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Abstract

The Berezin-Lieb inequality, which is a Jensen’s type inequality for convex

functions of self-adjoint operators, is considered. We find a similar type of

inequality for convex functions φ of normal operators. The normal operator is

assumed to be bounded and acting on an infinite dimensional separable Hilbert

space H. Finally the minimal closed convex set upon which it is sufficient to

define the convex function φ is determined.
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Berezin-Lieb Inequality: An Extension to Normal Operators

1. INTRODUCTION

If f is a convex function, B is a self-adjoint (not necessarily bounded) operator

in a Hilbert space H and BP = PBP , where P is an orthogonal projection in

H, then

TrPf(BP )P ≤ TrPf(B)P (1.1)

provided that Pf(B)P belongs to the trace class S1. This inequality was

proved in the early seventies by F. Berezin (1) and, independently, by E. Lieb

(6) (see also (10)). In (4) A. Laptev and Yu. Safarov obtained a more general

version of (1.1). In particular, they only assumed that

Pf(B)P − Pf(BP )P ∈ S1 (1.2)

and considered the case where P is a contraction operator.

The inequalities (1.1), (1.2) proved to be very useful and have already been

applied to various spectral problems, see (4), (6), (11). Inequalities of this type

are being actively studied (See (15) and (16)) and have yielded a number of

physically motivated applications in Mathematical Physics, (7), (8), (12), (13).

The aim of this paper is to obtain an analogue of (1.1) for normal operators

B.

In the main part of the paper we shall use various notions and results from

operator theory which can be found in for example (2), (3). We state, without

proof, the Berezin-Lieb inequality as in (5) but include some valuable remarks.

We have included in section 2 the necessary notions of convexity, and Jensen’s

inequality which is in essence a generalization of the defining inequality for a

convex function.

We manage to obtain an analogue of (1.1) for a bounded normal operator B

acting on H. We again use the theory of convexity and convex sets to give

precise information about the set upon which we define our convex function φ

in the statement of our main theorem.
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2. THE SETTING

Let H denote a separable Hilbert space and B(H) the class of bounded op-

erators acting in H. We assume the spectrum of B ∈ B(H), σ(B), to be

discrete. Let {λi} be the set of all distinct eigenvalues of B with correspond-

ing eigenspaces {Mi} and orthogonal complements Mi
⊥, and let πi denote the

orthogonal projection on the corresponding eigenspace Mi of λi.

Denote by C(σ(t)), the Banach space of all continuous complex-valued func-

tions f on σ(T ), with the norm of f given by

||f || = sup{|f(λ)| : λ ∈ σ(T )}. (2.3)

Let S1 be the Banach space of nuclear operators T in B(H) with trace norm

given by

||T ||1 =
∑

k

|〈Tξk, ξk〉|, (2.4)

where {ξk} is any orthonormal basis in H. It is well-known that the trace of

T coincides with the trace of the matrix representation of T , that is,

TrT =
∑

i

tii. (2.5)

Let R, C denote the fields of real and complex numbers respectively and A a

non-empty, convex set in C. Then

Theorem 2.1. Every convex combination of points of A in C belongs to that

set.

Proof: The proof is by induction. See (14) for details. 2

We recall the following definition from (14).

Definition 2.2. The convex hull of A ⊂ C, denoted by C(A), is defined to be

the set of all convex combinations of points of A. It follows that if a1, ..., am ∈
C, then

C{a1, ..., am} = {
m∑

i=1

αiai : α1, ..., αm ≥ 0,
m∑

i=1

αi = 1}. (2.6)

C(A), is convex, and is the intersection of all convex sets that contain A.

Hence given a1, ..., am ∈ A, C{a1, ..., am} is the polygon which these m points

determine. It is the minimal convex set which contains all these m points.
17
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The closed convex hull of a set, is simply defined as the closure of its convex

hull, and is thus the smallest closed convex set containing A.

The convexity of a function φ can be related with its second-order partial

derivatives. Since every complex number is a function of two real variables(the

real part and the imaginary part), one can identify, in one way or another, the

set C with R2 and thus write A ⊂ R2 instead of A ⊂ C. Indeed φ will then be

a convex function defined on A ⊂ R2.

Lemma 2.3. Let φ be a convex function defined on A ⊂ R2 and b = (b1, b2) ∈
R2. Let a ∈ A and I = {α ∈ R : a + αb ∈ A}. Then I is an interval of R
containing the origin. If we define g : I −→ R as

g(α) = φ(a + αb), all α ∈ I, (2.7)

then g is convex.

Proof: For all p, q ∈ I and α ∈ [0, 1],

φ(a + (αp+ (1− α)q)b) = φ(α(a + pb) + (1− α)(a + qb))

≤ αφ(a + pb) + (1− α)φ(a + qb)).

2

Define the real-valued function Q with domain A× R2 by

Q(a, z) =
2∑

i,j=1

φij(a)zizj, (2.8)

where φij(a) = ∂2φ
∂aj∂ai (a) denotes the partial derivative of order 2 of φ at a.

Theorem 2.4. Let φ be a real-valued function which is defined and has con-

tinuous second-order partial derivatives on A ⊂ R2. Then φ is convex if and

only if, for every a ∈ A,

Q(a, z) ≥ 0, all z = (z1, z2) ∈ R2. (2.9)

Proof: Let b ∈ A and z = (z1, z2) ∈ R2. Define

I = {α ∈ R : b + αz ∈ A}, (2.10)
18
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and

g(α) = φ(b + αz), all α ∈ I. (2.11)

Then I is an interval of R and g is convex if φ is convex(see Lemma 2.3).

Conversely, suppose that for any choice of a and b, g(α) is convex for α ∈ I.

Let a,b ∈ A and α ∈ [0, 1]. Write z = a− b. Since g is convex, we have

φ(αa + (1− α)b) = g(α)

≤ (1− α)g(0) + αg(1)

= αφ(a) + (1− α)φ(b).

Since φ has continuous second-order partial derivatives on A, each function g

is twice differentiable on I. Now

g′′(α) =
2∑

i,j=1

φij(a)zizj = Q(a, z), (2.12)

where α ∈ I and the partial derivatives are evaluated at the point a = b+αz.

Each function g, being a twice differentiable function, is convex on I if and

only if Q(a, z) ≥ 0. 2

Remark 2.5. The 2 × 2 matrix whose (i, j)th element is ∂2φ
∂ai∂aj

evaluated at

a of A is the Hessian matrix of φ at a. Obviously this matrix is symmetric

because φ has continuous second-order partial derivatives on A.

Hence Theorem 2.4 can be interpreted in this way:

Theorem 2.6. φ is convex on A if and only if its Hessian matrix is non-

negative semidefinite at each point of A.

We end this section by recalling Jensen’s inequality.

Theorem 2.7. (Jensen’s Inequality).

Let A be a bounded set having an infinite number of points, xi, and φ : A −→ R
be a convex function which is bounded. Then

φ

(∑
i

αixi

)
≤
∑

i

αiφ(xi), (2.13)

where αi ≥ 0, i = 1, 2, ... and
∑

i αi = 1.
19
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Proof: The proof is by induction. See (9) for details. 2

Remark 2.8. In a natural way, we identified R2 with C by identifying each

point (x,y) of R2 with the complex number x+ iy and vice versa. This identi-

fication has allowed us to refer to the convex hull of a set of complex numbers.

3. BEREZIN INEQUALITY: THE SELF-ADJOINT CASE

Let B be a self-adjoint operator and P be any orthogonal projection in H with

finite rank. So P is a compact operator. Define

BP = PBP. (3.14)

Unlike in (4), we will always deal with BP ∈ B(H) since B here is assumed to

be bounded. By continuous functional calculus, it follows that

φ(B) =
∑

i

φ(λi)πi. (3.15)

For the sake of completeness, we state the Berezin-Lieb inequality as in (5),

without proving it.

Theorem 3.1. Let φ be a convex function on K =
⋃

0≤t≤1 tσ(B) ⊂ R. Assume

that PB is a compact operator and that

Pφ(B)P − Pφ(Bp)P ∈ S1. (3.16)

Then

Tr(Pφ(B)P − Pφ(Bp)P ) ≥ 0. (3.17)

Proof: See (4; 5) for details. 2

We make the following remarks:

(1) Berezin inequality holds under the assumption that φ(0) = 0.

(2) Obviously BP is a self-adjoint operator when B,itself, is self-adjoint.

In fact,

BP
∗ = (PBP )∗ = P ∗B∗P ∗ = PBP = BP . (3.18)
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(3) Since K contains the set of values 〈Bu, u〉, all u ∈ H, it follows that

the spectra of operators B and BP lie in K. Hence it is enough to

define the functions φ on K. Then all the conditions involving φ need

only hold on this set.

(4) From Theorem 2.4, we can assume the convex function φ to be a non-

negative function. Clearly, since there is no restriction on the first

partial derivative of φ, the convex function φ can always be made non-

negative by adding a suitable linear function to it. Moreover, in doing

so the operator Pφ(B)P − Pφ(Bp)P remains unchanged.

(5) 〈BP ξk, ξk〉 = 〈Bξk, ξk〉, that is, inner product in the whole space is the

same as inner product in the subspace as P is an orthogonal projection

in H.

4. BEREZIN INEQUALITY: THE NORMAL CASE

Let B be a bounded normal operator acting on H. Then B has a spectral

resolution

B =
∑

i

λiπi, (4.19)

and by continuous functional calculus,

φ(B) =
∑

i

φ(λi)πi, (4.20)

where φ denotes a real-valued, convex function defined on C.

Remark 4.1. Functional calculus cannot be applied to the operator BP as

φ(BP ) is not well-defined. This difficulty arises because BP is not normal. To

overcome such a difficulty, we will first make use of Lidskii’s theorem.

Theorem 4.2. For an operator T ∈ S1, the matrix trace of the operator T

coincides with its spectral trace, that is,

Tr(T ) =
∑

k

λk(T ), (4.21)

where the eigenvalues λk(T ) are counted with their multiplicities.
21
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Note that by multiplicity of the eigenvalue λk(T ), we mean the dimension of

the eigenspace corresponding to the eigenvalue λk(T ).

Proof: See (3). 2

Assume that BP ∈ S1 and that σ(BP ) = {µj}∞j=1. Then by Lidskii’s theorem,

we have

Tr(BP ) =
∑

j

µj. (4.22)

Define the trace of φ(BP ) as:

Tr(φ(BP )) =
∑

j

φ(µj). (4.23)

(4.23) holds when φ is a polynomial.

Remark 4.3. For any reasonable definition of φ(BP ), the spectrum of this

operator must be equal to the set {φ(µj)}∞j=1.

Since BP is not normal, the matrix representation of BP with respect to any

orthonormal basis in H is not a normal matrix and hence it cannot be unitarily

similar to a diagonal matrix. However, due to Schur, any arbitrary matrix can

be reduced by means of a unitary similarity. This idea is expressed in Schur’s

lemma, (3):

Lemma 4.4. There exists an orthonormal basis {ξk} such that BP is a trian-

gular matrix and the diagonal entries of the matrix of the operator BP , with

respect to the orthonormal basis {ξk} consists of eigenvalues µk of BP .

Proof: See (3). 2

By Schur’s lemma, we have

µk = 〈BP ξk, ξk〉, (4.24)

and hence

φ(µk) = φ (〈Bξk, ξk〉)

= φ

(∑
i

λi〈πiξk, ξk〉

)

= φ

(∑
i

λiδik

)
,
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where δik = 〈πiξk, ξk〉 and
∑

i δik = 1. Also

〈Pφ(B)Pξk, ξk〉 = 〈φ(B)ξk, ξk〉

= 〈
∑

i

φ(λi)πiξk, ξk〉

=
∑

i

φ(λi)δik.

In view of Theorem 2.7, we argue that

φ

(∑
i

λiδik

)
≤
∑

i

φ(λi)δik, (4.25)

for any δik such that
∑

i=1 δik = 1. By summing over k, we see that

Tr(Pφ(B)P )− Trφ(BP ) ≥ 0, (4.26)

which is the required Berezin inequality in this case. 2

Now we wish to determine the minimal set K, that includes the complex

eigenvalues λi and µj of B and BP respectively, for which (4.25) will hold.

First we have the following lemma:

Lemma 4.5. For any operator B ∈ B(H), denote the set of values 〈Bu, u〉, u ∈
H by EB. Then EB contains the spectrum of both B and BP .

Proof: Suppose u is an eigenfunction of B such that ||u|| = 1 and Bu =

λu, where λ is the eigenvalue corresponding to the eigenfunction u. Since

〈Bu, u〉 = λ, σ(B) ⊂ EB.

To prove the second part, we first note that since we assume BP ∈ S1, BP is

compact and hence 0 6= µj ∈ σ(BP ) implies that µj is an eigenvalue of BP . So

there exists a normalised eigenfunction ψj such that

BPψj = µjψj, (4.27)

and

µj = 〈PBPψj, ψj〉 = 〈BPψj, Pψj〉 ∈ EB, (4.28)

so that

σ(BP ) ⊂ EBP
⊂ EB. (4.29)

2
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Theorem 4.6. Let B ∈ B(H) be a normal operator. Define

A = σ(B) ∪ {0}. (4.30)

Denote by =(A) the closed convex hull of A. Then =(A) contains both the

spectrum of B and BP .

Proof: By Lemma 4.5 it is enough to prove that EB ⊂ =(A). We will rather

prove that EB = C(A) since by definition of the closure of a set, C(A) ⊂ =(A).

Let u ∈ H be such that ||u|| ≤ 1. We can choose the eigenfunctions uj of B in

such a way that they form a complete orthonormal set. Obviously

u =
∞∑

j=1

cjuj, (4.31)

for some constants cj so that

||u||2 =
∞∑

j=1

|cj|2 ≤ 1, (4.32)

and

〈Bu, u〉 =
∞∑

j=1

λj|cj|2. (4.33)

Since 0 may or may not be an eigenvalue of B, by including λ0 = 0 and using

(4.32), we can always choose c0 in such a way that

〈Bu, u〉 =
∞∑

j=0

λj|cj|2, (4.34)

where
∑∞

j=0 |cj|2 = 1.

From Definition 2.2, it follows that EB = C(A). 2

5. CONCLUSION

Let B be a bounded normal operator acting on an infinite dimensional sepa-

rable Hilbert space H, P be an orthogonal projection in H and K = =(A),

where A is the set defined by (4.30). Then the next theorem is a generalization

of the Berezin-Lieb inequality for such an operator B.

Theorem 5.1. Let φ be a convex function on K. Assume that σ(B) is discrete

and that BP ∈ S1.
24
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Then

Tr(Pφ(B)P )− Trφ(Bp) ≥ 0.

Proof: Already discussed. 2
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