
West African Journal of Industrial & Academic Research   Vol.10 No.1   
April 2014                         

102 

A Framework for Effective Software Monitoring in 

Project Management 
 

1
Wemembu, Uchenna Raphael, 

2
Okonta, Okechukwu Emmanuel, 

3
Ojugo, Arnold Adimabua  

4
Okonta, Imah Love 

 
. 

1
Department of Mathematics Federal College of Education. (Tech) Asaba. 

2
 Department of Computer Science Federal College of Education. (Tech) Asaba 

3
 Department of Math/Computer Science,  Fed University Petroleum Resources Effurun 

4
 Department of Technical Drawing Federal College of Education (Tech) Asaba. 

 

Abstract 
Developed software for project management rely heavily on collecting metrics to provide the 

progress feedback necessary to allow control of the project. However, interpretation of this 

data is very difficult and sometimes cumbersome. This paper addressed the need of a 

software implementation progress model that is needed to help interpret the accumulated 

data. Certain criteria are set for design of a proposed implementation progress model. Some 

findings from the studied projects from other researchers suggest the model is consistent with 

the observed behaviour. In addition to quantitative validity, the model is shown to provide 

meaningful interpretation of collected metric data by embedding certain quality function. 
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Introduction  

    Developing software for effective 

project management in modern times rely 

heavily on periodically collected software 

metric data and this in turn used to provide 

management with feedback about the 

project, the process used and the stages in 

development.  Metric data is most 

commonly used in the area of quality 

assessment and assurance. Well-defined 

metrics usually provide report on quality 

attributes such as anticipated number of 

faults remaining.  But other areas, such as 

implementation progress and system 

throughput, hardly utilize feedback from 

Metrics data. Although, the total lines of 

source code, could be used to report on 

implementation progress but such 

measures have not been leveraged as 

strongly as quality assessment and 

assurance have been used. 

    Metric data is widely regarded as a 

valuable management feedback tool, yet it 

is generally not used to monitor 

implementation progress. An 

implementation progress model is 

presented and shown to identify project 

phase boundaries, express the rate of 

implementation during each phase, and 

allow objective comparisons between 

projects. This paper provides a framework 

to help interpret periodically collected 

implementation data. This work develops a 

model for interpreting implementation 

progress. The proposed progress 

monitoring model uses existing 

implementation artefact metrics, tries to 

match our understanding of the 

implementation progress, and allows 

project evaluation based on estimation of 

parameter used. Well-defined and proven 

metrics exist for many areas of software 
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engineering and development including 

especially quality assessment and 

assurance. Implementation progress has no 

such established metrics.  

    The lack of proven implementation 

progress metrics has been a barrier to any 

attempt to effectively monitor project 

development. Nevertheless, this 

shortcoming is not insurmountable. Size 

metrics are abundant and deriving a 

progress metric from a size metric can be 

accomplished by working out the 

difference in consecutive size 

measurements. A far larger barrier than the 

lack of a metric is the lack of a proven 

implementation progress model. 

Periodically collected data is rich in 

detailed information but is not in itself 

meaningful. A model provides a specific 

interpretation of the data and allows 

meaning to be extracted. An 

implementation progress monitoring 

model will allow periodically collected 

implementation data to be effectively 

interpreted. 

    Several existing metrics measure size-

related attributes. While these size-related 

metrics may have been originally 

developed to support quality assessment 

and assurance, they can be used to monitor 

progress in terms of size. Project size is 

important because it is usually used to 

estimate the resources needed and 

therefore assess the project's status with 

regard to the schedule for completion [6]; 

[1]; [16]. This known fact about 

management need for feedback about 

implementation progress should demand 

its use because its absence may be as result 

not introducing metrics to support 

implementation progress monitoring 

feedback before now. 

 

Basic Concept 

    We design models normally to bridge 

the gap between real sampled data and 

expected outcomes. In real terms models 

act as predictors to set expectations over 

the next few data samples but in a small 

scale. Take for instance a defect model, 

this may indicate the number of faults to 

be found in a released project and the 

degree to which the actual number of 

faults discovered differs from the predicted 

value can actually be an indication of 

unexpected circumstances within the 

project. This means that, an unusual low 

value may be pointing to the fact that 

fewer code changes were made than 

expected, or that less testing was carried 

out than expected. This also means that 

Management has been forewarned; an 

investigation can be made and then 

appropriate response taken. This feedback, 

though small scale provides valuable and 

timely feedback to the management within 

the scope of the executing project. 

    In addition to this small scale feedback, 

models provide feedback on a larger scale, 

where the feedback focuses more on the 

overall picture portrayed by the data. This 

is regularly required by management, with 

or without a formal model. Without a 

formal model management team must rely 

on guess work. In contrast to this unusual 

approach, a formal model can be adopted 

to establish a rigorous evaluation. A 

formal model establishes the critical 

parameters within the system. Using a 

formal model, projects may be evaluated 

or compared in terms of the model 

parameters. Model parameters allow 

evaluation and comparisons to be based on 

defendable data rather than guess work 

and hearsay. Additionally, given estimated 

values for the parameters, the model can 

make predictions about the outcome. This 

relationship between parameters (input) 

and predictions (output) codifies a causal 

effect believed to be true within all 

designed system. 

 

Similar Research Done Before Now 

    Some work done before with reference 

to software metrics on the development 

process has been directed at tasks before 

and after implementation. Much work has 

been done in the pre-implementation 

stages to improve effort prediction and 

estimation [1]; [22] [16]; [5]; [36]. Metrics 
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have also been used to evaluate 

architectural design before 

implementation. Significant work has been 

done in the post-implementation stages to 

predict failure rates, both for a project as a 

whole as well as for individual modules 

[15]; [11]; [37]; [9]; [34]. 

    However, substantially less work has 

been published regarding the use of 

metrics for assessment, monitoring, or 

control of the implementation stage itself. 

DeMarco confirms this when he asserts 

"you can't control what you can't measure" 

[6]. In fact, every researcher now that is 

proposing, defending, or merely discussing 

a metric agrees the reason behind metrics 

and measuring is to gain some degree of 

understanding and control over the 

complex process of software development 

[10]. Recent studies have focused attention 

on how to use the vast array of data 

generated by existing measures. 

    Some published works emphasizing 

how to use the potentially enormous data 

available can be coarsely divided into 

three groups. Many works assert metrics 

should be used to assist in monitoring, 

evaluation and control of projects during 

the implementation phase [6]; [3]; [4]; 

[23]; [37]; [19]. Other researchers 

recommend specifically that time-series 

metrics data be used to monitor and 

evaluate projects [6]; [28]; [34]. The last 

group that consist of several researchers 

emphasize the idea gained from causal 

models over correlative models [32]; [10]; 

[36]. They suggest models which provide 

an inherent causes-relationship are more 

valuable than simpler correlation models. 

 

Model Design 

    The main purpose of designing a model 

is to provide a documented method of 

interpreting a set of data. In most cases the 

interpretation is usually obscured by the 

sheer quantity and detail of the enormous 

data available and Information can only be 

revealed when these data are interpreted in 

a particular way. The interpretation results 

can then be used to evaluate past 

performance, assess the current situation, 

and make predictions about future 

performance.  

    The interpretation can also be used to 

compare multiple data sets. Results from 

the same model, applied to several data 

sets, allow the data sets to be easily 

compared in terms of the model. The 

model provides a systematic method for 

comparing projects. One type of model 

interprets series data by attempting to fit 

collected data to a family of curves. The 

single curve which best fits the data is 

used to describe the data in terms of the 

model. The specific values used to 

generate the best fitting curve are 

considered parameters of the model. 

Parameters of a model reveal one or more 

dimensions of the collected data. In this 

case, parameters can be considered an 

output of the model. Collected data is the 

input and results summarizing that data are 

produced. Parameters can also be used as 

input resulting in expected sample data. 

When used in this way, models make 

predictions based on estimated parameters. 

In either case, the expected progress as 

defined by the model is given by the 

model curve. 

    The model equation and a specific set of 

parameters define the model curve. 

A valuable model is one that produces a 

clear and concise interpretation of the data. 

Part of this interpretation is in the form of 

the specific values for the model 

parameters. For example, consider two 

models, one uses only two parameters 

while the other has eight parameters. Even 

though the eight-parameter model may 

predict the data "twice" as well, it may not 

be the better model if its parameters have 

no particular meaning or are hard to 

estimate. Models should have as few 

parameters as possible while still 

modelling the data with sufficient 

accuracy. Fewer parameters means the 

model is easier to understand. 

      Part of understanding a model is 

understanding the relationships between 

the 



West African Journal of Industrial & Academic Research   Vol.10 No.1   
April 2014                         

105 

parameters. Parameters are related by the 

effects each has on the others. Knowing 

the trade-offs between parameters is 

necessary to understand a model. This is 

easier if the model contains fewer 

parameters. In addition to relatively few 

parameters, individual model parameters 

should be understandable. Understandable 

parameters produce simple results with 

meaning. 

    On the other hand, meaningless 

parameters do not help to simplify or 

interpret the data since they must again be 

interpreted. Parameter meaning is even 

more important when the model is used as 

a predictor for new projects. In this case, 

model parameters must be estimated 

before any data has been collected. If the 

individual parameters are well understood 

better estimates for each will be made. 

Better estimates will produce better 

predictions. Related to individual 

parameter meaning is the parameter unit. 

Model parameters should be expressed in 

well-known units, rather than new or 

arbitrary ones. Parameters with direct 

interpretations allow the model results to 

be easily understood and used. Well-

known units are also much easier to 

estimate. Again, this allows for better 

predictions. Model parameters should be 

few in number, directly interpretable, and 

measured in existing units. These 

properties give the model parameters the 

most meaning and thus give the model the 

most "clarifying power". 

 

Implementing Model’s monitoring. 

    Generally, Implementation progress is 

not a new concept and so in addition to 

basic model requirements, an 

implementation progress model must be 

compatible with existing models. An 

informal progress model already exists; it 

can be seen in project vocabulary and 

assumptions. For instance, this informal 

model is commonly used to answer certain 

project status queries, such as: 

 

What is the expected completion date 

based on the current pace? 

What was the size of the total effort for 

that project? 

What fraction of the total effort is 

currently done? 

What fraction of the total effort will be 

done by a certain date? 

    A proposed framework implementation 

model should serve the same purpose as 

the informal model. The model must help 

provide answers to questions about 

implementation speed and progress of 

current and future projects. The informal 

progress model captures another key 

attribute of implementation progress. The 

informal model acknowledges that project 

speed is not constant throughout a project: 

because sometimes projects "speed up" 

and "slow down". There must always be 

the ability or desire to constantly 

determine implementation velocity. As 

noted by McConnell [28] this velocity 

increases at the beginning and decreases 

near the end. A formal implementation 

progress model should be informed by this 

experience and capture the canonical 

variations in velocity during 

implementation. 

    In a nut shell, the desired attributes of a 

formal implementation progress model 

include relatively few parameters, 

understandable parameters, well-known 

parameter units, consistency with informal 

progress model, and the ability to answer 

management questions involving size and 

velocity. 

  

Evaluation and Control 

     DeMarco presents a development 

process relying on steadily improving 

estimates to provide feedback and control 

during all phases of software development 

[6]. Metrics collected at each stage of 

development provide raw data for creating 

an improved estimate for the next stage. 

Metrics from the current project as well as 

previous projects are used to make inform 

decisions. What was focus throughout his 

work is the need for continuing feedback 
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by continuously improving estimates while 

allowing the development effort to be 

properly directed. He made a compelling 

case supporting estimates reviews, process 

metrics, and cost models in order to make 

quality improvement. DeMarco identifies 

and recommends appropriate metrics for 

each stage of development. 

    In discussing appropriate metrics for the 

implementation stage DeMarco points to 

process metrics such as compilation rate 

but did not explore them. The primary 

implementation measure is code weight, 

which is defined as a product of two 

dimensions: size and complexity. 

DeMarco defines code size as information 

content within a program. He recommends 

using Halstead's volume metric [12] to 

find size. Several alternatives for 

measuring complexity are presented, but 

McCabe's cyclomatic complexity measure 

[27] was recommended. Using these two 

dimensions as parameters, an algorithm is 

presented for computing implementation 

weight. Historical data from similar 

projects and environments is also used to 

provide scaling factors. According to 

DeMarco, the primary motivation for 

computing implementation weight is to 

improve future project estimates. 

However, he also calls it a "project 

predictor", as it was deplored to predict the 

final size of the project accurately. 

According to this novel system presented 

by DeMarco, the measure should be taken 

once near the middle of implementation. 

However, progress model been proposed 

by this paper may provide a better estimate 

of implementation size. Since the proposed 

model considers the complete project 

history, not simply a single point in time, 

because this is less prone to errors. 

    Boehm considered a broader approach 

to development feedback than simply 

focusing on improved estimates. He 

introduces a software development 

methodology whose principal aim is risk 

management [4]. His spiral model of 

software development relies on risk 

evaluation as the impetus for each unit of 

work, whether the work unit is a prototype, 

design document, or code. Risk 

management implies the ability to control 

what is being managed. This agrees with 

DeMarco's argument that our need to 

measure the software development process 

stems from our desire to control the 

process [6]. Boehm's methodology 

assumes feedback metrics exist to inform 

the risk evaluation process, but does not 

dictate specific measures or measurement 

processes. 

    Addressing the selection of appropriate 

metrics for quality control, Solingen and 

Berghout defined the 

Goal/Question/Metric Method (GQM) of 

improving software quality [37]. 

Goal/Question/Metric Method integrates 

metrics into the development process in 

order to answer questions about quality 

raised by corporate goals. Their 

methodology relies on the ability to follow 

the connection between corporate goals 

and specific metrics, in both directions. 

Measurements are defined by goals and 

the results interpreted in terms of those 

goals. In the area of quality control, well 

developed process models exist to help 

define and interpret metrics. However, 

implementation models in general and 

implementation progress in particular, 

have not been well developed. 

    Kirsopp addresses the need to capture 

development models and enough data to 

evaluate them. He strongly argues that the 

software development process needs 

measurements for feedback and that the 

integration must be close, detailed and 

appropriate [19]. Organizations must 

support metrics outside of a single project 

in order to validate the process, validate 

the results, and collect historic data. All 

three of these are required to assist future 

project estimates. An experience factory 

provides a repository for captured 

experiences and models, allowing reuse 

‘within an organization. Kirsopp cites the 

“Tailoring a Metric Environment” Project 

[3] as a working example of an experience 

factory. 
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    Lott provides an alternative approach; 

instead of suggesting or analyzing metrics, 

he studied several available and proposed 

software engineering environments [23]. 

Many of these environments include 

integrated tools for collecting numerous 

metrics about various development 

artefacts created. Lott suggests collected 

data can be used to guide development and 

to call attention to atypical patterns worthy 

of investigation. In this regard, he assumes 

time-series data will be collected and 

evaluated. Inherent in this idea is the 

development of a canonical pattern or 

typical shape for a particular metric. 

Unfortunately, neither Lott nor the systems 

studied define how to select or interpret 

the automatically collected measurements. 

 

Time-Series Shape Metrics 

    Estimation is core to every software 

metrics consideration but in addition to 

that, DeMarco briefly notes that process 

metrics, such as compilation rate, can be 

used to identify project dysfunction and 

impending problems [6]. Periodic 

sampling of a metric allows the value 

measured to be graphed against time. For 

some measures, such as compilation rate, 

which means that all well planned projects, 

may all have similar shapes when viewed 

as time-series data. If this is the case, then 

projects not properly planned can be 

detected if or when they deviate from the 

canonical shape. Actually, DeMarco 

suggested that compilation rates that 

continue at a steady rate without showing 

any decline may be an indication of a poor 

work from development team. While this 

particular evaluation may not apply to all 

development environments, the idea of a 

well planned project canonical shape can 

be applied to all environments.  

    In another breathe, he recommended 

reporting test progress as a graph showing 

measurements against time. Time-series 

graphs make it clear how test progress has 

been proceeding and how its trends change 

over time. In general, comparing the 

current project with similar historic 

projects using graphs can highlight 

abnormal trends which may be an 

indicator of trouble. Given DeMarco's 

emphasis on continuous monitoring and 

improvement, it is surprising he does not 

suggest using implementation artefact 

metrics, such as size or complexity, to 

monitor implementation progress. 

    Schneidewind used time-series metrics 

to create a method for evaluating process 

stability [34]. Schneidewind emphasizes 

that metric trends are a significant 

indicator of the underlying process and 

monitoring the trends can provide 

feedback about the process. To quantify 

these trends, he introduces two new classes 

of indirect metrics. A change metric is 

computed using differences in consecutive 

values of a traditional metric. This metric 

can be viewed as the derivative of the 

primary metric. The other class of indirect 

metric introduced is the shape metric. A 

shape metric is derived from the curve of 

the time-series metric data when graphed 

against time. For example, one shape 

metric suggested is the time at which the 

failure rate is highest. Lower values for 

this metric may indicate process stability, 

while higher values may indicate 

instability in the development process. A 

strong case is presented for the use of 

time-series data, and indirect metrics 

derived from it, in the context of process 

stability. Monitoring progress during the 

development stage using change and shape 

metrics is an obvious extension of this 

study. 

    McConnell understands typical "code 

growth" on a project to contain three 

distinct phases [28]. In the first phase, 

architectural development and detailed 

design generate very little code. The 

second phase provides staged deliveries 

and includes detailed design, coding, and 

unit testing. During this phase code growth 

is very high. During final release, the third 

phase, code growth slows to a crawl. 

McConnell shows a graph depicting a 

typical code growth pattern for a well-

managed project. He indicates the phase 
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transitions occur at approximately 25% 

and 85% of the total development time, 

but acknowledges that this varies to some 

degree. His main point is periodic 

monitoring of code size is a valuable 

feedback tool for managers. No details are 

given about the specific metric(s) involved 

or the process used to collect the data. The 

proposed progress model clarifies how 

metrics are used and provides a specific 

interpretation of the three phases 

documented by McConnell. 

Process Models 

    Powell expanded the frontier of the role 

of software measurement to explicitly 

include not only prediction and control but 

also assessment and understanding [32]. 

He propounded arguments for assessment 

similar to those presented by Boehm and 

DeMarco for prediction and control. 

Regardless of the motive, measurements 

are always based on assumptions about the 

process in which the measurement is 

taken. Powell states "it is impossible to 

talk about measurements without implying 

some form of [process] model" [32]. 

Before measurements can be taken, and 

before metrics can be determined, a model 

of the development environment must be 

chosen.  

    Turski presents a model for 

understanding the observed rate of 

software growth as a function of time [36]. 

Using the number of modules as the 

dependent variable and uniform inter 

release intervals as the independent 

variable, he shows size correlates strongly 

with the third root of time {size = \/time). 

While defendable on the bases of 

Lehman's Laws of Software Evolution 

[21], Turski uses a simple mental model to 

understand the same relationship. He 

suggests envisioning a system as a sphere 

with "surface" modules being easy to 

modify while "interior" modules are much 

harder to modify. With this model in mind, 

it is easy to see that the proportion of easy 

modules to hard modules tends toward 

zero as the project (sphere) grows with 

time. 

    Turski believes that simple and 

manageable models provide powerful 

insights into understanding the forces at 

work in software development. In 

particular, models which exhibit causal 

relationships rather than simple statistical 

correlations provide not only better 

interpretation but improved understanding 

of the process.  

 

Framework Design 

    Project managers and software 

designers have developed an actual 

framework from intuition about what 

should occur during a software 

development process. And as a matter of 

fact framework implementation progress 

model should be consistent with this 

acquired experience. A condensed version 

of this collective wisdom is presented by 

McConnell [28]. He uses code growth as a 

measure of progress and provides a 

nominal code growth pattern as well as a 

range of normal variations for well-run 

projects. An appropriate progress model 

should reflect the basic shape of accepted 

norms such as those presented by 

McConnell. 

    Another constraint on designing an 

appropriate framework implementation 

progress model is its interpretive power. 

Interpretation of metric data relies on some 

understanding of the underlying process 

and how it works. Take for instances, 

changes in the rate of progress in an 

otherwise stable environment may indicate 

the project has transitioned to a new phase. 

This assumes the rate of progress is 

dependent on the project state. This 

process of drawing meaning from data, 

such as when a phase ends, is 

interpretation and of course an 

implementation progress model must 

approximate actual project data collected. 

 

Solution Model: 
Static Analysis   

 

Halstead’s Software Physics or Software 

Science 
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n1 = no. of distinct operators in program 

n2 = no. of distinct operands in program 

N1 = total number of operator occurrences 

N2 = total number of operand occurrences 

Program Length: N = N1 + N2  

Program volume: V = N log 
2 

(n1 + n2)  

(represents the volume of information (in 

bits) necessary to specify a program.)   

Specification abstraction level: L = (2 * 

n2) / (n1 * N2)  

Program Effort: E = (n1 + N2 * (N1 + N2) 

* log
2 

(n1 + n2)) / (2 * n2)  

(interpreted as number of mental 

discrimination required to implement the 

program.) 

 

McCabe’s Cyclomatic Complexity  

Hypothesis: Difficulty of understanding a 

program is largely determined by 

complexity of control flow graph.  

 Cyclomatic number V of a connected 

graph G is the number of linearly 

independent paths in the graph or number 

of regions in a planar 

graph.

  
Fig. 1: Planar Graph 

 Claimed to be a measure of testing 

difficulty and reliability of modules. 

 McCabe recommends maximum V(G) 

of 10. 

 

Static Analysis   (Problems)  

 Does not change as program changes.  

 High correlation with program size.  

 No real intuitive reason for many of 

metrics.  

 Ignores many factors: e.g., computing 

environment, application area, 

particular algorithms implemented, 

characteristics of users, and ability of 

programmers.  

 Very easy to get around. Programmers 

may introduce more obscure 

complexity in order to minimize 

properties measured by particular 

complexity metric. 

 Size is best predictor of inherent faults 

remaining at start of program test.  

  

Bug Counting Using Dynamic 

Measurement 

Estimate number remaining from number 

found.  

1) Failure count models 2) Error seeding 

models Assumptions:  

 Seeded faults equivalent to inherent 

faults in difficulty of detection.  

 A direct relationship between 

characteristics and number of exposed 

and undiscovered faults.  

 Unreliability of system will be directly 

proportional to number of faults that 

remain.  

 A constant rate of fault detection. 

 

What does an estimate of remaining errors 

mean?  

 Interested in performance of program, 

not in how many bugs it contains. 

 Most requirements written in terms of 

operational reliability, not number of 

bugs. Alternative is to estimate failure 

rates or future inter -failure times.  

 

Estimating Failure Rates  

Input-Domain Models:  

 Estimate program reliability using test 

cases sampled from input domain.  

 Partition input domain into 

equivalence classes, each of which 

usually associated with a program 

path.  

 Estimate conditional probability that 

program correct for all possible inputs 

given it is correct for a specified set of 

inputs.  



West African Journal of Industrial & Academic Research   Vol.10 No.1   
April 2014                         

110 

 Assumes outcome of test case given 

information about behaviour for other 

points close to test point.  

 

Reliability Growth Models  

Software Reliability: The probability that a 

program will perform its specified function 

for a stated time under specified 

conditions.  

 Execute program until "failure" occurs, 

the underlying error found and 

removed (in zero time), and resume 

execution.  

 Use a probability distribution function 

for the inter failure time (assumed to 

be a random variable) to predict future 

times to failure.  

 Examining the nature of the sequence 

of elapsed times from one failure to the 

next.  

 Assumes occurrence of software 

failures is a stochastic process.  

 

Software Uncertainty  

    Assumption: The mechanism that 

selects successive inputs during execution 

is unpredictable (random). O is the image 

set of I 
F 

under the mapping p  

 
Fig. 2: Software Uncertainty illustrated 

 

Table 1: Sample Inter Time Data 

3 30 113 81 115 9 2 91 112 15 

138 50 77 24 108 88 670 120 26 114 

325 55 242 68 422 180 10 1146 600 15 

36 4 0 8 227 65 176 58 457 300 

97 263 452 255 197 193 6 79 816 1351 

148 21 233 134 357 193 236 31 369 748 

0 232 330 365 1222 543 10 16 529 379 

44 129 810 200 300 529 281 160 828 1011 

445 296 1755 1064 1783 860 983 707 33 868 

724 2323 2930 1461 843 12 261 1800 865 1435 

30 143 109 0 3110 1247 943 700 875 245 

729 1897 447 386 446 122 990 948 1082 22 

75 482 5509 100 10 1071 371 790 6150 3321 

1045 648 5485 1160 1864 4116 

 

Applying the Models 

    Different models can give varying 

results for the same data; there is no way 

to know a priori which model will provide 

the best results in a given situation
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.  

                                          Fig. 3: Models Applied 

 

    The nature of the software engineering 

process is too poorly understood to 

provide a basis for selecting a particular 

model. 

 

Software Design Metrics 

Number of parameters  

 Tries to capture coupling between 

modules.  

 Understanding modules with large 

number of parameters will require more 

time and effort (assumption).  

 Modifying modules with large 

number of parameters likely to have side 

effects on other modules.  

 

Number of modules 

     Number of modules called (estimating 

complexity of maintenance).  

Fan-in: number of modules that call a 

particular module.  

Fan-out: how many other modules it calls.  

 High fan-in means many modules 

depend on this module. 

 High fan-out means module depends 

on many other modules. Makes 

understanding harder and maintenance 

more time-consuming. 

 

Data Bindings  

    Triplet (p,x,q) where p and q are 

modules and X is variable within scope of 

both p and q. 

  

Potential data binding:  

 X declared in both, but does not check 

to see if accessed. 

 Reflects possibility that p and q might 

communicate through the shared 

variable.  

 

Used data binding:  

 A potential data binding where p and q 

use X. 

 Harder to compute than potential data 

binding and requires more information 

about internal logic of module.  

 

Actual data binding:  

 Used data binding where p assigns 

value to x and q references it. 

 Hardest to compute but indicates 

information flow from p to q. 

 

Cohesion metric  

    Construct flow graph for module.  

 Each vertex is an executable statement. 

 For each node, record variables 

referenced in statement. 

Determine how many independent 

paths of the module go through the 

different statements. 

 If a module has high cohesion, most of 

variables will be used by statements in 

most paths.  
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 Highest cohesion is when all the 

independent paths use all the variables 

in the module. 

 

Robert Cecil Martin Popularized 

Software Package Metrics 

    Robert Cecil Martin is one of the 

creators of agile software development 

methodologies and extreme programming. 

Created metrics used for evaluating object 

oriented software packages which was also 

meant to be used with in an extreme 

programming framework. The advantage 

is that the metric calculation is relatively 

transparent. 

     As long as the criteria are important, 

developers can build software that follows 

these constraints and get better metrics 

about their code various aspects of 

software packages can be measured such 

as [4] 

    This metric shows how the package 

balances between abstractness and 

stability. A package will do well in this 

metric by being either mostly abstract or 

stable, or completely concrete and instable. 

Package dependency cycles: packages in 

the packages hierarchy that depend on 

each other. (Dependency cycles) 

 

Embedding Quality 

    When fault prediction is incorporated in 

Robert Cecil Martin models it will allow 

organizations to predict defects in code 

before software has been released. 

There is debate around aggregating the 

models or modelling only some of the 

defects more accurately.  Part of the debate 

stems from the need for more research in 

software decomposition and how to 

decompose software for better quality 

systems. .Models are used to explain 

aspects of a software system numerically 

in at a statistically significant level. 

Research that is trying to address the 

human judgment side of metrics 

processing is also being addressed 

    Breaking down the defects that software 

is measured for will give a better view of 

the particular type of defect you are 

interested in and with the design 

Frameworks it is easy to understand 

metrics and making sure that we are using 

them correctly. Though the metrics 

analysis techniques, and the usefulness of 

data is not fool proof. Software metrics are 

statistical predictions and estimations, and 

not just a number. The numbers have three 

dimensions [2] error, bias, and variance or 

scatter. A human typically ignores these 

dimensions for simplicity and with the loss 

of information comes over optimism and 

over-confidence. 

     Research is being done to use meta 

cognition experiment results in application 

to software metrics interpretation and use 

in project planning and reflection. [2]. 

Researchers Carolyn Mair and Martin 

Sheppard want to include the perspective 

on how people actually employ software 

metrics results currently so they can 

understand how to make those metrics 

better. Kaner and Bond argue that metrics 

in software engineering are not yet 

properly used. In part this is because the 

validity of the metrics that are used is not 

emphasized.[10] .This could be due to 

many reasons, one being that software 

engineering is traditionally a empirical 

field. If the software is working the default 

action is typically to leave it alone. 

     Also, one of the most common form of 

software metrics is automated and user 

testing. This happens to be very expensive 

and one of the first things to get cut from 

the development lifecycle. So if a 

company or organization is going to cut 

testing, it seems likely to us that they 

would also not use metrics for the same 

reasons. 

 

Conclusions   
     Few metrics have been demonstrated to 

be predictable or related to product or 

process attributes so interpreting 

implementation progress measurements is 

difficult. A simple model is needed to 

provide a framework to help interpret the 
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data. We have developed a piecewise 

approximation based on a three-phase 

model of linear implementation velocity. 

The model corresponds well to our 

intuition of how project progress occurs. It 

identifies project phase boundaries as well 

as the velocity of implementation during 

each phase. Furthermore, the progress 

model allows objective comparisons of 

project velocity between projects and 

easily supports estimating. 

    The progress model fits the available 

sample data much better than a linear 

model. With only one additional degree-

of-freedom, the model produces fits with 

approximately two-thirds less error than a 

linear fit. When compared with a 

polynomial fit, the progress model 

performs at least as well as a polynomial 

model which has one additional degree-of-

freedom. 

 

Limitations and Recommendation 
    The progress model presented here only 

considers non-maintenance Implementation. 

Projects with clear delivery dates, after 

which continuing development is not 

planned, fall into this category. Projects in 

maintenance or under continuous 

development may not exhibit phases 

similar to projects with firm end dates. 

Any model is only as good as the data on 

which it is based. Errors were discovered 

in both dimensions of the sample data. 

Spurious data entries were occasionally 

introduced due to the check-in process 

used. Similarly, project billing information 

could have helped improve the quality of 

the time data collected. 

    There is “a strong tendency for 

professionals to display over-optimism and 

over-confidence” 

     Arguments that simplistic 

measurements may cause more harm then 

good, ie data that is shown because it is 

easy to gather and display [5] 

    There are arguments about the effects 

that software metrics have on the 

developers’ productivity and well being 

    This research paper provides a sound 

basis for further study in this area. 

Application of the progress model to 

continuous development projects should 

be investigated. 

    Again there should be further study to 

take advantage of the stability of the model 

for making predictions. Estimating project 

parameters such as final size, delivery 

date, development pace, etc. during 

implementation should be investigated. 

Similarly, the effect of project properties, 

such as number of engineers, experience 

level, domain familiarity, length of project, 

etc., on the model parameters should also 

be studied.. 

. 
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