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ABSTRACT

We investigate the propagation of short wavelength transverse electric x-rays through a quasi-
ordered (Fibonacci) atomically commensurate multilayered structure using a transfer matrix
model which treats each atomic plane as a diffraction unit.  The reflectance spectrum has a rich
structure being dominated by peaks associated with certain critical points of the system.  Peaks
around these special points exhibit self-similarity with a scaling factor approximately equal to
the cube of the golden mean.  At a critical point itself, the electromagnetic energy distribution
is neither localised nor extended.  The Landauer resistance at the reflection peaks exhibits a
power law behaviour at low Fibonacci generation numbers but eventually increases exponen-
tially; in the presence of absorption, the Landauer resistance reaches a plateau after its initial
power law behaviour.  The persistence, in the presence of absorption, of some reflectivity peaks
at small angles of incidence is in line with current interest in the use of quasi-ordered multilay-
ered structures as short wavelength near-normal incidence x-ray mirrors.
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INTRODUCTION

It has, for some time now, become technically possible to fabricate layered systems
with film thicknesses as low as two or three atomic planes with a good degree of
crystallinity (Schuller, 1980).  These advances have resulted in the design and con-
struction of novel artifacts such as (a) quantum-well heterostructures and solid
state superlattices (Esaki, 1986), and (b) high reflectance x-ray mirrors (Underwood
& Barbee, 1981; Lee, 1982; Evans et al. 1994). In the former case, because, often, the
properties to be theoretically predicted are such that they are determined by those
electron wavefunctions whose coherence are determined by characteristic length
scales comparable with the layer dimensions, novel methods of theoretical analysis
have had to be developed (Bastard, 1982).  In the latter case, quantum size effects
are not as important, since the interaction of x-rays with crystalline matter princi-
pally involves the low-lying energy bands.  Here, the ratio of the wavelength to the
film-thickness is an important parameter.  With typical atomic plane spacings of
about 5 Å and comparable x-ray wavelengths of 1-10 Å, a dielectric continuum
model of crystal x-ray diffraction would be unreliable (Barbee, 1986).  In fact, the
scattering (Ashcroft & Mermin, 1988) approach recognises and accounts for the
discreteness of the interaction through the form factor

where the lattice sites are denoted by    , and where k and   are respectively the
diffracted and incident wave-vectors.  As it is well-known, this sum is zero unless
the scattering vector coincides with a reciprocal lattice vector, thereby expressing
the Bragg diffraction condition.  However, as secondary scattering is excluded, the
anticipated interference with reflected radiation from the next and subsequent atomic
planes cannot be considered.  The method is thus insufficient for accurate reflec-
tance calculations, unless the computationally demanding higher order scattering
terms are included.  The transfer matrix (Born & Wolf, 1989) method then becomes
an attractive alternative.

Harper & Ramchurn (1987) have introduced a transfer matrix model (plane iterative
model) where, within each plane, induced polarisation is averaged over atomic posi-
tions and varies spatially depending only on the phase of the incident and reflected
radiation.  Transverse to the plane, the polarisation is finite only within its atomic
dimension.  Effectively, the free-space radiative field changes discontinuously
through the atomic plane.  The atomic planes for this purpose are regarded as
identical, any relative displacement as in the hexagonal close packed structure be-
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ing disregarded.  In this model, for the transverse electric case, the amplitudes 
and  of the incident and reflected electric fields at an atomic plane are related to
the corresponding amplitudes,  and at the previous atomic plane by a transfer
matrix, , constructed from a free-space  , propagation matrix and a trans-
plane matrix:

(1)

where, for an angle of incidence  , , a is the interplanar separa-
tion, and χ  is the electric susceptibility.  For an incident x-ray wavelength of λ , the
free-space wavenumber   is    .  Multiple scattering is included through the
continuity conditions on the electric and magnetic field components at each bound-
ary.

It has already been shown that, in the limit of small a, the model reduces to standard
dielectric continuum models, and that multilayer x-ray reflection can be treated within
this framework (Harper & Ramchurn, 1987).  Using (1), the dynamical Darwin-Prins,
modified Bragg, and kinematical relationships (James, 1948) for x-ray reflection can
be derived.  It is our purpose here to investigate the propagation of short wave-
length transverse electric x-rays through an atomically commensurate quasi-ordered
(Fibonacci) multilayer structure using this matrix model.

FIBONACCI MULTILAYERED ARTIFACTS

A generalised Fibonacci sequence is generated using the inflation rule

  , 

L and M are two fundamental building blocks which, if they themselves are consti-
tuted of other repetitive blocks, lead to a superlattice (Merlin et al. 1985) structure.
Being neither ordered nor disordered, these structures are termed quasi-ordered.
With  , the popular Fibonacci (golden mean) lattice results.  Thus, if   denotes
the  sequence, then, with  and ,we have , , and
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(3)

, etc.  In any sequence , there are  blocks of type L and
 blocks of type M, where  is a Fibonacci number with  , and

 and   corresponds to the golden mean quasiperiodic limit with

Fibonacci multilayered artifacts are constructed by identifying the blocks L and M
as layered artifacts.  The study of these structures has become a subject of intense
interest (e.g. Hu et al. 1986; Karkut et al. 1986; Kohmoto et al. 1987a; Chow &
Guenther, 1993; Gellermann et al. 1994) following the extension of the original work
of Kohmoto et al. (1983) and of Ostlund et al. (1983) on quantum quasiperiodic
systems to the problem of localisation in optics (John, 1991).  There has also been
the realisation that the investigations of such systems may shed light on the prop-
erties of quasicrystals (Shechtman et al. 1984) and that novel physical properties
may be associated with them.  Kohmoto et al. (1983, 1984) studied the spectral
properties of the quasiperiodic Schroedinger equation

where  is the electronic probability amplitude at lattice site n and the on-site
potential  takes on two values arranged in a Fibonacci way.  The energy spectrum
is a Cantor set with multifractal (Halsey et al. 1986) scaling.  The allowed
wavefunctions are neither localised nor extended but are either self-similar or cha-
otic and are termed critical (Kohmoto et al. 1987a; Kohmoto et al. 1987b).  A one-
dimensional model of a quasicrystal can be constructed by arranging bonds of two
types of length in a Fibonacci sequence.  A simple tight-binding model of the elec-
tronic states of this quasicrystal is given by

This is the off-diagonal version of (2).  The coupling constant   represents the
strength of hopping of an electron between sites n and (n + 1) and, like  , takes on
two values,  and   arranged in a Fibonacci sequence.  The spectral properties of
(3) are the same as those of (2) (Kohmoto et al. 1987b). The energy band structure
is again self-similar (multifractal) with scaling factors,  , depending on the poten-
tial strength . At the centre of the spectrum,  as 

(2)
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It is known that a renormalisation group approach can be used to describe the
evolution of these systems if a scaling approach to the quasiperiodic limit is used.
The band-structure problem can then be reduced to the study of a trace map with an
energy independent constant of motion in the quantum case (Kohmoto et al. 1983).
In the case of light propagating through a Fibonacci multilayered structure, a phase
dependent constant of motion is defined (Kohmoto et al. 1987a).  The effect of the
quasiperiodicity is very strong when the optical phase d across each of the layers is
an odd integral multiple of . Prominent self-similarity and scaling is then observed
in the reflectance spectra.

Another important quantity to investigate is the electromagnetic energy density
distribution across the multilayered structure.  For incident and reflected field am-
plitudes  and   at a layer-layer interface, the energy density there is given by

where d is the optical phase,  is the angle of incidence at the interface, and e is the
dielectric constant.  We have computed the energy density distributions for light
propagating normally through two dielectric (continua) media, L and M, of refrac-
tive indices   and   layered in Fibonacci sequences and bounded by free-
space.  Fig. 1 shows an  structure.  The thicknesses,  and  , of the layers and
the wavelength of the incident radiation are chosen such that the optical phases

 .  The critical energy distributions (Fig. 2) manifest the imbedded horse-
shoe dynamics (Kohmoto & Ono, 1984) underlying the evolution of the trace map
under successive renormalisations and illustrates the quasi-localisation of light in
this structure.  These distributions, as we have recently shown (Ramchurn & Baijnath,
1998), have multifractal properties.  The spectrum of singularities (Halsey et al.
1986) are smooth and extend only over a finite range of scaling indices as is required
of multifractals.  The extension of some of the above ideas to the soft x-ray and
extreme ultraviolet regimes has been performed by Feng et al. (1989) and Feng et al.
(1990) through the studies of Fibonacci superlattices with the blocks L and M each
consisting of two layers.  The reflectance spectra here again display self-similarity
and scaling.

Our objective, now, is to investigate whether these features of self-similarity, scal-
ing, and critical electromagnetic energy distribution are preserved at atomically
commensurate x-ray wavelengths, dimensions at which we expect the dielectric con-
tinuum model used in the above calculations to break down and the atomic planes to
create additional superlattice effects.  Our numerical investigations build upon those
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Fig. 1 Example of a Fibonacci multilayered structure.  An  structure, bounded by
free-space, is shown with radiation incident on it at an angle of incidence .
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Fig. 2 Variation of the electromagnetic energy density (in arbitrary units) as light
propagates normally through multilayered structures with layers of refractive indi-
ces 2 and 3 arranged in the following Fibonacci sequences: (a)  (b)   (c)  , and
(d)  . The incident medium and the substrate each have a refractive index of unity.
The wavelength of the incident radiation and the thicknesses of the layers are
chosen such that the optical phase across each layer is  .
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we have already carried out (Harper & Ramchurn, 1987) for an atomically commen-
surate multilayer system with translational symmetry.  In our previous work, we
considered the reflection of transverse electric x-rays of wavelength 8.34 Å (AlKα)
incident on a periodic double layer multilayered structure, with each period consist-
ing of three atomic planes of platinum (corresponding to a thickness of 11.75 Å) and
ten atomic planes of carbon (corresponding to a thickness of 25 Å), deposited onto
a substrate of crystalline silicon.  Here, we assume a Fibonacci multilayered struc-
tured with the building block L consisting of 4 atomic planes of carbon and 3 atomic
planes of platinum while M consists of 10 atomic planes of carbon and 3 atomic
planes of platinum such that .  We consider the reflection of transverse

electric x-rays of wavelength 8.34 Å incident from free-space on this structure.  The

substrate is again taken as silicon.  The electric susceptibilities used are

    

 , and are derived from the atomic scattering fac-

tors tabled by Henke et al. (1981).  The complex refractive indeX η is .

The real and imaginary parts of χ  , are related to the atomic scattering

factors  according to  , where and

 is the number of platinum (or carbon) atoms per unit volume in the pure bulk
material (Batterman & Cole, 1964).

Fig. 3 shows the results of our reflectance computations using the plane iterative
model for real   for the  and  Fibonacci sequences.  Our analyses reveal
scaling and self-similarity at various parts of the spectrum.  We have, in particular,
investigated such behaviour around the near-normal angle of incidence of .
For purely real , we find a self-similar structure about this point, the scale change
between either the  and  structures, or the  and  structures being approxi-
mately equal to . This value corresponds to the scaling factor at the centre of the
spectrum of the corresponding quantum Fibonacci system in the limit of the strength
of the potential tending to zero.  For comparison, Fig. 3 also includes the reflectance
spectrum for an  structure using the dielectric continuum model.  It is obvious
that the additional superlattice effects created by the atomic planes in the plane by
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Fig. 3 Reflectivities, as a function of the angle of incidence, computed using the
plane iterative model for the (a)  , (b) , and (c)  platinum-carbon Fibonacci
superlattices described in the text.  The incident x-ray radiation has a wavelength of
8.34 Å and each atomic plane is treated as a diffraction unit. (d) corresponds to an

 computation using a dielectric continuum model.  The electric susceptibilities
used are   , the substrate
being silicon.
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plane approach enhance reflection particularly at small angles of incidence.  The
electromagnetic energy distribution (neither localised nor extended) at 
(Fig. 4), together with the scaling properties, emphasize this angle as a critical point
of the system.

We have also calculated the Landauer (Landauer, 1970) resistance   of  the
reflectivity peaks, of amplitude R, with increasing Fibonacci generation number n.
In general, the initial power law dependence of r on  changes to an exponential

Fig. 4 Variation of the electromagnetic energy density (in arbitrary units) across the
platinum-carbon Fibonacci superlattices described in the text for the  to  se-
quences at a critical point of the system.  The wavelength of the incident x-ray
radiation is 8.34 Å and the electric susceptibilties used are as for Fig. 3.
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one for large n.  Fig. 5 shows this behaviour for the peak at . This is ex-
plained by the evolution of the trace,  , of the transfer matrix characterising the
structure:  gives a power law growth while  leads to an exponential
growth;  is a transition point.
More realistic reflectance computations with the use of complex  are shown in
Fig. 6.  The reflectivities are sensibly reduced, more so at the larger angle of inci-
dence.  Also, as Fig. 7 shows, the resistance reaches a plateau for . Spiller

Fig. 5 Variation of the Landauer resistance with the Fibonacci number for the Fi-
bonacci superlattices described in the text for the peak at an angle of incidence of
approximately . The wavelength of the incident x-ray radiation is 8.34 Å and the
electric susceptibilties used are as for Fig. 3. The variation of the trace of the matrix
characterising the structure is also shown.
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(1981) has estimated the number of layers,  , beyond which the reflectivity will

not be increased in the absorbing case as  where  is the imaginary

part of a refractive index.  Here, for the peak at and with  ,
this corresponds to  . The effect of the number of layers contributing to
reflection decreases with increasing angle of incidence and competes with the re-

flecting power of each atomic plane which increases with  being given by

  for . Obviously, for the case we are considering, the former
is more important, being enhanced by the quasi-ordered arrangement of the layers.
This contrasts with the periodic case whose Bragg reflection peaks increase in
intensity as  increases.  Our work thus rejoins current efforts (Peng et al. 1991) to
use Fibonacci multilayered structures as short wavelength near normal incidence x-
ray mirrors.  For a first order, and therefore high-intensity, peak at at a wave-
length of 8.34 Å, a periodic x-ray multilayer structure requires a period of approxi-
mately  4.21 Å; this may be difficult to deposit at a wavelength of 8.34 Å, a periodic
x-ray multilayer structure requires a period of approximately  4.21 Å; this may be
difficult to deposit.
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Fig. 6 Same as for Fig. 3 for the (a)  , (b)  , (c)  , and (d)  platinum-carbon
Fibonacci superlattices described in the text. However, the electric susceptibilties are
now complex             

and 
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Fig. 7 Same as Fig. 5, with the use of complex electric susceptibilties:
      and
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CONCLUSION

As concluding remarks, the following seem important: (a) the additional superlattice
effects created by the atomic planes enhance reflection particularly at small angles
of incidence, (b) peaks in the reflectance spectra are associated with certain critical
points of the system, (c) in the presence of absorption, as shown by Landauer
resistance computations, only a certain number of planes contribute to reflection
with the persistence of some high reflectance peaks at some small angles of inci-
dence, and (d) in the non-absorbing case, the computed electromagnetic energy at
a critical point is neither localised nor extended.  Reflectance peaks around the
critical points exhibit self-similarity, a prominent scaling factor being approximately
equal to the cube of the golden mean suggesting some three-cycle property about
the critical points.

Further computational investigations reveal that significant departures from the
orderly arrangement of the atomic planes do not affect the reflectance characteris-
tics significantly.  This robustness of reflectance characteristics to disorder - a
special feature of quasiperiodic ordering - has also been observed experimentally
(Todd et al. 1986; Gellermann et al. 1994) thereby emphasizing quasi-ordered
superlattices as good candidates for high reflectance short wavelength x-ray mir-
rors even at angles near normal incidence and in spite of their absorbing nature.
However, the controlled deposition of the atomic planes over many layers remains
an experimental challenge (Chow & Guenther, 1993; Gellermann et al. 1994).
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