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Abstract 

Precision farming is revolutionizing agriculture by incorporating advanced technologies 

and data-driven methods to improve crop production. However, a gap persists in the 

practical use of machine learning (ML) models and real-time data exchange for optimizing 

soil conditions to enhance crop yields, reduce resource waste, and limit environmental 

impact. This study aims to bridge this gap by leveraging ML, particularly focusing on soil 

pH prediction to ensure optimal nutrient absorption for plant health. Data was collected 

from Kigali Independent University ULK in Gasabo District, Kigali City, Rwanda, using 

seven soil sensors measuring soil moisture, temperature, humidity, NPK levels, and pH. 

The study applied a Random Forest regression model to predict soil pH, achieving an 

impressive accuracy of 99.9%, surpassing several contemporary models. The results 

highlight the effectiveness of ML in offering valuable insights to farmers, promoting 

sustainable and profitable agricultural practices. The research emphasizes the importance 

of continuous technological innovation and collaboration to push the boundaries of modern 

agriculture 

Keywords: Precision Agriculture; Advanced Technologies; Machine Learning; Data-
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1. Introduction 

The integration of data exchange and machine learning into precision farming has 

significantly transformed agricultural practices, enhancing productivity, efficiency, and 

sustainability(Gyamfi et al., 2024). Precision farming involves managing crops on a micro-

scale using detailed field data to optimize agricultural activities(R. K. Singh et al., 2021). 

Machine learning (ML) plays a pivotal role, analyzing extensive agricultural data to 

generate actionable insights(Choudhary et al., 2024). 

Data exchange is crucial in precision farming as it enables the collection and distribution 

of information across agricultural platforms(Shukla et al., 2023). This seamless flow of 

data facilitates real-time monitoring and decision-making, essential for adapting to 

changing field conditions(Rozenstein et al., 2024).  By leveraging ML algorithms, farmers 

can analyze data from various sources, including satellite imagery, weather forecasts, soil 

sensors, and crop health monitors(Mohyuddin et al., 2024). These analyses help predict 
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crop yields, detect diseases early, and optimize the use of resources like water and 

fertilizers(Akhter & Sofi, 2022). 

Machine learning has a profound impact on precision farming. ML has a profound impact 

on precision farming by processing complex datasets to identify patterns not immediately 

evident to humans(Mgendi, 2024). For instance, ML models can predict optimal planting 

and harvesting times, forecast pest infestations, and recommend precise amounts of inputs, 

reducing waste and increasing yields(Miles, 2019). ML also drives the development of 

automated systems for tasks such as irrigation and harvesting, enhancing efficiency and 

lowering labor costs(Mekonnen et al., 2020). Effective data exchange among 

stakeholders—including farmers, agronomists, researchers, and technology providers—is 

indispensable for the success of precision farming in Rwanda(Fluturim & Luqman, 2023). 

This collaborative approach ensures timely dissemination of relevant information, 

enriching decision-making and facilitating prompt interventions(Akhter & Sofi, 2022). 

Rwanda, with its agricultural traditions and commitment to technological progress, is 

increasingly adopting precision farming to boost productivity and 

sustainability(Widtayakornbundit & Luangpituksa, 2023). This approach utilizes state-of-

the-art technologies to enhance resource allocation and improve crop yields through precise 

management practices tailored to local conditions(Kendall et al., 2022). Central to 

precision farming is the ability to gather, analyze, and interpret extensive datasets (Rika 

Widianita, 2023)(Miklyaev et al., 2021). Machine learning, as a subset of artificial 

intelligence, provides advanced analytical capabilities for processing complex 

data(Condran et al., 2022). In Rwanda, integrating ML empowers farmers to forecast crop 

performance, detect diseases early, and optimize irrigation and fertilization schedules with 

precision(Araújo et al., 2023). 

Moreover, effective data exchange among stakeholders—including farmers, agronomists, 

researchers, and technology providers—is indispensable for the success of precision 

farming in Rwanda(Liakos et al., 2018). This collaborative approach ensures timely 

dissemination of relevant information, enriching decision-making and facilitating prompt 

interventions and practices. This study aims to explore the impact of data exchange and 

ML in precision farming within Rwanda's context(Research on World Agricultural 

Economy Comparative Analysis of Machine Learning Models for Predicting Rice Yield : 

Insights from Agricultural Inputs and Practices in Rwanda, 2024). By investigating these 

technological advancements, the study seeks to maximize productivity, promote 

sustainability, and address unique challenges in Rwanda's agricultural sector(Buheji, 

2024). The research contributes to agricultural innovation and economic growth in Rwanda 

through precision farming technologies(Dimkpa et al., 2023). 

The agricultural sector is evolving with advanced technologies to boost productivity and 

sustainability(Olabimpe Banke Akintuyi, 2024). Precision farming has emerged as a 

transformative strategy, enhancing resource efficiency and increasing crop yields through 

meticulous management practices(Tahir, n.d.). This approach harnesses information 

technology to deliver precisely tailored support to crops and soil(Mohyuddin et al., 2024). 

Machine learning plays a pivotal role in processing and analyzing extensive datasets 
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essential for informed decision-making(Tursunalieva et al., 2024). Machine learning 

provides sophisticated analytical tools to forecast crop performance, detect pests early, and 

optimize irrigation and fertilization schedules, among other tasks(Rane et al., n.d.). 

Effective data exchange facilitates seamless information flow among stakeholders, 

enhancing decision-making processes(Elbasi et al., 2023). This integration of data from 

various sources allows accurate analysis and efficient farm management(Mokogwu et al., 

2024). It empowers farmers to make proactive decisions, improving crop yields and 

minimizing environmental impact(Robert et al., 2016). Understanding the impact of data 

exchange and ML in precision farming is vital for advancing agricultural 

methodologies(Bhat & Huang, 2021). This study aims to explore how these technologies 

can be integrated into farming practices to maximize benefits and tackle challenges 

confronting modern agriculture(Mekonnen et al., 2020). Rwanda, celebrated for its rich 

agricultural heritage and rapid technological advancements, is increasingly embracing 

precision farming as a pivotal strategy to boost agricultural productivity and sustainability. 

This approach utilizes cutting-edge technologies to optimize resource allocation and 

enhance crop yields through meticulous management practices tailored to local 

environmental conditions(Khan & Kashem, 2023). 

At the core of precision farming lies the ability to collect, analyze, and interpret extensive 

datasets. Machine learning, a subset of artificial intelligence, plays a critical role in this 

process by providing advanced analytical capabilities necessary for processing and 

deciphering complex datasets. In Rwanda, where agriculture serves as a cornerstone of the 

economy and supports a significant portion of the population, integrating machine learning 

empowers farmers to predict crop outcomes, promptly detect and manage diseases, and 

optimize irrigation and fertilization schedules with heightened precision and efficiency 

(Kendall et al., 2022). This study aims to explore the impact of data exchange and the 

integration of machine learning in precision farming within the Rwandan context. By 

examining these technological advancements and their practical applications, the study 

seeks to uncover opportunities to maximize agricultural productivity, promote sustainable 

farming practices, and address the unique challenges faced by Rwanda's agricultural sector 

(Randell & Mccloskey, 2014). Ultimately, this research aims to contribute to the 

advancement of agricultural innovation and economic development in Rwanda through the 

widespread adoption of precision farming technologies(“Influence of Agricultural Project 

Management Practices on Agricultural Production: Case Study of Musanze District, 

Rwanda,” 2024). 

Despite advancements in precision farming, there remains a gap in effectively harnessing 

machine learning and data exchange to provide actionable insights for crop production. 

The challenge lies in integrating diverse environmental parameters into predictive models 

and ensuring seamless data flow among various sources to offer personalized 

recommendations for farmers(Akkem et al., 2023). Indeed, precision farming can also 

reduce pesticide use and optimize water management, leading to more environmentally 

sustainable agricultural practices. By utilizing advanced technologies and data analytics, 

precision farming allows for precise application of inputs like water, fertilizers, and 

pesticides based on real-time data and specific needs of crops. This targeted approach 
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minimizes waste, reduces the environmental footprint, and promotes the health of the 

ecosystem(Parra-López et al., 2024). 

For instance, precision farming techniques can identify pest infestations early and apply 

pesticides only where needed, rather than blanket spraying entire fields. Similarly, soil 

moisture sensors and weather data can guide irrigation practices, ensuring that crops 

receive the right amount of water at the right time, thereby conserving water resources and 

preventing issues like soil erosion and nutrient runoff. These practices contribute to the 

overall goal of sustainable agriculture by enhancing efficiency, reducing negative 

environmental impacts, and supporting long-term agricultural productivity(Javaid, n.d.) 

(Getahun et al., 2024).The study have the following objectives: To investigate the potential 

of machine learning techniques and data exchange in precision farming. To develop 

predictive models that can optimize resource allocation and crop management. To establish 

a robust data exchange framework that facilitates real-time data sharing and analysis. To 

provide actionable insights and personalized recommendations for farmers. 

2. Literature Review  

Global agricultural productivity must double by 2060 to meet growing demands, all 

without expanding arable land or causing significant environmental damage. Achieving 

this requires sustainable practices, such as reducing carbon emissions, preserving or 

enhancing soil quality, conserving water resources, and minimizing pesticide use. One 

effective approach is leveraging data-driven advancements like phenotyping, which 

focuses on breeding crops suited to specific farm conditions, such as soil type and rainfall, 

and adopting improved farming practices. However, a major challenge remains: the lack 

of manual data collection, which impedes the widespread adoption of data-driven 

agriculture on farms. Previous research highlights the importance of precision farming in 

improving crop yields and resource utilization (Karunathilake et al., 2023). Technologies 

like IoT, remote sensing, and GIS are used to monitor environmental parameters(Kundan 

et al., 2024).  

Precision farming, also known as precision agriculture, refers to a set of practices that 

utilize advanced technologies and data-driven methods to optimize crop production and 

resource use. It involves the application of precise amounts of inputs (such as water, 

fertilizers, and pesticides) based on detailed information about field variability. The core 

principles include data collection through sensors and satellites, data analysis, and precise 

management actions tailored to the specific needs of different areas within a field(Soussi 

et al., 2024). Precision farming has become a pivotal approach in modern agriculture due 

to its ability to significantly enhance productivity and sustainability. By using technology 

to monitor and manage crops with high accuracy, farmers can achieve higher yields, reduce 

waste, and minimize environmental impact. Globally, precision farming contributes to 

more efficient use of resources, reduced input costs, and improved soil health, which 

collectively support sustainable agricultural practices and food security(R. K. Singh et al., 

2021). 

Data-driven agriculture(Soussi et al., 2024), precision agriculture(Mesías-Ruiz et al., 

2023), smart farming, and machine learning(Elashmawy, 2023) are all related to the use of 

technology to optimize and improve agricultural practices(Mekonnen et al., 2020). Data-
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driven agriculture refers to the use of data and analytics to inform decision-making in 

farming, from planting to harvesting(Mesías-Ruiz et al., 2023). This approach involves 

collecting and analyzing data on soil health, weather patterns, and crop performance to 

optimize agricultural practices and improve yield. Precision agriculture is a farming 

technique that uses technology such as sensors(Tantalaki et al., 2019), GPS, and drones to 

collect data on soil and weather conditions(Vrchota et al., 2022), crop health, and nutrient 

levels(Sharma et al., 2021). This data is then used to make informed decisions about 

irrigation, fertilization, and other inputs to optimize crop yields and reduce 

waste(Dhanaraju et al., 2022). 

Smart farming refers to the use of connected devices and data analytics to optimize various 

aspects of farming(Chergui & Kechadi, 2022), such as irrigation, fertilization, and crop 

monitoring(Said Mohamed et al., 2021). This approach involves using sensors, drones, and 

other technology to collect data, which is then analyzed to make decisions about farming 

practices(Dhanaraju et al., 2022). Machine learning(Kamath et al., 2021) is a subset of 

artificial intelligence that involves training algorithms to identify patterns in data(Cedric et 

al., 2022). In agriculture, machine learning is used to analyze large datasets on soil health, 

weather patterns, and crop performance to identify trends and make predictions about 

future crop yields(Anjana et al., 2021). Machine learning can also be used to optimize 

irrigation and fertilization practices by providing real-time recommendations based on 

changing environmental conditions(Durai & Shamili, 2022). An IoT system for 

agriculture(Chergui, 2022) is a network of connected sensors and devices that can collect 

and analyze data about various environmental factors such as soil moisture, temperature, 

humidity, and light levels(Xu et al., 2022). This data is then transmitted to a central system 

where it can be analyzed and used to make informed decisions about farming 

practices(Moisa et al., 2022). For example, IoT sensors can be placed in soil to collect data 

on moisture levels(Rehman et al., 2022), and this information can be used to determine 

when to water crops and how much water to use. Similarly, sensors can be placed on plants 

to monitor their growth and health(Ando, 2022), and this information can be used to adjust 

fertilizer and pesticide applications(Katiyar & Farhana, 2021). 

IoT systems can also be used for precision agriculture, where data is collected and analyzed 

at a very granular level(Khattar & Verma, 2023), allowing farmers to make very specific 

decisions about crop management. This can lead to increased yields, reduced costs, and 

better environmental outcomes(OECD, 2001). Overall, IoT systems for agriculture offer a 

range of benefits, including increased efficiency, improved sustainability, and better 

outcomes for farmers and consumers alike. The challenge with implementing an IoT 

system in agriculture(Akhter & Sofi, 2022; Dong et al., 2013) is the lack of internet 

connectivity and power in remote areas of farms. Additionally, the cost of deploying and 

managing a large number of sensors can be prohibitive. However, the ultimate goal of 

implementing such a system is to enable data-driven farming by providing real-time data 

to all stakeholders involved in agriculture, such as farmers, suppliers, distributors, and 

processors(Eprs & Parliamentary, 2023). The second goal is to develop models and 

analytics to improve farming practices, crop, and animal management(Mesías-Ruiz et al., 

2023; Said Mohamed et al., 2021; Vrchota et al., 2022). The third goal is to automate 

systems for irrigation, pesticide, and spraying, which would allow for precision farming. 

By achieving these goals, farmers can make informed decisions that would improve crop 
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yields, reduce the use of resources such as water and fertilizers, and ultimately make 

agriculture more sustainable and profitable. 

Machine learning can also be utilized to predict crop yields and optimize planting 

schedules(Vignesh et al., 2023). By analyzing historical data on weather patterns and crop 

growth, machine learning algorithms can provide farmers with insights into when to plant 

their crops, how much to plant, and how to optimize their use of resources(Alibabaei et al., 

2021). Overall, machine learning offers immense potential in farming, enabling farmers to 

make data-driven decisions, reduce waste, and increase productivity(Bali & Singla, 2022). 

Sensors are used to collect data on various environmental factors such as soil moisture, 

weather conditions, and crop health. Agriculture is a cornerstone of Rwanda’s economy, 

employing a significant portion of the population and contributing substantially to the 

country’s GDP. The sector primarily focuses on staple crops such as coffee, tea, and maize, 

which are crucial for both domestic consumption and export. Despite its importance, 

traditional farming methods often face challenges related to productivity and 

sustainability(Research on World Agricultural Economy Comparative Analysis of Machine 

Learning Models for Predicting Rice Yield : Insights from Agricultural Inputs and 

Practices in Rwanda, 2024). 

Several factors are driving the adoption of precision farming in Rwanda, including the need 

to improve crop yields, manage limited resources more effectively, and address the impacts 

of climate change. Technological advancements, increased access to digital tools, and a 

growing emphasis on agricultural innovation are encouraging the transition to precision 

farming practices(Hitimana et al., 2024). The Rwandan government has introduced various 

initiatives and policies to support agricultural innovation, including the National 

Agriculture Policy and the Strategic Plan for the Transformation of Agriculture. These 

policies aim to promote technology adoption, enhance research and development, and 

improve infrastructure to facilitate precision farming practices(Shang & Xie, 2024). 

Effective data exchange is crucial in precision farming as it ensures that accurate and timely 

information flows between farmers, agronomists, researchers, and technology providers. 

This collaboration facilitates better decision-making, enhances the accuracy of predictions, 

and allows for more responsive and informed interventions(Gawande et al., 2023). 

Examples from other regions highlight the benefits of data exchange in precision farming. 

For instance, in the United States and Europe, integrated data platforms enable real-time 

monitoring and management of crops, leading to improved outcomes and efficiency. These 

case studies demonstrate how seamless data sharing can drive innovation and success in 

precision agriculture(Mizik, 2023). 

Machine learning (ML) plays a transformative role in precision farming by analyzing large 

volumes of agricultural data to uncover patterns and trends that are not immediately 

apparent. ML algorithms can process data from various sources, such as sensors and 

satellites, to provide actionable insights and predictions (Ibidoja et al., 2023). ML 

applications in precision farming include predicting crop yields, detecting diseases early, 

and optimizing resource management. For example, ML models can forecast optimal 

planting and harvesting times, identify pest infestations, and recommend precise amounts 

of water and fertilizers, leading to enhanced productivity and reduced input costs [9]. 

Worldwide, ML has been successfully applied in agriculture to improve efficiency and 
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outcomes. For instance, ML algorithms have been used for yield prediction in the United 

States and disease detection in India. In Rwanda, similar applications could help optimize 

farming practices, improve crop resilience, and support sustainable agricultural 

development(Ariza-Sentís et al., 2024). 

Rwanda faces several challenges in adopting precision farming, including infrastructure 

limitations, access to technology, and varying levels of data literacy among farmers. These 

obstacles can hinder the widespread implementation of advanced agricultural technologies 

(Musanase et al., 2023). Despite these challenges, precision farming presents opportunities 

to address key issues. For example, improved infrastructure and training programs can 

enhance technology adoption, while targeted policies can support access to necessary tools 

and resources. Leveraging precision farming can ultimately lead to increased productivity 

and sustainability in Rwanda’s agricultural sector(Mcfadden et al., n.d.)(Jaramillo-

Hernández et al., 2024). A review of existing studies and projects provides insights into the 

current state of precision farming in Rwanda. These studies offer valuable data on the 

effectiveness of various technologies and practices, highlighting successes and areas for 

improvement(Miklyaev et al., 2021). Analysis of research findings reveals the impact of 

data exchange and machine learning on precision farming outcomes in Rwanda. Insights 

gained include improvements in crop yields, better resource management, and enhanced 

decision-making capabilities (Condran et al., 2022). 

The potential for scaling up precision farming practices in Rwanda is significant, given the 

country’s commitment to agricultural innovation and technological progress. Expanding 

the adoption of precision farming can drive further improvements in productivity and 

sustainability(Araújo et al., 2023). Recommendations include investing in infrastructure, 

supporting research and development, and providing training programs for farmers. 

Engaging stakeholders and fostering collaboration can also enhance the effectiveness of 

precision farming initiatives(Widtayakornbundit & Luangpituksa, 2023). Future research 

should focus on developing cost-effective solutions, addressing data privacy concerns, and 

exploring new technologies. Innovation in these areas will be crucial for advancing 

precision farming and achieving long-term sustainability in Rwanda’s agricultural 

sector(Kabirigi et al., 2023). 

Table.1: Literature review based on soil content 

Type of parameter Reference publication year  accuracy 

Moisture (Water Level) 

 (Tzerakis et al., 2023)(López 

et al., 2022) 2023  ±0.03 m3/m3 

Soil Temperature 

 (Tzerakis et al., 2023)(D. K. 

Singh et al., 2022)  2023  ±1◦C 

Electrical Conductivity 

of the Soil (EC) 

 (Tzerakis et al., 

2023)(Mirzakhaninafchi et 

al., 2022) 2022  ±5% dS/m 

Fertilizer levels of 

nitrate   (Assa et al., 2023)  2023   

Phosphorus  (Soil & Agriculture, 2023)  2023   

Potassium (NPK)  (Pyingkodi et al., 2022)  2022  60-70% 

pH level   (Cheema et al., 2022)  2022   
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3. Methodology and Materials  

Data collected from ulk land, Gisozi sector, Gasabo District, Kigali City, Rwanda using 

different soil sensors. Dataset are real time collected using seven different soil sensors such 

as soil moisture, temperature, humidity, azote, potassium, calcium, and pH in 24 hours we 

detect our model by predicting 1961 different data, find more details on 

https://github.com/bosuluss/soil_content_csv_ulk.git.  

 
Figure 1: Soil Moisture Sensor. 

 

Table 2: Soil Dataset Sample 

 

  

 

 

 

 

Table 2 presents the soil dataset collected from ULK Land using a soil-sensing device, 

which contains 1962 data. The soil sensor dataset records various soil conditions measured 

by a device, including soil moisture, temperature, electrical conductivity (EC), nitrogen, 

potassium, phosphorous, pH level, and battery level. An ID and device ID, along with 

timestamps for when the data was created and last updated, uniquely identify each entry. 

The dataset captures regular measurements, such as soil moisture at around 39%, 

temperature at 23.4°C, and a pH of 7.9, with the device's battery consistently at 90%. This 

data provides valuable insights into soil health and can be useful for agricultural and 

environmental analysis. 
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Figure 2: System architecture and recommendation daily practices for farmer beats 

The figure 2 depicts an automated irrigation system that leverages sensor data and cloud-

based analysis to optimize water usage in agriculture. Various sensors installed in the soil 

measure key parameters such as moisture, temperature, humidity, pH, NPK levels, and 

electrical conductivity. The collected data is communicated to a cloud system, where it is 

analyzed to make informed irrigation decisions. The results are displayed via a web 

application, allowing users to monitor soil conditions and system performance. Based on 

the analysis, the cloud sends irrigation commands to a controller, which operates the 

irrigation system, ensuring precise and efficient water delivery, conserving resources, and 

enhancing crop health. 

 
Figure 3: Conceptual Data Processing 

Machine learning model development in precision farming involved evaluating 

algorithms like Linear Regression for crop yield prediction and Decision Trees for 

classifying soil health and disease risk. These models were trained on historical data and 

validated using cross-validation techniques, with performance measured through metrics 

such as accuracy, precision, recall, and F1-score. An advisory system was developed to 

provide personalized recommendations based on these predictive models. By integrating 

real-time sensor data and a robust data exchange framework, the system offers actionable 

insights to farmers via a user-friendly interface, supporting informed decision-making and 

improved agricultural practices. In this context, we applied a Random Forest Regression 
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model, which plays a pivotal role in precision farming by analyzing data to deliver tailored 

recommendations, such as optimal irrigation schedules, fertilizer application rates, pest 

control strategies, and harvesting timelines. These insights enable targeted actions like 

variable-rate input applications and site-specific crop management, enhancing efficiency 

and reducing waste. Continuous monitoring establishes a feedback loop for real-time 

adjustments, allowing farming practices to adapt to changing environmental and market 

conditions. The framework emphasizes sustainability by optimizing resource use, lowering 

chemical inputs, and boosting long-term productivity while minimizing environmental 

impact. The final prediction aggregates the outcomes from individual trees. The regression 

analysis using the Random Forest Regressor, based on the existing dataset of soil content, 

confirmed the model's efficacy in precision farming. Collaboration among stakeholders, 

including farmers, agronomists, researchers, and technology providers, ensures efficient 

data exchange and decision-making. Precision farming ultimately leads to higher yields, 

improved resource efficiency, cost savings, and sustainable practices that enhance food 

security and environmental conservation. Random Forest, an ensemble learning method, 

combines multiple decision trees to make predictions by constructing trees from different 

subsets of the training data and randomly selected features.  

4. Results and Discussions  

Once collected, the device sends the data to the cloud, where it is organized, analyzed, 

and displayed. The processed data is then made accessible via a web application, allowing 

users to remotely view and interact with the information. An embedded algorithm within 

the web application automatically triggers the irrigation system based on the analysis of 

fertilizer and water levels in the soil. This automation ensures the irrigation system operates 

at optimal times, maximizing the efficiency of water and fertilizer usage for improved plant 

growth and resource management. The architecture of a smart irrigation and fertilizer 

management system involves multiple components working together to optimize resource 

usage. Sensors are deployed in the field to monitor key soil parameters such as moisture, 

temperature, electrical conductivity (EC), and nutrient levels. A data acquisition module 

collects real-time data from the sensors, transmitting it to a central system or cloud platform 

via communication protocols like Wi-Fi, cellular networks, or LoRaWAN. Once in the 

cloud, the data is stored, managed, and processed using scalable storage and computational 

resources for effective data handling. The cloud platform processes the data using 

algorithms and machine learning techniques to analyse soil conditions, determine irrigation 

requirements, and assess nutrient needs. Based on this analysis, the system makes 

intelligent decisions about irrigation scheduling and fertilizer application by following 

predefined rules or predictive models that consider plant needs, weather conditions, and 

soil characteristics. These decisions are sent to a control system that manages irrigation 

infrastructure, controlling elements like valves, pumps, and sprinklers to deliver water and 

nutrients precisely. A user interface, accessible via a web or mobile app, allows users to 

monitor real-time data, adjust settings, and receive notifications, while a feedback loop 

continuously refines the system's performance, enhancing decision-making and optimizing 

resource use. 
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Figure 4: Deployment of a soil monitoring system, utilizing sensors and IoT-enabled 

devices, to measure soil conditions and composition accurately. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 6: A web platform to monitor soil content with two 

devices, one in the field and the other in the workshop 

 

Figure 5: Soil content collected through the system. 

Figure 7: Dashboard for seven parameters of soil status through different time. 

. 
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Figure 8: Soil moisture monitoring for seven parameters of soil status through different 

time. 

Figure 9: Soil moisture, soil temperature, and electro-Conductivity monitoring of soil 

status through different time. 

 

Figure 10: Nitrogen, potassium, and phosphorus monitoring for seven parameters of soil 

status 

https://dx.doi.org/10.4314/ulksj.v46i1.1
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Figure 11: pH monitoring of soil status through different time. 

A robust data exchange framework was established to facilitate real-time data sharing 

among various stakeholders. The framework ensured seamless integration of data from 

different soil sensors sources, standardized data formats, and secure data transmission 

protocols. The fable 3 explain statistical interpretation of data preprocessing by 

normalization and missing values. 

 

Figure 12: data visualization for all seven parameters 

https://dx.doi.org/10.4314/ulksj.v46i1.1
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The implementation of conceptual framework comprehensive implementation of a 

Random Forest Regressor model to predict soil pH based on various soil content attributes. 

It begins by importing essential libraries such as pandas for data manipulation, numpy for 

numerical operations, and several visualization tools (matplotlib and seaborn) for data 

exploration. The dataset is loaded from an scv file, and the numeric columns representing 

soil attributes (soil moisture, temperature, EC, nitrogen, potassium, phosphorous, battery 

level, and pH) are extracted into feature (X) and response (y) variables. The soil content 

attributes are then printed in a table 1, followed by a pyplot to visualize relationships 

between variables. The data is scaled and normalized using StandardScaler, and a bar plot 

is generated to show the average weight of each soil attribute. 

Next, the step splits the dataset into training and testing sets (80% for training and 20% for 

testing). It also handles missing values by reading and cleaning the training and testing 

files, converting non-numeric columns to datetime, and ensuring all relevant columns are 

numeric. After cleaning the data, the model is trained using the Random Forest Regressor 

on the training data, and its performance is evaluated using the R^2 score. Finally, the 

model’s predictions are visualized by comparing actual versus predicted values in a scatter 

plot. This allows for an assessment of how well the model can predict pH values based on 

the provided soil attributes with 99.9 % accuracy. 

 
Figure 13: Visualization of a dataset Average Weight across soil content  

The Figure13 illustrates the relative importance of various soil content factors in a farming 

context. The x-axis lists factors such as soil moisture, soil temperature, electrical 

conductivity (EC), nitrogen, potassium, phosphorus, pH, and battery level, while the y-axis 

represents their average weight. Notably, EC and battery level have the highest weights, 

indicating their significant influence. Soil moisture and temperature also show substantial 

importance. In contrast, nitrogen, potassium, phosphorus, and pH have lower weights, 

suggesting they are less critical in this specific analysis. The inclusion of battery level likely 

https://dx.doi.org/10.4314/ulksj.v46i1.1
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pertains to sensor performance monitoring. This chart highlights the prioritized factors in 

the farming system under study. 

 
Figure 14:  This image represents a simple Decision Tree Regressor for predicting crop 

yield 

 

The R^2 score of 0.999 suggests that approximately 99.9% of the variance in pH values 

can be explained by the predictor variables used in the Random Forest Regressor model, 

indicating a strong relationship between the features (such as soil moisture, temperature, 

EC, nitrogen, potassium, phosphorous, and battery level) and the target variable (pH). This 

high R^2 score demonstrates that the model can effectively predict pH values, making it 

valuable for soil analysis and agricultural applications. It can help predict soil pH based on 

various factors, providing useful insights for farmers, researchers, or environmentalists to 

optimize crop growth, assess soil health, and make informed decisions about fertilization, 

irrigation, and pH adjustments. However, the model's results should be interpreted with 

domain knowledge, considering other potential influencing factors not included in the 

model, and further validation may be needed to ensure its accuracy and generalizability. 

 

The analysis revealed significant correlations between environmental parameters and crop 

performance. For example, optimal soil moisture and temperature ranges were identified 

for different crop stages, guiding irrigation and fertilization practices. The red lines 

represent linear fits from the plots, and the regression equations can mathematically 

describe these linear fits. The slope of each line tells you how sensitive yield is to changes 

in each variable (N, P, K, temperature, humidity, pH, soil moisture). If the slope is close to 

zero, there is little to no relationship between the variable and yield. If the slope is large 

(positive or negative), it indicates a stronger relationship. 

https://dx.doi.org/10.4314/ulksj.v46i1.1
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Figure 15: Actual Vs Predicted Yield Y=0.99, R2=0.99 

The machine learning models demonstrated high accuracy in predicting crop yields Figure 

(15) and identifying increase production. The multiple linear and lasso regression model, 

in particular, showed superior performance in handling large and complex datasets and the 

effectiveness of the predictive models in estimating the yield level based on various 

environmental and soil factors 

 
Figure 16:  Scatter Plot Matrix of Variables 

The MSE and RMSE values for both regression models are very low, indicating a good fit 

to the data. The slight difference between the MSE of the two methods indicates that Lasso 

https://dx.doi.org/10.4314/ulksj.v46i1.1
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regression might be marginally better due to its regularization properties, reducing over 

fitting. 

0 1 1 2 2 ... n ny X X X             Eq1 
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        Eq2 

The data exchange framework demonstrated its effectiveness in enabling real-time data 

sharing and integration, which facilitated timely updates and accurate predictions, thereby 

enhancing the precision farming process. Additionally, farmers who utilized the advisory 

system reported increased yields and improved resource efficiency. The system's real-time 

recommendations allowed for timely interventions, reducing the risk of crop failure and 

optimizing the use of resources. 

5. Conclusion 

This study emphasizes the transformative potential of the Random Forest Regressor model, 

which achieved 99.9% accuracy in predicting soil pH and facilitating data exchange in 

agriculture. It highlights how these technologies can improve crop yields, optimize farming 

schedules, and foster sustainable practices. The developed advisory system exemplifies the 

practical use of data-driven decision-making, demonstrating its ability to tackle modern 

farming challenges. Continued advancements in these fields offer the promise of a more 

efficient and sustainable agricultural future. 
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