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ABSTRACT

A study of axial waves propagating in an infinitely long, homogeneous and isotropic elastic
circular cylinder containing a distribution of small pores (voids) is presented. Assuming the
cylinder to be of uniform cross-section and its surface to be traction- free, the frequency
equation is obtained and analysed in two limiting cases. It is found that if the cylinder has a
small radius and the frequency is low the waves travel more slowly than in the absence of voids.
When both the radius and the frequency are large the waves behave like surface waves in a half-
space with voids.
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INTRODUCTION

The theory of elastic materials with voids is one of the recent extensions of the
classical theory of elasticity. It is concerned with elastic materials consisting of a
distribution of small pores (voids) which are assumed to contain nothing of
mechanical or energetic significance. The non-linear version of this theory was
proposed by Nunziato & Cowin (1979), and the linear version was developed by
Cowin &Nunziato (1983).

In the latter version, the void volume is included as an additional kinematic variable,
and in the limiting case of the vanishing of this volume, the theory reduces to the
classical linear theory of elasticity. Accordingly, a new feature of this theory, over
other theories on porous materials, is that it permits a porous body to enlarge or
reduce the overall volume the body occupies in the absence of body forces. The
theory is intended to find applications in the treatment of the mechanics of granular
materials and manufactured porous bodies for which the classical theory proves
inadequate.

The object of the present paper is to discuss the propagation of waves in an infinitely
long, homogeneous and isotropic elastic circular cylinder with voids, by making
use of the field equations obtained by Cowin & Nunziato (1983). We assume that
the axis of the cylinder coincides with the z-axis, and that an axial wave is travelling
in the z direction with a given frequency. We obtain the frequency equation and
show that in the absence of voids it reduces to the classical Pochhammer frequency
equation. As limiting cases we consider small frequency waves in a cylinder of
small radius, and high frequency waves in a cylinder of large radius. In the first case
we obtain the expression for the phase speed and find that because of the influence
of the voids wave propagation is slower than its classical counterpart. Thus for a
typical (hypothetical) material model (Puri & Cowin,1985) the decrease in speed is
found to be 3.76 % . Further we confirm that in the absence of voids the expression
for the bar velocity is recovered. Inthe second case the frequency equation reduces
to that of surface waves in a half-space with voids.
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PROBLEM FORMULATION

In the context of the theory presented by Cowin & Nunziato (1983), the field equations
for a homogeneous and isotropic material, in the absence of body forces, are given
in the notation of Cartesian tensors as follows :
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The relation between the stress tensor %, and 2 is given by
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In these equations, u, is the displacement vector, # is the so-called volume fraction
field, &, are the usual Lamé constants, pis the mass density, . [3, &, e and k are
the new material constants characterizing the presence of voids,  is the Kronecker
delta and t is time. In the absence of voids, we have =0 ; equation (1) then
reduces to the Navier equation of classical elasticity.

The classical technique of Helmholtz decomposition of the displacement vector was
adopted by Chandrasekharaiah (1987), who studied the propagation of Rayleigh-
Lamb waves in an elastic plate with voids. We follow his approach and retain some
of his solutions and notation. Hence on setting

u=Vp+V¥aoq, @)
equation (1) reduces to
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Elimination of 4 from equations (5) and (2) then yields
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Equations (5)-(7) now serve as field equations and are to hold in the region
o<z oo @Nd 0= r < g, Where a is the radius of the cylinder. In addition there

has to be satisfied on the boundary, the condition that there should be no traction.

For the problem considered here this amounts to (Cowin and Nunziato (1983)) :

Ty ny = 0 n =0 9

where 1, is the unit outward normal to the boundary.

SOLUTION OF THE FIELD EQUATIONS

We shall work in cylindrical polar co-ordinates r,#, =} and since we shall consider
only axially-symmetric displacements, the field variables will be independent of .
Hence w = [wdr, =15, 0, wir, =, ¢ 7] while for q it is only the &component which is rel-
evant, and we denote it by g. Further we presume that a wave-like disturbance has
been established outside our region of interest (i.e. in = —»—=21. Accordingly we
shall seek steady-state solutions to equations (5)-(7) representing a right-moving
wave in the form

E.gy={F.Oexpli{kz - wi)] (10)
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where P and Q are functions of r only, and where xand = are, respectively, the
wave number and frequency of the wave. Substitution of p from (10) into (7) yields
the following fourth-order differential equation

44 e L d3 P : 42 p AP )
Pt Do e e S m =0 ()
dr s F ar
where

- LY - .
« 1 5| £ 1 I T .
LI—[E. - |+ =+ — [t —— -2

Ly o o) o

- 1]]_. - .
F=—x(D- K+ ——(F @ +imw—1)
(K :I'.-

Equation (11) has general solution
Plrl= A (my e+ A g (e A, (e e A (o r )
where 4, ,-.- .4, are arbitrary constants, ./, amd 17, are zero-order Bessel functions of
the first and second kind respectively, and m, , m., are the (complex) roots of the bi-
quadratic equation
mt—Dm? + F=0
The substitution for g from (10) into (6) gives
g =[Asd (myr )+ ALY (megr )] expli(ie - o )]

where

3 3 2 2
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and 4.4, are arbitrary constants. To maintain boundedness of the solutions for
0, we must have 4, = 4, = 4, =0, so that after relabelling the constants we
obtain
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Filri= Afgimyr)+ BF(mi,r)

g = F (myryexpl iz - @t))
It follows from equation (4) that the displacement components are

u = [—dAm S (o r) = By (meyr )= i (myr ] explifiz - m)] (12)

w = [ (e )+ 0BT (e ) + ey Oy r lexp iz — mt)]  (13)
while from equation (5) we have the volume- fraction field given by
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If the surface of the cylinder is to be stress-free the boundary conditions (9) reduce
to

r=a
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With the aid of equations (12)-(14) these conditions yield the following homogene-
ous system of equations :
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where .y = Jp{#a)
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THEFREQUENCY EQUATION

The vanishing of the determinant of the above matrix yields the frequency equation.
Before expanding the determinant, however, we make the following substitutions :

M=ga, M, =ma, Cl=malc,, :':ﬂ..-;-'l,.—T'.__"-1-l::__..'l-".'Tl1:' (15)
so that
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We note that only the real part of the complex phase-speed V is physically relevant.
Further, we find from the bi-quadratic equation above that = . satisfy the equation

O f +(1-N -0 -1=D (A7)
where
W= _{le'E-'..' o= . rr.-[j-l.___. .
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Furthermore, in the absence of voids, we may take # =1, &, =& With the aid of the

above substitutions we obtain the required frequency equation as
(377 - Q¥ VML (RS — I s — MRS = 1 T ]
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Clearly the waves are dispersive. Further, in the absence of voids this equation
reduces to

(T = M0y AT M M T = 2M (T 4+ M 0 =0

which is the classical Pochhammer equation (see Achenbach (1984) eq (6.131), where
his k, p, q are our T..s. 27, respectively.)
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Explicit analytic solutions of equation (18) are not possible although numerical
solutions should not be difficult to obtain if the values of the material constants are
known. We therefore analyse it in two limiting cases.

First, when the radius of the cylinder is very small (so that [I] ==Lz -2 ) we have on

using the asymptotic expansions of Bessel functions for small arguments, a first
approximation of equation (18) given by

(2% - P VLML R - 1= AR -1 = a0 (R - B At -t (19)
Substituting for W and #4,; from equations (15) and (16) with
RE=(-NY", B, —w | N=o' [l =0 E(L+ 2u)

the phase-speed V is given by

e B | (20)
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In the absence of voids ¢ =n3, equation (20) reduces to
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where E is Young’s modulus and #., is the classical bar velocity. The constant N is
known to satisfy the inequality (Puri & Cowin,1985)

0=N <l
so that we easily deduce that waves of small frequency propagating in a small-
radius cylinder with voids are slower than in one without voids. To determine the
reduction in speed we use a hypothetical material proposed by Puri & Cowin (1985)
for which the relevant parameters are

o, =387 mis, c,=193T7 mis, N=02TTE&
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These give the phase-speeds ¥, =344 mis ¥, =3163 =/, i.e.,a3.76 % reduction

in speed of the waves in the presence of voids.

Secondly, when the cylinder is of very large radius and the frequency is high, equa-
tion (18) reduces, on using the Bessel asymptotic expansions for large arguments,
to

(A7 - QP Y [M R, -1 =0 (R —10] = 48, My ML (RS - BT (21)

It is easily shown that equation (21) is the frequency equation for surface waves in
a half-space with voids, the analysis of which is given in Chandrasekharaiah (1987).

Furthermore, in the absence of voids the equation yields
(2% -0y +dnmr A T =0

which is precisely the classical Rayleigh wave equation.

CONCLUSION

In this article we have shown that propagation of axial waves in an infinitely long
elastic circular cylinder is affected by the presence of voids. Indeed, there is a
reduction in the phase-speed of low-frequency waves. To quantify this decrease,
use has been made of a hypothetical material and it is found that there is a 3.76 %
drop in speed. This is in marked contrast with the case of the thin elastic plate with
voids, (Chandrasekharaiah,1987), where the corresponding reduction for the same
material is 6.64 %.
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