
West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

102

A Framework for Effective Software Monitoring in

Project Management

1
Wemembu, Uchenna Raphael,

2
Okonta, Okechukwu Emmanuel,

3
Ojugo, Arnold Adimabua

4
Okonta, Imah Love

.

1
Department of Mathematics Federal College of Education. (Tech) Asaba.

2
 Department of Computer Science Federal College of Education. (Tech) Asaba

3
 Department of Math/Computer Science, Fed University Petroleum Resources Effurun

4
 Department of Technical Drawing Federal College of Education (Tech) Asaba.

Abstract
Developed software for project management rely heavily on collecting metrics to provide the

progress feedback necessary to allow control of the project. However, interpretation of this

data is very difficult and sometimes cumbersome. This paper addressed the need of a

software implementation progress model that is needed to help interpret the accumulated

data. Certain criteria are set for design of a proposed implementation progress model. Some

findings from the studied projects from other researchers suggest the model is consistent with

the observed behaviour. In addition to quantitative validity, the model is shown to provide

meaningful interpretation of collected metric data by embedding certain quality function.

Key words: Project Management, Feedback, project control, metrics, process model,

quantitative validity

Introduction

 Developing software for effective

project management in modern times rely

heavily on periodically collected software

metric data and this in turn used to provide

management with feedback about the

project, the process used and the stages in

development. Metric data is most

commonly used in the area of quality

assessment and assurance. Well-defined

metrics usually provide report on quality

attributes such as anticipated number of

faults remaining. But other areas, such as

implementation progress and system

throughput, hardly utilize feedback from

Metrics data. Although, the total lines of

source code, could be used to report on

implementation progress but such

measures have not been leveraged as

strongly as quality assessment and

assurance have been used.

 Metric data is widely regarded as a

valuable management feedback tool, yet it

is generally not used to monitor

implementation progress. An

implementation progress model is

presented and shown to identify project

phase boundaries, express the rate of

implementation during each phase, and

allow objective comparisons between

projects. This paper provides a framework

to help interpret periodically collected

implementation data. This work develops a

model for interpreting implementation

progress. The proposed progress

monitoring model uses existing

implementation artefact metrics, tries to

match our understanding of the

implementation progress, and allows

project evaluation based on estimation of

parameter used. Well-defined and proven

metrics exist for many areas of software

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

103

engineering and development including

especially quality assessment and

assurance. Implementation progress has no

such established metrics.

 The lack of proven implementation

progress metrics has been a barrier to any

attempt to effectively monitor project

development. Nevertheless, this

shortcoming is not insurmountable. Size

metrics are abundant and deriving a

progress metric from a size metric can be

accomplished by working out the

difference in consecutive size

measurements. A far larger barrier than the

lack of a metric is the lack of a proven

implementation progress model.

Periodically collected data is rich in

detailed information but is not in itself

meaningful. A model provides a specific

interpretation of the data and allows

meaning to be extracted. An

implementation progress monitoring

model will allow periodically collected

implementation data to be effectively

interpreted.

 Several existing metrics measure size-

related attributes. While these size-related

metrics may have been originally

developed to support quality assessment

and assurance, they can be used to monitor

progress in terms of size. Project size is

important because it is usually used to

estimate the resources needed and

therefore assess the project's status with

regard to the schedule for completion [6];

[1]; [16]. This known fact about

management need for feedback about

implementation progress should demand

its use because its absence may be as result

not introducing metrics to support

implementation progress monitoring

feedback before now.

Basic Concept

 We design models normally to bridge

the gap between real sampled data and

expected outcomes. In real terms models

act as predictors to set expectations over

the next few data samples but in a small

scale. Take for instance a defect model,

this may indicate the number of faults to

be found in a released project and the

degree to which the actual number of

faults discovered differs from the predicted

value can actually be an indication of

unexpected circumstances within the

project. This means that, an unusual low

value may be pointing to the fact that

fewer code changes were made than

expected, or that less testing was carried

out than expected. This also means that

Management has been forewarned; an

investigation can be made and then

appropriate response taken. This feedback,

though small scale provides valuable and

timely feedback to the management within

the scope of the executing project.

 In addition to this small scale feedback,

models provide feedback on a larger scale,

where the feedback focuses more on the

overall picture portrayed by the data. This

is regularly required by management, with

or without a formal model. Without a

formal model management team must rely

on guess work. In contrast to this unusual

approach, a formal model can be adopted

to establish a rigorous evaluation. A

formal model establishes the critical

parameters within the system. Using a

formal model, projects may be evaluated

or compared in terms of the model

parameters. Model parameters allow

evaluation and comparisons to be based on

defendable data rather than guess work

and hearsay. Additionally, given estimated

values for the parameters, the model can

make predictions about the outcome. This

relationship between parameters (input)

and predictions (output) codifies a causal

effect believed to be true within all

designed system.

Similar Research Done Before Now

 Some work done before with reference

to software metrics on the development

process has been directed at tasks before

and after implementation. Much work has

been done in the pre-implementation

stages to improve effort prediction and

estimation [1]; [22] [16]; [5]; [36]. Metrics

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

104

have also been used to evaluate

architectural design before

implementation. Significant work has been

done in the post-implementation stages to

predict failure rates, both for a project as a

whole as well as for individual modules

[15]; [11]; [37]; [9]; [34].

 However, substantially less work has

been published regarding the use of

metrics for assessment, monitoring, or

control of the implementation stage itself.

DeMarco confirms this when he asserts

"you can't control what you can't measure"

[6]. In fact, every researcher now that is

proposing, defending, or merely discussing

a metric agrees the reason behind metrics

and measuring is to gain some degree of

understanding and control over the

complex process of software development

[10]. Recent studies have focused attention

on how to use the vast array of data

generated by existing measures.

 Some published works emphasizing

how to use the potentially enormous data

available can be coarsely divided into

three groups. Many works assert metrics

should be used to assist in monitoring,

evaluation and control of projects during

the implementation phase [6]; [3]; [4];

[23]; [37]; [19]. Other researchers

recommend specifically that time-series

metrics data be used to monitor and

evaluate projects [6]; [28]; [34]. The last

group that consist of several researchers

emphasize the idea gained from causal

models over correlative models [32]; [10];

[36]. They suggest models which provide

an inherent causes-relationship are more

valuable than simpler correlation models.

Model Design

 The main purpose of designing a model

is to provide a documented method of

interpreting a set of data. In most cases the

interpretation is usually obscured by the

sheer quantity and detail of the enormous

data available and Information can only be

revealed when these data are interpreted in

a particular way. The interpretation results

can then be used to evaluate past

performance, assess the current situation,

and make predictions about future

performance.

 The interpretation can also be used to

compare multiple data sets. Results from

the same model, applied to several data

sets, allow the data sets to be easily

compared in terms of the model. The

model provides a systematic method for

comparing projects. One type of model

interprets series data by attempting to fit

collected data to a family of curves. The

single curve which best fits the data is

used to describe the data in terms of the

model. The specific values used to

generate the best fitting curve are

considered parameters of the model.

Parameters of a model reveal one or more

dimensions of the collected data. In this

case, parameters can be considered an

output of the model. Collected data is the

input and results summarizing that data are

produced. Parameters can also be used as

input resulting in expected sample data.

When used in this way, models make

predictions based on estimated parameters.

In either case, the expected progress as

defined by the model is given by the

model curve.

 The model equation and a specific set of

parameters define the model curve.

A valuable model is one that produces a

clear and concise interpretation of the data.

Part of this interpretation is in the form of

the specific values for the model

parameters. For example, consider two

models, one uses only two parameters

while the other has eight parameters. Even

though the eight-parameter model may

predict the data "twice" as well, it may not

be the better model if its parameters have

no particular meaning or are hard to

estimate. Models should have as few

parameters as possible while still

modelling the data with sufficient

accuracy. Fewer parameters means the

model is easier to understand.

 Part of understanding a model is

understanding the relationships between

the

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

105

parameters. Parameters are related by the

effects each has on the others. Knowing

the trade-offs between parameters is

necessary to understand a model. This is

easier if the model contains fewer

parameters. In addition to relatively few

parameters, individual model parameters

should be understandable. Understandable

parameters produce simple results with

meaning.

 On the other hand, meaningless

parameters do not help to simplify or

interpret the data since they must again be

interpreted. Parameter meaning is even

more important when the model is used as

a predictor for new projects. In this case,

model parameters must be estimated

before any data has been collected. If the

individual parameters are well understood

better estimates for each will be made.

Better estimates will produce better

predictions. Related to individual

parameter meaning is the parameter unit.

Model parameters should be expressed in

well-known units, rather than new or

arbitrary ones. Parameters with direct

interpretations allow the model results to

be easily understood and used. Well-

known units are also much easier to

estimate. Again, this allows for better

predictions. Model parameters should be

few in number, directly interpretable, and

measured in existing units. These

properties give the model parameters the

most meaning and thus give the model the

most "clarifying power".

Implementing Model’s monitoring.

 Generally, Implementation progress is

not a new concept and so in addition to

basic model requirements, an

implementation progress model must be

compatible with existing models. An

informal progress model already exists; it

can be seen in project vocabulary and

assumptions. For instance, this informal

model is commonly used to answer certain

project status queries, such as:

What is the expected completion date

based on the current pace?

What was the size of the total effort for

that project?

What fraction of the total effort is

currently done?

What fraction of the total effort will be

done by a certain date?

 A proposed framework implementation

model should serve the same purpose as

the informal model. The model must help

provide answers to questions about

implementation speed and progress of

current and future projects. The informal

progress model captures another key

attribute of implementation progress. The

informal model acknowledges that project

speed is not constant throughout a project:

because sometimes projects "speed up"

and "slow down". There must always be

the ability or desire to constantly

determine implementation velocity. As

noted by McConnell [28] this velocity

increases at the beginning and decreases

near the end. A formal implementation

progress model should be informed by this

experience and capture the canonical

variations in velocity during

implementation.

 In a nut shell, the desired attributes of a

formal implementation progress model

include relatively few parameters,

understandable parameters, well-known

parameter units, consistency with informal

progress model, and the ability to answer

management questions involving size and

velocity.

Evaluation and Control

 DeMarco presents a development

process relying on steadily improving

estimates to provide feedback and control

during all phases of software development

[6]. Metrics collected at each stage of

development provide raw data for creating

an improved estimate for the next stage.

Metrics from the current project as well as

previous projects are used to make inform

decisions. What was focus throughout his

work is the need for continuing feedback

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

106

by continuously improving estimates while

allowing the development effort to be

properly directed. He made a compelling

case supporting estimates reviews, process

metrics, and cost models in order to make

quality improvement. DeMarco identifies

and recommends appropriate metrics for

each stage of development.

 In discussing appropriate metrics for the

implementation stage DeMarco points to

process metrics such as compilation rate

but did not explore them. The primary

implementation measure is code weight,

which is defined as a product of two

dimensions: size and complexity.

DeMarco defines code size as information

content within a program. He recommends

using Halstead's volume metric [12] to

find size. Several alternatives for

measuring complexity are presented, but

McCabe's cyclomatic complexity measure

[27] was recommended. Using these two

dimensions as parameters, an algorithm is

presented for computing implementation

weight. Historical data from similar

projects and environments is also used to

provide scaling factors. According to

DeMarco, the primary motivation for

computing implementation weight is to

improve future project estimates.

However, he also calls it a "project

predictor", as it was deplored to predict the

final size of the project accurately.

According to this novel system presented

by DeMarco, the measure should be taken

once near the middle of implementation.

However, progress model been proposed

by this paper may provide a better estimate

of implementation size. Since the proposed

model considers the complete project

history, not simply a single point in time,

because this is less prone to errors.

 Boehm considered a broader approach

to development feedback than simply

focusing on improved estimates. He

introduces a software development

methodology whose principal aim is risk

management [4]. His spiral model of

software development relies on risk

evaluation as the impetus for each unit of

work, whether the work unit is a prototype,

design document, or code. Risk

management implies the ability to control

what is being managed. This agrees with

DeMarco's argument that our need to

measure the software development process

stems from our desire to control the

process [6]. Boehm's methodology

assumes feedback metrics exist to inform

the risk evaluation process, but does not

dictate specific measures or measurement

processes.

 Addressing the selection of appropriate

metrics for quality control, Solingen and

Berghout defined the

Goal/Question/Metric Method (GQM) of

improving software quality [37].

Goal/Question/Metric Method integrates

metrics into the development process in

order to answer questions about quality

raised by corporate goals. Their

methodology relies on the ability to follow

the connection between corporate goals

and specific metrics, in both directions.

Measurements are defined by goals and

the results interpreted in terms of those

goals. In the area of quality control, well

developed process models exist to help

define and interpret metrics. However,

implementation models in general and

implementation progress in particular,

have not been well developed.

 Kirsopp addresses the need to capture

development models and enough data to

evaluate them. He strongly argues that the

software development process needs

measurements for feedback and that the

integration must be close, detailed and

appropriate [19]. Organizations must

support metrics outside of a single project

in order to validate the process, validate

the results, and collect historic data. All

three of these are required to assist future

project estimates. An experience factory

provides a repository for captured

experiences and models, allowing reuse

‘within an organization. Kirsopp cites the

“Tailoring a Metric Environment” Project

[3] as a working example of an experience

factory.

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

107

 Lott provides an alternative approach;

instead of suggesting or analyzing metrics,

he studied several available and proposed

software engineering environments [23].

Many of these environments include

integrated tools for collecting numerous

metrics about various development

artefacts created. Lott suggests collected

data can be used to guide development and

to call attention to atypical patterns worthy

of investigation. In this regard, he assumes

time-series data will be collected and

evaluated. Inherent in this idea is the

development of a canonical pattern or

typical shape for a particular metric.

Unfortunately, neither Lott nor the systems

studied define how to select or interpret

the automatically collected measurements.

Time-Series Shape Metrics

 Estimation is core to every software

metrics consideration but in addition to

that, DeMarco briefly notes that process

metrics, such as compilation rate, can be

used to identify project dysfunction and

impending problems [6]. Periodic

sampling of a metric allows the value

measured to be graphed against time. For

some measures, such as compilation rate,

which means that all well planned projects,

may all have similar shapes when viewed

as time-series data. If this is the case, then

projects not properly planned can be

detected if or when they deviate from the

canonical shape. Actually, DeMarco

suggested that compilation rates that

continue at a steady rate without showing

any decline may be an indication of a poor

work from development team. While this

particular evaluation may not apply to all

development environments, the idea of a

well planned project canonical shape can

be applied to all environments.

 In another breathe, he recommended

reporting test progress as a graph showing

measurements against time. Time-series

graphs make it clear how test progress has

been proceeding and how its trends change

over time. In general, comparing the

current project with similar historic

projects using graphs can highlight

abnormal trends which may be an

indicator of trouble. Given DeMarco's

emphasis on continuous monitoring and

improvement, it is surprising he does not

suggest using implementation artefact

metrics, such as size or complexity, to

monitor implementation progress.

 Schneidewind used time-series metrics

to create a method for evaluating process

stability [34]. Schneidewind emphasizes

that metric trends are a significant

indicator of the underlying process and

monitoring the trends can provide

feedback about the process. To quantify

these trends, he introduces two new classes

of indirect metrics. A change metric is

computed using differences in consecutive

values of a traditional metric. This metric

can be viewed as the derivative of the

primary metric. The other class of indirect

metric introduced is the shape metric. A

shape metric is derived from the curve of

the time-series metric data when graphed

against time. For example, one shape

metric suggested is the time at which the

failure rate is highest. Lower values for

this metric may indicate process stability,

while higher values may indicate

instability in the development process. A

strong case is presented for the use of

time-series data, and indirect metrics

derived from it, in the context of process

stability. Monitoring progress during the

development stage using change and shape

metrics is an obvious extension of this

study.

 McConnell understands typical "code

growth" on a project to contain three

distinct phases [28]. In the first phase,

architectural development and detailed

design generate very little code. The

second phase provides staged deliveries

and includes detailed design, coding, and

unit testing. During this phase code growth

is very high. During final release, the third

phase, code growth slows to a crawl.

McConnell shows a graph depicting a

typical code growth pattern for a well-

managed project. He indicates the phase

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

108

transitions occur at approximately 25%

and 85% of the total development time,

but acknowledges that this varies to some

degree. His main point is periodic

monitoring of code size is a valuable

feedback tool for managers. No details are

given about the specific metric(s) involved

or the process used to collect the data. The

proposed progress model clarifies how

metrics are used and provides a specific

interpretation of the three phases

documented by McConnell.

Process Models

 Powell expanded the frontier of the role

of software measurement to explicitly

include not only prediction and control but

also assessment and understanding [32].

He propounded arguments for assessment

similar to those presented by Boehm and

DeMarco for prediction and control.

Regardless of the motive, measurements

are always based on assumptions about the

process in which the measurement is

taken. Powell states "it is impossible to

talk about measurements without implying

some form of [process] model" [32].

Before measurements can be taken, and

before metrics can be determined, a model

of the development environment must be

chosen.

 Turski presents a model for

understanding the observed rate of

software growth as a function of time [36].

Using the number of modules as the

dependent variable and uniform inter

release intervals as the independent

variable, he shows size correlates strongly

with the third root of time {size = \/time).

While defendable on the bases of

Lehman's Laws of Software Evolution

[21], Turski uses a simple mental model to

understand the same relationship. He

suggests envisioning a system as a sphere

with "surface" modules being easy to

modify while "interior" modules are much

harder to modify. With this model in mind,

it is easy to see that the proportion of easy

modules to hard modules tends toward

zero as the project (sphere) grows with

time.

 Turski believes that simple and

manageable models provide powerful

insights into understanding the forces at

work in software development. In

particular, models which exhibit causal

relationships rather than simple statistical

correlations provide not only better

interpretation but improved understanding

of the process.

Framework Design

 Project managers and software

designers have developed an actual

framework from intuition about what

should occur during a software

development process. And as a matter of

fact framework implementation progress

model should be consistent with this

acquired experience. A condensed version

of this collective wisdom is presented by

McConnell [28]. He uses code growth as a

measure of progress and provides a

nominal code growth pattern as well as a

range of normal variations for well-run

projects. An appropriate progress model

should reflect the basic shape of accepted

norms such as those presented by

McConnell.

 Another constraint on designing an

appropriate framework implementation

progress model is its interpretive power.

Interpretation of metric data relies on some

understanding of the underlying process

and how it works. Take for instances,

changes in the rate of progress in an

otherwise stable environment may indicate

the project has transitioned to a new phase.

This assumes the rate of progress is

dependent on the project state. This

process of drawing meaning from data,

such as when a phase ends, is

interpretation and of course an

implementation progress model must

approximate actual project data collected.

Solution Model:
Static Analysis

Halstead’s Software Physics or Software

Science

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

109

n1 = no. of distinct operators in program

n2 = no. of distinct operands in program

N1 = total number of operator occurrences

N2 = total number of operand occurrences

Program Length: N = N1 + N2

Program volume: V = N log
2

(n1 + n2)

(represents the volume of information (in

bits) necessary to specify a program.)

Specification abstraction level: L = (2 *

n2) / (n1 * N2)

Program Effort: E = (n1 + N2 * (N1 + N2)

* log
2

(n1 + n2)) / (2 * n2)

(interpreted as number of mental

discrimination required to implement the

program.)

McCabe’s Cyclomatic Complexity

Hypothesis: Difficulty of understanding a

program is largely determined by

complexity of control flow graph.

 Cyclomatic number V of a connected

graph G is the number of linearly

independent paths in the graph or number

of regions in a planar

graph.

Fig. 1: Planar Graph

 Claimed to be a measure of testing

difficulty and reliability of modules.

 McCabe recommends maximum V(G)

of 10.

Static Analysis (Problems)

 Does not change as program changes.

 High correlation with program size.

 No real intuitive reason for many of

metrics.

 Ignores many factors: e.g., computing

environment, application area,

particular algorithms implemented,

characteristics of users, and ability of

programmers.

 Very easy to get around. Programmers

may introduce more obscure

complexity in order to minimize

properties measured by particular

complexity metric.

 Size is best predictor of inherent faults

remaining at start of program test.

Bug Counting Using Dynamic

Measurement

Estimate number remaining from number

found.

1) Failure count models 2) Error seeding

models Assumptions:

 Seeded faults equivalent to inherent

faults in difficulty of detection.

 A direct relationship between

characteristics and number of exposed

and undiscovered faults.

 Unreliability of system will be directly

proportional to number of faults that

remain.

 A constant rate of fault detection.

What does an estimate of remaining errors

mean?

 Interested in performance of program,

not in how many bugs it contains.

 Most requirements written in terms of

operational reliability, not number of

bugs. Alternative is to estimate failure

rates or future inter -failure times.

Estimating Failure Rates

Input-Domain Models:

 Estimate program reliability using test

cases sampled from input domain.

 Partition input domain into

equivalence classes, each of which

usually associated with a program

path.

 Estimate conditional probability that

program correct for all possible inputs

given it is correct for a specified set of

inputs.

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

110

 Assumes outcome of test case given

information about behaviour for other

points close to test point.

Reliability Growth Models

Software Reliability: The probability that a

program will perform its specified function

for a stated time under specified

conditions.

 Execute program until "failure" occurs,

the underlying error found and

removed (in zero time), and resume

execution.

 Use a probability distribution function

for the inter failure time (assumed to

be a random variable) to predict future

times to failure.

 Examining the nature of the sequence

of elapsed times from one failure to the

next.

 Assumes occurrence of software

failures is a stochastic process.

Software Uncertainty

 Assumption: The mechanism that

selects successive inputs during execution

is unpredictable (random). O is the image

set of I
F

under the mapping p

Fig. 2: Software Uncertainty illustrated

Table 1: Sample Inter Time Data

3 30 113 81 115 9 2 91 112 15

138 50 77 24 108 88 670 120 26 114

325 55 242 68 422 180 10 1146 600 15

36 4 0 8 227 65 176 58 457 300

97 263 452 255 197 193 6 79 816 1351

148 21 233 134 357 193 236 31 369 748

0 232 330 365 1222 543 10 16 529 379

44 129 810 200 300 529 281 160 828 1011

445 296 1755 1064 1783 860 983 707 33 868

724 2323 2930 1461 843 12 261 1800 865 1435

30 143 109 0 3110 1247 943 700 875 245

729 1897 447 386 446 122 990 948 1082 22

75 482 5509 100 10 1071 371 790 6150 3321

1045 648 5485 1160 1864 4116

Applying the Models

 Different models can give varying

results for the same data; there is no way

to know a priori which model will provide

the best results in a given situation

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

111

.

 Fig. 3: Models Applied

 The nature of the software engineering

process is too poorly understood to

provide a basis for selecting a particular

model.

Software Design Metrics

Number of parameters

 Tries to capture coupling between

modules.

 Understanding modules with large

number of parameters will require more

time and effort (assumption).

 Modifying modules with large

number of parameters likely to have side

effects on other modules.

Number of modules

 Number of modules called (estimating

complexity of maintenance).

Fan-in: number of modules that call a

particular module.

Fan-out: how many other modules it calls.

 High fan-in means many modules

depend on this module.

 High fan-out means module depends

on many other modules. Makes

understanding harder and maintenance

more time-consuming.

Data Bindings

 Triplet (p,x,q) where p and q are

modules and X is variable within scope of

both p and q.

Potential data binding:

 X declared in both, but does not check

to see if accessed.

 Reflects possibility that p and q might

communicate through the shared

variable.

Used data binding:

 A potential data binding where p and q

use X.

 Harder to compute than potential data

binding and requires more information

about internal logic of module.

Actual data binding:

 Used data binding where p assigns

value to x and q references it.

 Hardest to compute but indicates

information flow from p to q.

Cohesion metric

 Construct flow graph for module.

 Each vertex is an executable statement.

 For each node, record variables

referenced in statement.

Determine how many independent

paths of the module go through the

different statements.

 If a module has high cohesion, most of

variables will be used by statements in

most paths.

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

112

 Highest cohesion is when all the

independent paths use all the variables

in the module.

Robert Cecil Martin Popularized

Software Package Metrics

 Robert Cecil Martin is one of the

creators of agile software development

methodologies and extreme programming.

Created metrics used for evaluating object

oriented software packages which was also

meant to be used with in an extreme

programming framework. The advantage

is that the metric calculation is relatively

transparent.

 As long as the criteria are important,

developers can build software that follows

these constraints and get better metrics

about their code various aspects of

software packages can be measured such

as [4]

 This metric shows how the package

balances between abstractness and

stability. A package will do well in this

metric by being either mostly abstract or

stable, or completely concrete and instable.

Package dependency cycles: packages in

the packages hierarchy that depend on

each other. (Dependency cycles)

Embedding Quality

 When fault prediction is incorporated in

Robert Cecil Martin models it will allow

organizations to predict defects in code

before software has been released.

There is debate around aggregating the

models or modelling only some of the

defects more accurately. Part of the debate

stems from the need for more research in

software decomposition and how to

decompose software for better quality

systems. .Models are used to explain

aspects of a software system numerically

in at a statistically significant level.

Research that is trying to address the

human judgment side of metrics

processing is also being addressed

 Breaking down the defects that software

is measured for will give a better view of

the particular type of defect you are

interested in and with the design

Frameworks it is easy to understand

metrics and making sure that we are using

them correctly. Though the metrics

analysis techniques, and the usefulness of

data is not fool proof. Software metrics are

statistical predictions and estimations, and

not just a number. The numbers have three

dimensions [2] error, bias, and variance or

scatter. A human typically ignores these

dimensions for simplicity and with the loss

of information comes over optimism and

over-confidence.

 Research is being done to use meta

cognition experiment results in application

to software metrics interpretation and use

in project planning and reflection. [2].

Researchers Carolyn Mair and Martin

Sheppard want to include the perspective

on how people actually employ software

metrics results currently so they can

understand how to make those metrics

better. Kaner and Bond argue that metrics

in software engineering are not yet

properly used. In part this is because the

validity of the metrics that are used is not

emphasized.[10] .This could be due to

many reasons, one being that software

engineering is traditionally a empirical

field. If the software is working the default

action is typically to leave it alone.

 Also, one of the most common form of

software metrics is automated and user

testing. This happens to be very expensive

and one of the first things to get cut from

the development lifecycle. So if a

company or organization is going to cut

testing, it seems likely to us that they

would also not use metrics for the same

reasons.

Conclusions
 Few metrics have been demonstrated to

be predictable or related to product or

process attributes so interpreting

implementation progress measurements is

difficult. A simple model is needed to

provide a framework to help interpret the

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

113

data. We have developed a piecewise

approximation based on a three-phase

model of linear implementation velocity.

The model corresponds well to our

intuition of how project progress occurs. It

identifies project phase boundaries as well

as the velocity of implementation during

each phase. Furthermore, the progress

model allows objective comparisons of

project velocity between projects and

easily supports estimating.

 The progress model fits the available

sample data much better than a linear

model. With only one additional degree-

of-freedom, the model produces fits with

approximately two-thirds less error than a

linear fit. When compared with a

polynomial fit, the progress model

performs at least as well as a polynomial

model which has one additional degree-of-

freedom.

Limitations and Recommendation
 The progress model presented here only

considers non-maintenance Implementation.

Projects with clear delivery dates, after

which continuing development is not

planned, fall into this category. Projects in

maintenance or under continuous

development may not exhibit phases

similar to projects with firm end dates.

Any model is only as good as the data on

which it is based. Errors were discovered

in both dimensions of the sample data.

Spurious data entries were occasionally

introduced due to the check-in process

used. Similarly, project billing information

could have helped improve the quality of

the time data collected.

 There is “a strong tendency for

professionals to display over-optimism and

over-confidence”

 Arguments that simplistic

measurements may cause more harm then

good, ie data that is shown because it is

easy to gather and display [5]

 There are arguments about the effects

that software metrics have on the

developers’ productivity and well being

 This research paper provides a sound

basis for further study in this area.

Application of the progress model to

continuous development projects should

be investigated.

 Again there should be further study to

take advantage of the stability of the model

for making predictions. Estimating project

parameters such as final size, delivery

date, development pace, etc. during

implementation should be investigated.

Similarly, the effect of project properties,

such as number of engineers, experience

level, domain familiarity, length of project,

etc., on the model parameters should also

be studied..

.

References

[1] Albrecht, A. J. and J. John E. Gaffney (1983, Nov). Software function, source lines of

code, and development effort prediction: A software science validation. IEEE

Transactions on Software Engineering 5(6), 639-648.

[2] Andersson, T., K. Enholm, and A. Torn. RMC a length-independent measure

of software complexity. Reports on computer science and mathematics, Abo

Akademi University.

[3] Basili, V. R. and H. D. Rombach (1988). The TAME project: Towards improve

mentoriented software environments. IEEE Transactions on Software

Engineering 14 {6), 758-773.

[4] Boehm, B. W. (1988). Spiral model of software development and enhancement. IEEE

 Computer 21 {3), 61-72.

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

114

[5] Boraso, M., C. Montangero, and H. Sedehi (1996). Software cost estimation: an

experimental study of model performances. Technical Report TR-96-22,

Universita di pisa, departmento di informatatica.

[6] DeMarco, T. (1982). Controlling Software Projects Management, Measurement and

Estimation. Inglewood Cliffs, NJ: Yourdon Press.

[7] El-Eman, K. (2000, June). A methodology for validating software product metrics.

Technical Report NRC/ERB-1076 44142, National Research Council Canada,

Institute for Information Technology.

[8] Fenton, N. E. (1991). Software Metrics: A Rigorous Approach. London: Chapman

and Hall.

[9] Fenton, N. E. and M. Neil (1999). A critique of software defect prediction models.

Software Engineering 25 {5), 675-689.

[10] Fenton N. E. and M. Neil (2000, June). Software metrics: roadmap. In Proceedings of

the conference on The future of Software Engineering, pp. 357-370. ACM

Press.

[11] Goel, A. L. and K. Okumoto (1979, August). Time-dependent error-detection rate

model for software reliability and other performance measures. IEEE

Transaction on Reliability RE-28{3), 206-210.

[12] Halstead, M. H. (1977). Elements of Software Science. New York, NY: Elsevier

Scientific.

[13] Henry, S. M. and D. G. Kafura (1981, Sep). Software structure metric based on

information flow. IEEE Transactions on Software Engineering 7(5), 510-518.

[14] Huffman, D. A. (1952, Sep). A method for the construction of minimum-redundancy

codes. Proceedings of the Institute of Electrical and Radio Engineers 40(9),

1098-1101.

[15] Jelinski, Z. and P. Moranda (1971). Software reliability research. In W. Freiberger

(Ed.), Statistical Computer Performance Evaluation, pp. 465-484. Providence,

RH: Academic Press.

[16] Jorgensen, M. (1995). Experience with the accuracy of software maintenance task effort

prediction models. IEEE Transactions on Software Engineering 21 {8), 674-

681.

[17] Kafura, D. and J. Canning (1985, Aug). A validation of software metrics using many

metrics and two resources. In Proceedings of the 8th International Conference

on Software Engineering, pp. 378-385.

[18] Kaner, C., Bond, W. (2004) Software Engineering Metrics: What Do They

Measure and How Do we Know? 10th International Software Metrics

Symposium

[19] Kirsopp, C. (2001, Apr). Measurement and the software development process. In 12th

European Software Control and Metrics Conference, pp. 165-173.

[20] Lake, A. and C. R. Cook (1994, apr). Use of factor analysis to develop oop software

complexity metrics. In Proceedings Sixth Annual Oregon Workshop on

Software Metrics.

[21] Lehman, M. M., J. F. Ramil, R D. Wernick, and D. E. Perry (1997). Metrics and

laws of software evolution-the nineties view. In Proceedings of 4th

International Symposium on Software Metrics, pp. 20.

[22] Lind, R. K. and K. Vairavan (1989, may). An experiemental investigation of software

metrics and their relationship to software development effort. IEEE

Transactions on Software Engineering 15{h), 649-653.

[23] Lott, C. M. (1993, Oct). Process and measurement support in sees. ACM SIGSOFT

Software Engineering Notes 18{-i), 83-93.

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

115

[24] Mair, C., Shepperd, M. (2011) Human Judgement and Software Metrics: Vision

for the Future. WETSoM’11 (May 24, 2011), Waikiki, Honolulu, HI USA.

[25] Marasco, J. (2002, August). Tracking software development projects. Dr. Dobb's

Journal.

[26] Martin, R. D. and V. Yohai (2001). Data mining for unusual movements in temporal

data. In KDD Workshop on Temporal Data Mining.

[27] McCabe, T. J. (1976, Dec). A complexity measure. IEEE Transactions on Software

Engineering S(4), 308-320.

[28] McConnell, S. (1998). Software Project Survival Guide. Redmond, WA: Microsoft

Press.

[29] Misirli, A., Caglayan, B., Miransky, A., Bener, A., Ruffolo, N. (2011). Different

Strokes for Different Folks: A Case Study on Software Metris for Different

Defect Categories.

[30] Nagappan, N., Ball, T. (2007) Using Software Dependencies and Churn Metrics to

Predict Field

Failures: An Empirical Case Study. IEEE First International Symposium on Empirical

Software Engineering Measurement.

[31] Park, R. E. (1992). Software size measurement: A framework for counting source

statements. Technical Report CMU/SEI-92-TR-20, Software Engineering

Institute, Pittsburgh, PA.

[32] Powell, A. L. (1998). A literature review on the quantification of software

change.technical report YCS-98-305, University of York, Department of

Computer Science.

[33] Robert Cecil Martin (2002) .http://www.sdtimes.com/link/34157

[34] Schneidewind, N. F. (1999, Nov). Measuring and evaluating maintenance process using

reliability, risk, and test metrics. IEEE Transactions on Software Engineering

25 {6), 761-781.

[35] Strelzoff, A. and L. Petzold (2003). Revision recognition for scientific computing:

theory and application. In 18th Annual Software Engineering and Knowledge

Engineering Conference, pp. 46-52.

[36] Turski, W. M. (2002, August). The reference model for smooth growth of software

systems revisited. IEEE Transactions on Software Engineering 28{8), 814-

815.

[37] van Solingen, R. and E. Berghout (1999). The Goal/Question/Metric Method. London:

McGraw-Hifl Publishing Company.

[38] Vasilescu, B., Serebrenik, A., van den Brand, M. (2011). By No Means: A Study on

Aggregating Software Metrics.

[39] WETSoM’11 (May 24, 2011), Waikiki, Honolulu, HI USA. Agile Software

Development: Principles, Patterns and Practices. Pearson Education.

[40] Woodings, T. L. and G. A. Bundell (2001, April). A framework for software project

metrics. In Proceedings of the ESCOM 2001

.

