1969. Lehman notes that systems continue
to evolve over time. As a result, they
become more complex unless some actions
such as code refactoring is adopted to reduce
the complexity that may arise as a result of
maintenance. Software maintenance is a
very broad activity that includes error
correction, enhancements of capabilities,
removal of obsolete functions, and
optimization. Because changes are
inevitable, certain mechanisms must be
developed to evaluate, control, and modify
the software. Thus changes to software are
done in order to preserve the value of the
software over time. The software value can
be enhanced by expanding the customer
base, meeting additional requirements, thus
making the software more easier to use,
more efficient, and employing new
technology to cater for the new features that
may be introduced to these technologies.
 The software maintenance process can
last for years or even decades after
development process [11]. Therefore, there
is need for effective planning in order to
address the scope of software maintenance,
the tailoring of the post
delivery/deployment, the designation of who
will provide maintenance, and an estimation
of the life-cycle costs. Software maintenance
takes more effort than all other phases of
software life cycle. As noted in [1], about 60
to 70% effort is expended on maintenance
phase of software development life cycle.
Thus software maintenance activities span a
system’s productive life cycle and consume
a major portion of the total life cycle costs
of the system. However, what is actually

done to maintenance is sometimes a mystery
to many organizations. Thus software
maintenance remains an opaque activity that
is expensive and difficult to manage.

2.2 What is Software Evolution?
 Software evolution is the process by
which programs change shape, adapt to the
marketplace and inherit characteristics from
preexisting programs. As large-scale
programs such as Windows and Solaris
expand well into the range of 30 to 50
million lines of code, project managers have
devoted much of their time to working on
legacy codes as by adding new
functionalities and making the existing
codes more structured and providing better
documentations for users to be able to use
such software. Lehman and Ramil [15]
define software evolution as all
programming activities that are intended to
generate a new Software version from an
earlier operational version. Chapin et al. [3]
defines software evolution as the application
of software maintenance activities and
processes that generate a new operational
software version with a changed customer-
experienced functionality or properties from
a prior operational version (…) together
with the associated quality assurance
activities and processes, and with the
management of the activities and processes.
 Therefore, it suffixes to say that software
evolution is a change process of software.
This change process concerns both hardware
and software starting from its development
up to the retirement time of the system,
during which the system changes into a
different and usually more complex or better
state [28]. System evolution is part of the
system life cycle. Thus the resultant
evolution of software appears to be driven
and controlled by human decision,
managerial edict, and programmer judgment
[12]). Software evolution takes place only
when the initial development was
successful. The goal is to adapt the
application to the ever-changing user

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 86

requirements and operating environment.
The evolution stage also corrects the faults
in the application and responds to both
developer and user learning, where more
accurate requirements are based on the past
experience with the application.
Businesswise, software is being evolved
because the software is successful in the
marketplace, revenue accrues from it is high,
user demand is strong, the development
atmosphere is vibrant and positive, and the
organization is supportive, and return on
investment is excellent.
 Stammel et al. [28] identified several
reasons for evolving software. These
include:

• New requirements to the system

• Change of Environment

• Evolution of the technology stack
especially in the case of strong
coupling to it which could result in
the co-evolution of certain parts of
the software

 As noted by [28] the ability to evolve
software rapidly and reliably by preserving
the architectural integrity of an application is
a challenge for every organization. Thus the
evolution of a software system may become
very costly and expensive resulting in what
is referred to as software erosion especially
in legacy system due to exposure to changes
in processes [20]. By software erosion we
mean s the decreasing quality of the internal
structure of a software system. This could
occur at early development stages of the
system. Software erosion may be for
example caused by:

• Unmanaged or unstructured
introduction of new features
(processing of change requests
or bugs)

• Unmanaged or unstructured changes
of the system

• Unclear or outdated system
architecture or bad system
development, e.g., software
redundancy through copy and paste

programming" or violation of
architectural decisions

• Loss of knowledge about the system
by team fluctuation, or insufficient or
outdated documentation

2.2.1 Lehman’s Laws of Software

Evolution
 Lehman [12] and Lehman and Belady
[14] examined the growth and evolution of a
number of large software projects and from
these they were able to propose a number of
laws which they called Lehman’s laws. The
first five laws were those originally
proposed by Lehman in his paper titled
“Programs, Life Cycles, and Laws of
software Evolution” [12]. After further
works, three additional laws were proposed
[14]. The studies which began with three
laws in 1980 have given rise to eight laws of
software evolution as formulated and refined
by Lehman and his colleagues. These laws
seek to consistently account for observed
phenomena regarding the evolution software
releases, systems and E-Type applications
[24]. These laws are summarized below.

i). Continue change: According to this law,
system maintenance is an inevitable process.
As the system’s environment changes, new
requirements must emerge and the system
must be modified. That is, any software
system used in the real-world must change
or become less and less useful in that
environment. Therefore, software must
undergo continual change or it becomes
progressively less useful.

ii).
Increasing Complexity: As software
undergo changes, they become increasingly
more and more complex. To avoid this
situation, extra effort and resources must be
put in place to ensure that the structure of
the system is maintained.

iii). Large Program Evolution: Program
evolution is a self-regulating process and
measurements of system attributes such as
size, time between releases, number of

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 87

reported errors, etc., reveal statistically
significant trends and invariances for each
system that is released.

iv). Organizational stability: During the
lifetime of a program, the rate of
development of that program is
approximately constant and independent of
the resources devoted
to system development.

v). Conservation of Familiarity: Throughout
the duration of a software system, the
incremental system change in each release is
approximately constant.

vi). continuing Growth: As software evolve,
there is the need for continual growth to
ensure its usefulness. That is, the
functionality offered by any software must
continually increase for user’s satisfaction.

vii). Declining Quality: For a system to maintain
its quality there is need for it to be adapted
to changes in its operational environment
otherwise it is bound to decline.

viii). Feedback System: Since processes involve
multi-agent, multi-loop feedback, they must
be treated as such to ensure significant
improvement. For Lehman, the software
development process itself should be the
place to focus attention on, this is what
Lehman viewed as feedback-driven and
biased toward increasing complexity.

2.2.2 Problems Inherent in Software

Maintenance
 Software maintenance work is very
expensive and takes more time than
required. The reasons adduced for this are
not farfetched. First, maintenance work is
mostly carried out using ad hoc techniques
because less attention is paid to software
maintenance and as a result fire-brigade
approach is often used in software
maintenance instead of systematic and
planned techniques. Secondly, software
maintenance has a very poor image in
industries and the result is that competent
engineers are not often employed to carry
out maintenance. Since maintenance is more
challenging than development, there is

therefore the need to fully understand the
software by the maintainer before necessary
modifications and extensions are carried out.
Also, since most products are legacy
products, they are usually difficult to
maintain. This is because legacy systems are
often poorly documented, unstructured
(usually spaghetti codes with poor and ugly
control structures), and lacking in expert(s)
knowledgeable in such software products.
Although legacy software are believed to be
“aged” software developed a long time ago,
however, a recently developed software
having poor design and documentation can
be considered a legacy system.
 Another major source of concern is the
high costs of maintaining software. It has
been estimated that a large chunk of
software costs is devoted to maintaining the
software. It is often the most expensive and
laborious phase especially in legacy codes.
Software maintenance alone costs about 70-
80% of total costs of software development
process. Therefore, in order to ensure that
the software stand the test of time, be able to
adapt to different environments, and be able
to persist for a long time, it must be
maintained.
 Sometimes maintenance is difficult when
the developers are no longer available [30].
Maintenance must take the products of the
development e.g., code, documentation, and
evolve/maintain them over the life cycle.
Therefore, for software that is not properly
documented, it becomes a tedious and
herculean task to maintain them without
properly understanding them. For a
maintainer to maintain software product,
enough time must be devoted to
understanding it. Also, problem of
maintainer turnover, recruitment of
experience maintainers, maintenance bid
costing and time span, and optimization of
resource allocation have made long term
estimation of maintainer costs a challenging
and daunting task to organizations.

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 88

2.3 Software Reverse Engineering
 Reverse engineering is becoming since
legacy software products lack proper
documentation, and are highly unstructured.
The output of a reverse engineering activity
is synthesized, higher-level information that
enables the reverse engineer to reason about
the system and to evolve it in an effective
way. The process of reverse engineering
usually focuses on carrying out changes to
the code to improve its readability, structure
and understanding, without changing any of
its functionalities. Reverse engineering is
taking apart an object to see how it works in
order to duplicate or enhance the object to
make it more functional of perform better
[6]. Reverse engineering often involves
taking software or program apart and
analyzing its working in detail, usually to try
to make a new device or program that does
the same thing without copying anything
from the original. The process of reverse
engineering usually starts with lower levels
of information such as the system’s source
code, which may also include the system’s
build environment.
 Therefore, reverse engineering is the
process of analyzing s system in order to
create representations of the system at a
higher level of abstraction. It is also seen as
the process of going backward through the
development cycle [31]. Therefore, reverse
engineering is the way of analyzing a system
to identify its current components and their
dependencies, and to extract and create
system abstractions and design information
[4]. Through the process of reverse
engineering, a system is analyzed to identify
its components and their interrelationships
and to create the representations of the
system in another form or a higher level of
abstraction and to create the physical
representation of that system.
 Software reverse engineering is the
process of reversing the design and the
requirement specification of a product from
an analysis of its code the purpose of reverse
engineering is to facilitate maintenance

work by improving the understandability of
a system and to produce the necessary
documents for a legacy system [17]. It is
concerned with the analysis (not
modification) of an existing (software)
system [19]. The IEEE Standard for
Software Maintenance (IEEE Std 1219-
1993) defines reverse engineering as the
process of extracting software system
information (including documentation) from
source code. It involves reversing a
program’s machine code back into the
source code that it was written in, using
programming language statements. Usually,
software reverse engineering is done in
order to retrieve the source code of a
program because the source code is lost. It is
used to study how the program performs
certain operations. As noted by [6], software
reverse engineering is done to improve the
performance of a program and fixing of
bugs. It is often used to identify malicious
content in a program such as virus.
 Usually, before the process of reverse
engineering, some cosmetic changes to the
code are usually carried out. This is done to
improve its readability, structure and
understandability, without changing any of
its functionality. The cosmetic changes are
carried out using these steps:

• Reformat program: The first step is
to reformat the legacy software to
make the program look neat and
appeal to the eyes of the reader.
Reformatting the legacy code will
help to remove complex control
structures

• Assigning Variable Names:
Variable names that are meaningful
are then assigned to enable the reader
comprehend the program faster. This
will provide good information for
code documentation. Therefore, all
variables, data statements, and
functions should be assigned
meaningful names whenever
possible.

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 89

• Simplify Conditions: Nested
conditions should be simplified in
the program as much as possible.
Complex nested conditions in the
program should be replaced by
simpler conditional statements. This
is to ensure that complexity is
reduced in the software.

• Remove GO TOs: The use of Go
TOs should be discouraged in the
program. If they are already in the
legacy code, measure should be put
in place by the software maintainer
to remove them and replace them
with other control constructs that are
appropriate. GO TO statements
usually make programs to be
complex and often causes an infinite
loops.

• Simplify Processing: The program

• is the simplified having removed
unnecessary nested conditions and
GO TO statements that could make
the program to be complex.

 After these cosmetic changes have been
carried out on the legacy code, the process
of reverse engineering then starts. This
involves extracting the code, design, and the
requirement specification then begins. After
reverse engineering, the process starts all
over again from forward engineering which
involve the reversal of the reverse
engineering.

2.4 Software Maintenance Models
 Different types of models are in use in
software maintenance. However, five
models are mostly used in the industry. They
are: quick fix model, Boehm’s model,
Osborne’s model, the iterative enhancement
model, and the reuse oriented model.

• The Quick Fix Model: This is an ad hoc
model. The goal of this model is to identify
a problem and the quickly fix it [29]. As the
name implies, the model does not pay
attention to the long-term effects as a result
of time constraint. However, the quick fix

model is fast and it gets work done quickly
with lower cost.

• Boehm’s Model: This model is based on
economic models and principles. Boehm
economic model helps us to better
understand the problem and improve
productivity in maintenance. The model
provides an overview of economic analysis
techniques and their applicability to
software engineering and management. This
model provides a balanced view of
candidate software engineering solutions,
and a framework that takes account of both
programming and human problems and
proffering solution to these problems.

• Osborne’s Model: This model is concerned
with the reality of the maintenance
environment. According to Osborne,
technical problems that arise during
maintenance are due to poor communication
and control between management. Osborne
therefore recommends four strategies to
address these technical problems. These are:

1). Maintenance requirements need to

be included in the change
specification

2). A quality assurance program is
required to establish quality

assurance requirements.
3). A metric needs to be developed in

order to verify that the maintenance
goals have been met

4). Managers need to provide with
feedback through performance
reviews

• The Iterative Enhancement Model
 This model state that changes made to the

system during the lifetime make up an iterative
process. Software enhancement implies addition
of new features or functionalities to an existing
application. The iterative model has three
stages: 1) the system has to be analyzed, 2) the
proposed modifications are then classified, and
3) the changes are then implemented. However,
for the iterative enhancement model to work, the
system must be completely documented since

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 90

the model assumes that a full documentation of
the system exists before enhancement can begin.

• The Reuse Oriented Model: This model
assumes that existing program components
could be reused. Software products are very
costly. In order to reduce costs, parts of
previously developed software can be
reused. In addition to reduce development
costs and time, reuse also leads to higher
quality of the developed products since the
reusable components are ensured to have
high quality. Component-based software
development is a good example of a reuse
approach [21]. This approach ensures that
software product is developed through off-
the-shelf components. Therefore, the steps
for the reuse model are identifying the parts
of the old system which have the potential
for reuse, understanding the system parts,
modifying the old or existing system based
on new requirements, and integrating the
modified parts into the new system.

Conclusion
 Software maintenance is the process of
modifying existing operational software by
correcting errors, migration of the software
to new technologies and platforms, and
adapting it to deal with new environmental
requirements.

It denotes any change made to a software
product before and after delivery to
customer or user.
 Software maintenance is an important
activity of many of organizations today.
 This is no surprise given the rate of
hardware obsolescence, the immortality of a
software product, and the demand of users
to ensure that existing software products run
on newer platforms, run on newer
environments, and or with enhanced
features. Software maintenance forms an
essential component of software
development. As software grows in size, it
becomes necessary to determine the
complexity of such software. The size of
software increases as the complexity
increases. Software maintenance is the
general process of changing a system after it
has been delivered. In this paper, we argue
that software maintenance and evolution are
characterized by huge costs, slow speed of
implementation, increased complexity,
requires technical expertise, be in line with
new technologies, may introduce new faults,
yet changes and improvements are
inevitable if software must stand the test of
time.

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 91

References

[1] Barry, E. J., Kemerer, C. F. and Slaughter, S. A. (1999). Toward a Detailed
Classification Scheme for Software Maintenance Activities. In Proceedings of
the 5th Americas Conference on Information Systems, August 1999 pp. 126-
128.

[2] Bhattacherjee, V., Kumar, P. and Kumar, M. S. (2009). Complexity Estimation,
Journal of Theoretical and Applied Metric for Analogy Based Effort-
Information Technology, Vol. 6, No. 1, pp. 1-8.

[3] Chapin, N., Hale, J. E., Khan, K. M., Ramil, J. F., and Tan, W.-G. (1999). Types of
Software Evolution and Software Maintenance. Journal of Software
Maintenance and Evolution: Research and Practice, Vol. 2, pp. 3-30.

[4] Chikofsky, E. J. and Cross, J. H. (1990). Reverse Engineering and Design Recovery:
 Taxonomy in IEEE Software, IEEE Computer Society, pp. 13-17.
[5] Erlikh, L. (2000). Leveraging Legacy System Dollars for E-Business. In Information
 Technology Proceedings, May/June 2000, pp. 17-23.
[6] Garg, M. and Jindal, M. K. (2009). Reverse Engineering – Roadmap to Effective

Software Design, Int’l Journal of Recent Trends in Engineering, Vol. 1, N0. 2,
pp. 186-188.

[7] Granja-Alvarez, J. C. and Barranco-Garcia, M. J. (1997). A Method for Estimating
Maintenance Cost in a Software Project: A Case Study, Journal of Software
Maintenance Research and Practice, Vol. 9, pp. 161-175.

[8] Frost, D. (1990). Software Maintenance and Modification. In Proceedings of Software
Maintenance and Computers, San Diego, CA, IEEE Computer Society Press
Tutorial, Los Alamitos, CA, pp. 187-192.

[9] Jones, C. (2006). The Economics of Software Maintenance in the Twenty First
 Century, Version 3, Software Productivity Research, Inc., http://www.spr.com
[10] Kemerer, C. F. (1997). Software Project Management Readings and Cases, Mcgraw-
 Hill Companies, Inc, Irwin Book Team, pp. 510-520.
[11] Kemerer, C. F. and Slaughter, S. A. (1999). An Empirical Approach to Studying

Software Evolution, IEEE Transactions of Software Engineering, IEEE
Transactions on Software Engineering, Vol. 25, No. 4, July/August 1999, pp.
493-509.

[12] Lehman, M. M. (1980). Programs, Life Cycles, and Laws of Software Evolution. In
 Proceedings of the IEEE, Vol. 68, No. 9, pp. 1060-1076.
[13] Lehman, M. M. (1985). Program Evolution, London: Academia Press

[14] Lehman and Belady (1985). Program Evolution: Processes of Software Change,
 London: Academic Press.

[15 Lehman, M. M. and Ramil, J. F. (2000). Software Evolution in the Age of

Component-Based Software Engineering. IEEE Proceedings on Software
Engineering, Vol. 147, pp. 249-255.

[16] Li, H., Huang, B. and Lii, J. (2008). Dynamic Evolution Analysis of Object-Oriented
Software Systems, IEEE Congress on Evolution Computation (CEC 2008),
pp. 3035-3040.

[17] Mall, R. (2009). Fundamentals of Software Engineering (3rd Edition), PHI Learning

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 92

 Private Ltd., New Delhi, India, pp. 404-411.
[18] Mishra, A. and Misra, S. (2010). People Management in Software Industry: The Key

to Success, Journal of ACM Sigsoft Software Engineering Notes, Vol. 35, No.
6, pp. 1-4.

[19] Müller, H. A. and Kienle, H. M. (2010). Encyclopedia of Software Engineering,
Taylor & Francis, chapter Reverse Engineering, pp. 1016–1030.
http://www.tandfonline.com/doi/abs/10.1081/E-ESE-120044308.

[20] Niessink, F. and Van Vliet, H. (2000). Software Maintenance from a Service
Perspective. Journal of Software Maintenance and Evolution: Research and
Practice 12, pp. 103-120.

[21] Ning, J. Q. (1996). A Component-Based Software Development Model, In
Proceedings of the Annual International Computer Software and Applications
Conference (COMPSAC’96), pp.389–394, IEEE.

[22] Pfleeger, S. L. (1998). Software Engineering –Theory and Practice, Prentice Hall
[23] Pigosky, T. M. (2001). Software Maintenance. IEEE –Trial Version 1.00 –May 2001.
[24] Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S. and Lakhani, K. (2006).

Understanding Open Source Software Evolution in Madhavji, N. H. Lehman,
M. M., Ramil, J. F. and Perry, D. (eds.), Software Evolution and Feedback,
John Wiley and sons Inc, New York, 2006.

[25] Shukla, R. and Misra, A. K. (2008). Estimating Software Maintenance Effort –A
Neural Network approach. In Proceedings of the Int’l Software Engineering
Conference, February 19-20, 2008, Hyderabad, India, pp. 107-112.

[26] Sommerville, I. (2007). Software Engineering, 8th Ed., Addison-Wesley, New York,
 NY, Software Evolution, pp. 488-511.
[27] Slonneger, K. (2004). Software Development: An Introduction
[28] Stammel, J. Durdik, Z., Krogmann, K. Weiss, K. and Koziolek, H. (2001). Software

Evolution for Industrial automation Systems: Literature Overview, Karlsruhe
Institute of Technology, University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association.

[29] Takang, A. A. and Grubb, P. A. (1996). Software Maintenance Concepts and
 Practices. Thompson Computer Press London, UK.
[30] Torchiano, M., Ficca, F., De Lucia, A. (2007). Empirical Studies in Software

Maintenance and Evolution. IEEE Int’l Conference on Software Maintenance,
ICSM’07, pp. 491-494.

[31] Warden, R. (1992). Software Reuse and Reverse Engineering in Practice, London,
 Chapman & Hall, pp. 283-305.

