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Abstract 
This paper presents a fisher’s criterion, Welch’s criterion, and Bayes criterion for performing a 

discriminant analysis. These criteria estimates a linear discriminant analysis on two groups (or 

regions) of contrived observations. The discriminant functions and classification rules for these 

criteria are also discussed. A linear discriminant analysis is performed in order to determine the 

best criteria among Fisher’s criterion, Welch’s criterion and Bayes criterion by comparing their 

apparent error rate (APER). Any of these criteria with the least error rate is assumed to be the 

best criterion. After comparing their apparent error rate (APER), we observed that, the three 

criteria have the same confusion matrix and the same apparent error rate. Therefore we 

conclude that none of the three criteria is better than each other.  
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______________________________________________________________________________ 

 

1. Introduction: 

    Discriminant Analysis is concerned with 
the problem of classification. This problem 
of classification arises when an investigator 
makes a number of measurements on an 
individual and wishes to classify the 
individual into one of several categories or 
population groups on the basis of these 
measurements. This implies that the basic 
problem of discriminant analysis is to assign 
an observation X, of more distinct groups on 
the basis of the value of the observation. In 
some problems, fairly complete information 
is available about the distribution of X in the 
two groups. In this case we may use this 
information and treat the problem as if the 
distributions are known. In most cases, 
however information about the distribution 
of X comes from a relatively small sample 
from the groups and therefore, slightly 
different procedures are used.  
    The Objectives of Discriminant Analysis 
includes: To classify cases into groups using 
a discriminant prediction equation; to test 
theory by observing whether cases are 
classified as predicted; to investigate 
differences between or among groups; to 
determine the most parsimonious way to 
distinguish among groups; to determine the 
percent of variance in the dependent variable 

explained by the independents; to assess the 
relative importance of the independent 
variables in classifying the dependent 
variable and to discard variables which has 
little relevance in relation to group 
distinctions.  
    In this study, we wish to determine the 
best criterion among the three criteria 
namely; Fisher’s criterion, Welch’s criterion 
and Bayes criterion for good discriminant 
functions, by comparing their apparent error 
rate (APER) while the significance is for 
detecting the variables that allow the 
researcher to discriminate between different 
groups and for classifying cases into 
different groups with a better than chance 
accuracy.  
 
2. Related Literature: 

     Anderson[1] viewed the problem of 
classification as a problem of “statistical 
decision functions”. We have a number of 
hypotheses which proposes is that the 
distribution of the observation is a given 
one. If only two populations are admitted, 
we have an elementary problem of testing 
one hypothesis of a specified distribution 
against another. 
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     Lachenbruch (1975) viewed the problem 
of discriminant analysis as that of assigning 
an unknown observation to a group with a 
low error rate. The function or functions 
used for the assignment may be identical to 
those used in the multivariate analysis of 
variance.  
    Johnson and Wichern [23] defined 
discriminant analysis and classification as 
multivariate techniques concerned with 
separately distinct set of observations (or 
objects) and with allocating new observation 
(or object) to previously defined groups. 
They defined two goals namely: Goal 1: To 
describe either graphically (in at most three 
dimensions) or algebraically the differential 
features of objects (or observations) from 
several known collections (or populations) 
and Goal 2: To sort observations (or 
objects) into two or more labeled classes. 
The emphasis is on deriving a rule that can 
be used to optimally assign a new 
observation to the labeled classes. They used 
the term discrimination to refer to Goal 1 
and used the term classification or allocation 
to refer to Goal 2. A more descriptive term 
for goal 1 is separation.  
    They also explained that a function that 
separates may sometimes serve as an 
allocator or classificatory and conversely an 
allocation rule may suggest a discriminator 
procedure. Also that goal 1 and 2 frequently 
overlap and the distinction between 
separation and allocation becomes blurred.  
    According to [2]; Discriminant function 
analysis is used to determine which 
variables discriminate between two or more 
naturally occurring groups.  
    Costanza W.J. and Afifi A.A. (1979) 
computationally stated that discriminant 
function analysis is very similar to analysis 
of variance (ANOVA).  
    Theoretical Basis by Lachenbruch P.A. 
[6] elaborated that the basic problem in 
discriminant analysis is to assign an 
unknown subject to one of two or more 
groups on the basis of a multivariate 
observation. It is important to consider the 
costs of assignment, the a priori probabilities 
of belonging to one of the groups and the 
number of groups involved. The allocation 

rule is selected to optimize some function of 
the costs of making an error and the a priori 
probabilities of belonging to one of the 
groups. Then the problem of minimizing the 
cost of assignment is to minimize the 
following equation 

Min ∑ ∑ P (Dj/∏i) Pi Cji       
 

3.0 The Criterion: 

3.1 Fishers Criterion:  

    Fisher (1936) suggested using a linear 
combination of the observations and 
choosing the coefficients so that the ratio of 
the differences of the means of the linear 
combination in the two groups to its 
variance is maximized. For classifying 
observation into one of two population 
groups, fisher considered the linear 
discriminant function  
у=λ1X. Let the mean of у in population I 
(∏1) be λ1µ1, and the mean of у in ∏2 be 
λ1µ2, its variance is λ1∑λ in either 
population where ∑ = ∑1 = ∑2. Then he 
chooses λ to    
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Equating (3.1.2) to zero, we have  
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Since λ is used only to separate the 
populations, we may multiply λ by any 
constant we desire. Thus λ is proportional to 

).( 21
1 µµ −Σ−  The assignment procedure is 

to assign an individual to ∏1, If Y = (µ1– 
µ2)1 Σ-1X is closer to 1Y  = (µ1– µ2)1 Σ-1µ1 

than to 2Y  = (µ1– µ2)1Σ-1µ2 and an 
individual is assigned to Π2 if Y = (µ1– µ2)1 



West African Journal of Industrial and Academic Research Vol.4 No. 1 August 2012   20 
 

Σ-1 X is closer to 2Y  = (µ1– µ2)1 Σ-1 µ1 than 

to 1Y . Then midpoint of the interval between 

1Y  and 2Y  is 

 
2

21 yy +
 = ½ (µ1 + µ2)1 Σ-1 (µ1 – µ2). 

This is used as the cut off point for the 
assignment. The difference between 1Y  and  
 

2Y  is           

1Y  – 2Y  = (µ1 – µ2) 1∑ -1µ 1 (µ1 – µ2)1∑-1 µ 2  
= (µ1 – µ2)1∑- 1(µ1 – µ2) = δ2  
 
δ2 is called the Mahalanobi’s (squared) 
distance for known parameters. If the 
parameters are not known, it is the usual 
practice to estimate them by 1X , 2X  and S 

where 1X is the mean of a sample from ∏1, 

2X is the mean of a sample from ∏2 and S is 
the pooled sample variance-covariance 
matrix from the two groups. The assignment 
procedure is to assign an individual to ∏1 if 
Y = ( 1X – 2X )1S-1X is closer to 1Y  = ( 1X –  

2X )1S-1
1X than to 2Y  = ( 1X –  2X )1S-1

2X  
while an individual is assigned to ∏2 if Y = 
( 1X – 2X )1S-1X is closer to 

2
11

212 )( XSXXY −−=  than to 1Y  = ( 1X –  

2X )1S-1
1X  

The midpoint of the interval between 1Y and 

2Y  is 
2

21 yy +
 = ½ ( 1X + 2X )1S-1( 1X –  

2X ). 

Y is closer to 1Y  if |Y – 1Y | < |Y – 2Y | 

which occurs if Y > ½ ( 1Y  + 2Y ) since 1Y  > 

2Y , The difference between 1Y  and 2Y is 1Y  

– 2Y = ( 1X –  2X )1S-1
1X – ( 1X –  2X )1S-

1
2X  

= ( 1X –  2X )1S-1( 1X –  2X ) = D2 which is 
called the Mahalanobis (squared) distance 
for unknown parameters.  
     The distribution of D2 can be used to test 
if there are significant differences between 
the two groups (or Regions). We consider 

the two independent random samples (Xij, j 
= 1, 2, . . . n1) and (X2j, j = 1, 2, . . . n2) from 
Nk(µ1, ∑) and Nk(µ2, ∑) respectively. We 
test the hypothesis that both samples came 
from the same normal distribution, that is,  
 

H0: µ 1= µ 2 versus H1: µ 1≠ µ 2. 
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when the null hypothesis is true.  

( )Σ

+

+
,0~

11

21

21
kN

nn

xx
and is Independent of 

S. Therefore, T2 = V X1 D-1X, V > k is the 
Hotelling’s T2 based on V degrees of 
freedoms where X and D are independent.  
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Therefore,  
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where n1 and n2 are the sample sizes in ∏1 

and ∏2 respectively and K is the number of 
variables, has an F-distribution with F and 

121 −−+ knn  degrees of freedom. The use 

of 
2

21 yy +
 as a cut off point can be 

improved upon if the apriori probabilities of 
∏1 and ∏2 are not equal.  
 
 

 

3.2 Welch’s Criterion  

An alternative way to determine the 
discriminant function is due to Welch 
(1939). Let the density functions of ∏1 and 
∏2 be denoted by F1(X) and F2(X) 
respectively. Let q1 be the proportion of ∏1 

in the population and q2 = (1 – q1) be the 
proportion of ∏2 in the population. Suppose 
we assign X to ∏1 if X is in some region R1 
and to ∏2 if X is in some region R2. We 
assume that R1 and R2 are mutually 
exclusive and their union includes the entire 
space R. The total probability 
of misclassification is,  
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This quantity is minimized if R1 is chosen 
such that q2f2(x) = q1f1(x) < O for all points 
in R1 

Thus the classification rule is:  
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1

2

2

1

)(
)(

q

q

xf

xf
>  (3.2.2) 

     And to ∏2 if otherwise; it is pertinent to 
note that this rule minimizes the total 
probability of misclassification.  
    An important special case is when ∏1 and 
∏2 are multivariate normal with 
means µ1 and µ2 and common covariance 
matrix ∑. The density in population ∏1 is 
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The ratio of the densities is 
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The optimal rule is to assign the unit X to 
∏1 if  
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The quantity on the left of equation 3.2.5 is 
called the true discriminant function DT(X).  
Its sample analogue is 
  

( )[ ] ( )21
11

212
1)( XXSXXXXDT −+−= −   (3.2.6) 

 
The coefficient of X is seen to be identical 
with Fishers result for the linear 
discriminant function. The function DT(X) is 
a linear transformation of X and knowing its 
distribution will make it possible to calculate 
the error rates that will occur if DT(x) is used 
to assign observation to ∏1 and ∏2. Since X 
is multivariate normal, DT(x) being a linear 
combination of X is normal. The means of 
DT(x) if X comes form ∏1 is 
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Where δ2 = (µ1 - µ2)1∑-1 (µ1 - µ2) 
In ∏2, the mean of DT(x) is  
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In either population the variance is 
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The quantity δ2 is the population 
Mahalanobis (squared) distance.  
 
3.3 Bayes Criterion  

    A Bayesian criterion for classification is 
one that assigns an observation to a 
population with the greatest posterior 
probability. A Bayesian criterion for 
classification is to place the observation in 
∏1 if p (∏1/x) > p (∏2/x).  
 
    By Bayes theorem 
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Hence the observation X is assigned to ∏1 if 
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The above rule reduces to assigning the 

observation to ∏1 if 
1
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and to ∏2 otherwise.  
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q1 = the proportion of ∏1 in the population.  
q2= (1-q1) = the proportion of ∏2 in the 
population.  
 
3.4 Probabilities of Misclassification  

     In constructing a procedure of 
classification, it is desired to minimize the 
probability of misclassification or more 
specifically, it is desired to minimize on the 
average the bad effects of misclassification. 
Suppose we have an observation from either 
population ∏1 or population ∏2 the 
classification of the observation depends on 
the vector of measurements.  
   X1= (X1, X2, . . . , Xk)1 on the observation. 
We set up a rule that if an observation is 
characterized by certain sets of values of X1, 
X2,. . .,Xk, we classify it as from ∏1, if it has 
other values, we classify it as from ∏2. We 
think of an observation as a point in a K-
dimensional space. We divide the space into 
two regions or groups. If the observation 
falls in R1, we classify it as coming from 
population ∏1, and if it falls in R2, we 
classify it as coming from population ∏2. 
    In following a given classification 
procedure, the statistician can make two 
kinds of errors in classification. If the 
observation is actually from ∏1, the 
statistician or researcher can classify it as 
coming from ∏2; or if it is from ∏2, the 
statistician may classify it as from ∏1. We 
need to know the relative undesirability of 
these two kinds of misclassification. 
    Let the probability that an observation 
comes from population ∏1 be q1 and from 
population ∏2 be q2. Let the density function 
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of population ∏1 be f1(x) and that of 
population ∏2 be f2(x). Let the regions of 
classification from ∏1

 be R1 and from ∏2 be 
R2. Then the probability of correctly 
classifying an observation that is actually 
drawn from ∏1 is ∫

1

)(
R

dxxf  where dx = dx1, 

dx2, . . , dxk and the probability of 
misclassifying an observation from ∏1 is 

∫=
2

1 )(
R

dxxfP  

Similarly the probability of correctly 
classifying an observation from ∏2 is ∫f2(x) 
dx and the probability of misclassifying such 
an observation is ∫=

2
2 )(

R

dxxfP ; then the 

total probability of misclassification is 

∫∫ +=
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Table 3.4.1:  confusion matrix 

Statisticians’ decision 

1Π  2Π  
Correct Classification P1 

 
  Population          1Π  
                             2Π  P2 Correct Classification 

 
    Probabilities of misclassification can be 
computed for the discriminant function. Two 
cases have been considered.  
(i) When the population parameter are 
know. 
(ii) When the population parameter are 
not known but estimated from samples 
drawn from the two populations.  
 

3.5 Apparent Error Rates (APER) 

    One of the objectives of evaluating a 
discriminant function is to determine its 
performance in the classification of future 

observations. When the (APER) is 

∫∫ +=
1

22
2

11 )()();(
RR

dxxfqdxxfqfRT  

    If f1(x) is multivariate normal with mean 
µ1 and covariance ∑, we can easily calculate 
these rates. When the parameters are not 
known a number of error rates may be 
defined. The function T(R,F) defines the 
error rates (APER). The first argument is the 
presumed distribution of the observation that 
will be classified.  

 

4.0 Data Analysis 

    Consider to carry out a linear discriminant analysis on two groups (or regions) of contrived  
observations.  

A            B 
X1 6 7 9 8 8 10 
2 7 5 10 8 9 9 
   

  

X1 11 15 22 17 12 13 
X2 13 16 20 16 11 14 
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4.1: Using Fishers Criterion  

For A 
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Y = 0.2212X1  - 1.3293X2 which is the discriminant function.  
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   = -8.8648 

 2Y  =  (0.2212 – 1.3293) 








15
15

  = -16.6215 

 

Cut off point 
2

21 YY +
=  and this is also referred to as the mid point and it’s equal to -12.74315. 

 

Assignment procedure:  

Assign observation with measurement X to ∏1 if 
2

21 YY
Y

+
>  and assign to ∏2 if 

2
21 YY

Y
+

≤  

Discriminant scores 
 
Y = 0.2212X1   -1.3293X2 
 
A -7.9779 -5.0981 -11.3022 -8.8648 -10.1941 -9.7517 
B -14.8477 -17.9508 -21.7196 -18.8356 -17.5084 -15.7346 
 
For Group A       For Group B  

-7.9779 – (-12.74315) = 4.7653 > ∏1   -14.8477 – (-12.74315) = -2.1046 < ∏2 
-5.0981 – (-12.74315) = 7.6451 > ∏1   -16.9508 – (-12.74315) = -5.2077 < ∏2 

-11.3022 – (-12.74315)= 1.4410 > ∏1  -21.7196 – (-12.74315) = -6.0925 < ∏2 
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-8.8648 – (-12.74315) = 2.5491 > ∏1   -18.8356- (-12.74315) = -6.0925 < ∏2 

-10.1941 – (-12.74315)= 2.5491 > ∏1  -17.5084 – (-12.74315) = 0.7753 > ∏1 

-9.7517 – (-12.74315) = 2.9915 > ∏1   -15.7346 – (-12.74315) = -2.9915 < ∏2 
 

 

Tables 4.1.1. Confusion matrix 

Statistician decision 
        ∏1       ∏2 
Population  ∏1        6       0 
Population  ∏2        1       5 

 
The probability of misclassification  
P(2/1)  = 0/6  = 0 
P (1/2) = 1/6 
 

Apparent error rate (APER) 
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4.2 : Using Welch’s Criterion 

    The classification rule is: 

Assign X to  ∏1  if 
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In>  therefore;  
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Where  
DT(x) is called the true discriminant function and q1 = q2 since they have equal sample size. 
The optimal rule is to assign the unit X to ∏1 if  
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X1 6 7 9 8 8 10 
X2 7 5 10 8 9 9 

 
 
 

Table 4.2.1: Confusion Matrix 

Statistician Decision 

          ∏1       ∏2 
Population ∏1          6       0 
Population ∏2          1       5 

 
The probability of misclassification  
P(2/1)  = 0/6  = 0 
P (1/2) = 1/6 

Error rate 
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4.3:  Using Bayes Criterion 

The classification rule: 

Observation X is assigned to ∏1  if 
1
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>  and to ∏2 if otherwise.  
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Therefore, observation X is assigned to ∏1 if exp ( )[ ] ( ){ }21
11

212
1 XXSXXX −+− − 1>  and to 

∏2 if otherwise. 
 

Table 4.3.1 Confusion Matrix 

Statistician Decision 

          ∏1       ∏2 
Population ∏1          6       0 
Population ∏2          1       5 

 
 
The probability of misclassification  
P(2/1)  = 0/6  = 0 
P (1/2) = 1/6 

Error rate 
12
12

1
1
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=
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 = 0.0833 

X1 11 15 22 17 12 13 
X2 13 16 20 16 11 14 
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5.0 Summary, Conclusion and    

Recommendation 

5.1: Summary 

    Discriminant Analysis and Classification 
is defined by Johnson and Wichern [23] as 
multivariate techniques concerned with 
separating district set of objects and with 
allocating new objects to previously defined 
groups.  
   In fisher’s criterion, object X is assigned 

to population ∏1 if 
2

21 YY
Y

+
>   and to ∏2 if 

otherwise; and in Welch’s criterion, the 
optimal rule is to assign the unit X to ∏1 if  
DT(x) = 

( )[ ] ( ){ }21
11

212
1 µµµµ −Σ+− −X

1

2

q

q
In> and 

to ∏2 if otherwise while in Bayes theorem, 
the object X is  
 
 

assigned to ∏1 if 
1

2

2

1

)(
)(

q

q

xf

xf
> and to ∏2 if 

otherwise. 
 

5.2:  Conclusion 

    In other to know the best criteria among 
fisher’s criterion, Welch’s criterion, and 
Bayes criterion, we carried out a linear 
discriminant analysis on two groups (or 
regions) of contrived object (or 
observations). After the analysis, we 
discovered that the three criteria (Fisher’s 
criterion, Welch’s criterion, and Bayes 
criterion) had equal error rate, that is, none 
of them is better than each other in linear 
discriminant analysis.  
 
5.3: Recommendation 

     We recommend for further studies with 
enlarged sample size to ascertain if the 
conclusion can be validated. 
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