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ABSTRACT 

In recent years, deep learning approaches like convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs) have 

received much attention to natural language processing tasks, 

especially to sentiment analysis. Different methods will be used to 

measure the Convolutional with Attention Gated Recurrent Network 

for Sentiment Analysis. Thankfully, these methods achieved 

significant results. However, these approaches individually fail to 

accomplish the task of sentiment analysis at the extent level. In 

sentiment analysis, the likelihood of a given word is estimated based 

on long-term dependencies and local contextual features that 

depend on a word and its neighboring words. This paper suggests a 

Convolutional with Attention Gated Recurrent Network (CAGRN) 

model performs the sentiment analysis by extracting these features. 

The objective behind our model is to apply the CNN layer to extract 

local contextual features. Afterward, the CAGRNusesa bidirectional 

gated recurrent unit (Bi-GRU) layer to encode the long-term 

dependence features.  On the other hand, the attention mechanism is 

applied to help our model select the convenient words that hold 

sentiment information. The CAGRN performs better in sentiment 
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analysis by using the learned features. Our approach achieves 

competitive results on two real datasets IMDb and SSTb, compared 

with baseline models and requires fewer parameters. Executing 

various ablation experiments of our model components will be done 

in future. 

Key findings: Convolutional Neural Networks (CNNs); 

Recurrent Neural Networks (RNNs);  Convolutional with 

Attention Gated Recurrent Network (CAGRN) 

1 Introduction 

Web 2.0 applications, such as online social networking and e-

commerce websites, have exploded in popularity recently, allowing 

participants to freely share their ideas and opinions in a text(Pang & 

Lee, 2005; Pozzi et al., 2017).  Sentiment analysis is a natural 

language processing task that looks for opinions expressed in user-

generated content (UGC). Discovering hidden knowledge from user-

generated content (UGC) is priceless(Liu, 2012; Pang & Lee, 2008) 

to individual-level up to big organizations and governments. An 

individual user can decide to buy a product by judging other 

customers’ comments who have purchased that product. By 

analyzing customers’ reviews, e-commerce companies can improve 
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their service delivery. Government organizations can take different 

measures based on the understanding of the public opinions about 

any trending topic. Additionally, sentiment analysis can improve the 

capability of recommender systems by identifying the aspects that 

the user wants(Poria et al., 2016; Z. Wang & Zhang, 2017). 

So far, numerous approaches for sentiment analysis have been 

proposed in the literature (Liu, 2012; Pozzi et al., 2017; L. Zhang et 

al., 2018). The designed approaches extract and apply important 

features in sentiment analysis. However, the suggested approaches 

perform the sentiment analysis by relying on the general features 

extracted from the input embeddings. This is certainly helpful, but it 

is not always a perfect solution in sentiment analysis. In practice, it 

is more important to perform the sentiment analysis by using all the 

contextual features of the word in a sentence, which we refer to as 

contextual sentiment analysis in this work.  

Generally, in sentiment analysis, the likelihood of a given theword is 

estimated based on features that depend on a word and its 

neighboring words (Mousa & Schuller, 2017; Muhammad et al., 

2016; Wilson et al., 2005). In this work, we focus on two important 

categories of features. The first category includes local contextual 

elements heavily influenced by the arrangement of words in a 

phrase. Actually, the order is important because the polarity of a 
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word in a sentence can change based on where it is in the sentence. 

Long-term dependencies are the second sort of feature that can exist 

in a sentence. Therefore, we claim that modeling these contextual 

features is of great value. 

A natural method to solving the challenge of sentiment analysis is to 

use classic sentiment analysis approaches based on lexicons 

(Taboada et al., 2011), n-gram, and part-of-speech tags (POS) 

(Bespalov et al., 2011; Pang et al., 2002). Bag-of-words (BoW) (S. 

Wang & Manning, 2012) approaches can also be applied. However, 

the performance of these approaches in sentiment analysis is often 

unsatisfactory due to the following reasons. First, the performance 

of these approaches relies on tedious feature engineering work. 

Second, concerning lexicon-based approaches, the context sentiment 

of a givenword can be different from the prior polarity of that word 

in the lexicon (Muhammad et al., 2016). Third, the n-gram based 

models are accused of suffering from data sparseness. Lastly, BoW 

based approaches handle the input texts as unordered sets of words. 

Thus, they cannot model the necessary information and syntactic 

features for sentiment analysis 

Furthermore, deep learning methods can be used to address the 

problem of contextual sentiment analysis. In recent years, 

thankfully, these approaches have improved the results considerably 
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in sentiment analysis due to the capability of automatic feature 

learning with a hierarchy of layers (Deng & Yu, 2013). Also, their 

success is attributed to the success of word embedding models that 

allow the distributed representation of words (Mikolov et al., 2013; 

Pennsington et al., 2014). Deep learning models like convolutional 

neural networks (CNNs) (Collobert & Weston, 2008) and recurrent 

neural networks (RNNs) like long short term memory (LSTM) 

(Hochreiter & Schmidhuber, 1997)and gated recurrent unit (GRU) 

(Cho et al., 2014)achieved tremendous success in sentiment analysis 

compared to other models. Consequently, numerous approaches 

have been proposed in the literature. 

Researchers have suggested a plethora of CNNs based models for 

sentiment analysis; Kim  (2014) used a multi-channel CNN for 

capturing multiple featuresinthe local context. Very deep CNNs, on 

the other hand, have been investigated for capturing long-range 

relationships(Conneau et al., 2017; Johnson & Zhang, 2017). Also, 

Johnson & Zhang (2014) applied a CNN-based model for the best 

use of word order to represent the text. Similarly, Kalchbrenner et 

al.( 2014) investigated the use of dynamic CNN to learn the 

semantic features of a sentence. However, the proposed CNN-based 

models are a partial solution to the contextual sentiment analysis 

because CNN can only exploit the local features. In addition, 
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capturing long-range dependencies requires the CNN to be deeper; 

hence, expensive computational resources are required. 

On the other hand, RNN based models proved to be efficient in 

learning the sequence inputs and modeling long-range dependencies 

to maintain the constant error flow (Mujika et al., 2017). As a result, 

to deal with the context in which the term appears, Lin et al. (2018) 

applied the structure-attention LSTM, Mousa & Schuller   (2017) 

explored the use of a Bi-LSTM. Similarly, M. Zhang et al. (2016) 

suggested a gated RNN. Moreover, RNNs have been applied for 

capturing long-range dependencies, Yang et al. (2017) applied an 

LSTM. Similarly, Mujika et al. (2017) applied a Fast-Slow RNN. 

Likewise, N. Wang et al.(2017)suggested a Bi-GRU with attention, 

and also Chen et al.(2017) applied a multiple attention LSTM. 

Although these models produced interesting results, their behavior 

to sentiment analysis is still unsatisfactory. Their unsatisfactory 

performance is associated with the RNNs model the sentence in 

temporal order, i.e., the output depends on the previous context. In 

addition, RNNs do not preserve the structure of the input sequence.  

Furthermore, RNNs are biased in terms of the representation where 

the words at the beginning of the sentence are less considered than 

those at the end of the sentence. Thus, the RNN does not model the 

semantic information as it can appear anywhere in the sentence. 
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Therefore, a question raises to our mind: “How can we design a 

computationally less expensive model suitable for contextual 

sentiment analysis. A model that uses the contextual information at 

an extent level in that the order of the inputs is preserved; the local 

and semantic features are exploited; and the global features are 

captured”. 

To this end, motivated by the above findings, we suggested an 

approach called Convolutional Attention Gated Recurrent Network 

(CAGRN) to answer the above question. The CAGRN combines the 

CNN with Bidirectional-GRU (Bi-GRU) with an attention 

mechanism based. The CAGRN inherits the characteristics of CNN 

for preserving the spatial structure of the input sequence by using 

the one-dimensional structure of the text data (Johnson and Zhang, 

2014), good local feature detectors, i.e., filters that capture n-gram at 

every position of the sentence and using few parameters that help 

speed up the training process. To avoid the deeper network, our 

model follows the multi-channel CNN  model (Kim, 2014), which is 

shallow and wide.  To model the input sentence in sequential order 

and capture the global features like long-term dependencies, we use 

the Bi-GRU that processes the input sentence forward and 

backward. Finally, we utilize the attention mechanism extensively 

applied in neural translation machines (Bahdanau et al., 2015; 
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Luong et al., 2015) to allow our model to prioritize the words 

containing the sentiment at any location in the sentence. 

Overall, the main contributions of this paper are three-fold: 

 We propose a combined approach CAGRNthat enhances the 

performance of CNN with Bi-GRU coupled with an 

attention mechanism for sentiment analysis. To our 

knowledge, this is the first work to combine all these three 

models. 

 The attention mechanism is proved to increase the model's 

performance to realize the sentiment analysis by capturing 

the words responsible for sentiment at any position in the 

sentence.  

 We conduct comprehensive experiments on IMDb and SSTb 

datasets. Our model CAGRN outperformed state-of-the-art 

models with a few parameters.  

 The remainder of the paper is structured as follows. Section II 

discusses the related work to our sentiment analysis model. A 

detailed description of CAGRNarchitecture is provided in Section 

III. The experiment setup and results are described in Section IV. 

Finally, section V concludes the paper with a final remark.  
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2 Related Work 

A large number of researchers have been interested in sentiment 

analysis. As a result, a variety of ways have been offered. In 

sentiment analysis, deep learning algorithms such as CNNs and 

RNNs and their modifications have shown superior outcomes. 

CNN, Bi-GRU, and the attention model are all used in our research. 

Therefore, this section discusses different proposed models related 

to our work. 

2.1 Convolutional Neural Networks 

A large number of CNNs based models have been proposed for 

sentiment analysis; Kim (2014) used a  multi-channel CNN trained 

on top word2vec pre-trained word embedding. Y. Zhang et al. ( 

2017) conducted the sensitivity analysis of CNN models to prove 

the effect of CNN architecture on the performance. The study (Xu 

et al., 2017) applied a deep CNN for multilingual sentiment 

analysis. Conneau et al. (2017)investigated the effectiveness of 

deeper CNN to deal with the long-range association of the sentence. 

Similarly, Johnson & Zhang (2017)applieddeep pyramid CNN for 

capturing long-range dependencies. Also, Johnson & Zhang 

(2014)also utilized a CNN-based model for the best use of word 

order in the text representation. Kalchbrenner et al. (2014) used a 
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CNN-based model network that handles varying length input 

sentences and captures short and long-range dependencies. Santos 

& Gatti (2014) proposed a deep CNN that exploits character-to-

sentence-level features and detects negation. The study byX. Zhang 

et al. (2015) designed a CNN that proves the usefulness of character 

information in text classification. 

2.2 Recurrent Neural Networks 

Many RNN-based approaches have been proposed in the literature 

to learn sequence inputs and represent long-range dependencies. 

Similarly, Lin et al. (2018) applied the structure-attention LSTM to 

model the contextual information. Also,Mousa & Schuller (2017) 

explored a generative contextual Bi-LSTM to learn each word's 

right and left context in the sentence. Likewise, a gated RNN model 

was proposed by M. Zhang et al.  (2016) to capture semantic and 

syntactic information as well as represent the context in which a 

word appears. Long-range dependencies, on the other hand, have 

been captured using RNNs.Yang et al. (2017)developed an LSTM 

model to deal with a long input sentence and a target aspect 

discriminative features. 

Meanwhile, Mujika et al. (2017) applied a Fast-Slow RNN to long-

range model dependencies and map complex features. To represent 
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the words of the phrase in the form of parent‐child relationships in 

the tree structure, Taiet al. (2015)built a tree-structured LSTM 

approach. Likewise, N. Wang et al. (2017) designed a Bi-GRU 

model coupled with anattention mechanism to learn long-term 

dependencies 

Also, Chen et al. (2017) introduced a multiple attention LSTM to 

learn the dependencies separated by a large distance. Kokkinos & 

Potamianos (2017)suggested an attention-based GRU with a tree 

structure model where the informative nodes are selected based on 

the weighted representation of the sentence. Yequan Wang et al. 

(2016)created an LSTM model with aspect embedding and an 

attention mechanism that learns aspects in the text at a long-range. 

2.3 Hybrid Neural Networks 

For sentiment analysis, there is currently a substantial number of 

hybrid models. Here are a few that are relevant to our work.Hassan 

& Mahmood (2017)built an approach that augments the CNN with 

the LSTM layer, which replaces the CNN's pooling layer. The 

study by Zhou et al. (2016)  invented a model that integrates a Bi-

LSTM and CNN model with two dimensions convolutional and 

two-dimensional max pooling. Nguyen & Nguyen (2017) 

constructed a model that extracts the local features using a 
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combination of the semantic rules from the lexicon and features 

produces by a Deep CNN. Afterward, the produced features are fed 

to the Bi-LSTM to generate the final representation of the sentence 

that helps capture long-term dependencies. The research by R. 

Zhang et al. (2016) suggested a dependency sensitivity CNN model 

that learns the hierarchical representation with LSTM. Then the 

CNN applies different filters to learn the features. Yenter & Verma 

(2017) applied a combination of several branches of deeper CNN-

LSTM for sentiment analysis. 

However,  our proposed model CAGRNis different from the 

former in following points: the models byHassan & Mahmood 

(2017), R. Zhang et al.(2016), Yenter & Verma(2017) use the 

LSTM, and Nguyen & Nguyen(2017), Zhou et al.(2016) utilize the 

Bi-LSTM whereas CAGRN uses Bi-GRU for capturing long-term 

dependencies. Also, Zhou et al. (2016) approachalso use two-

dimensional CNN, whereas our model uses one-dimensional CNN. 

Furthermore, our model applies multiple CNN with different filters 

to allow CAGRN to capture different local features while the former 

does not use. Another difference is that in (R. Zhang et al., 2016; 

Zhou et al., 2016), the CNN is built on top LSTM and Bi-GRU, 

whereas in CAGRN, the Bi-GRU learns the features from CNN. 

Lastly, the former does not use the attention mechanism, while the 
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CAGRNapplies it to select the sentiment’s important words 

carefully.  

 In a nutshell, the existing approaches are more computationally 

expensive than our model and cannot represent the contextual 

information at the same level as our model does. 

3 Proposed Method 

This section discusses the problem definition and the details of 

theCAGRNmodelproposed to solve the problem. 

CAGRNarchitecture is shown in Fig.1. The CAGR Nconsists of 

five main parts: word embeddings layer, convolutional and max-

pooling layer, Bi-GRU layer, attention layer, and Output layer.  
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Figure 1: Architecture of Convolutional Attention Gated Recurrent 

Network.  
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The input to the model is a matrix                             where   

    is the word in the sentence, and   is the length of sentence  . We apply to 

the input three concurrent convolution operations with kernel size   ,    and    , 

respectively. Afterward, the max-pooling operations are applied to the final 

feature maps. The resulted feature maps are concatenated and fed to the Bi-GRU. 

The hidden states produced by the Bi-GRU are fed to the attention layer that 

produces the weighted representation of the sentence. Finally, the model applies 

the output layer to obtain the final prediction of the sentence
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3.1 Problem Definition 

Formally, in this work, we propose the contextual sentiment 

analysis defined as follows.  Let us consider the input sentence   

with length  ,                           where   

  corresponds to the ith word vector in the sentence matrix. The 

purpose of our approach is to give the sentiment label to each word 

   using the contextual information. We claim that additional words 

in the same sentence can be used to determine the polarity of a 

particular word   .  , i.e.             , hold the key long-term 

dependencies and local contextual information necessary for 

sentiment analysis. 

3.2 Word Embedding layer 

In case there is no large supervised training set, one of the 

alternatives to improve the performance of the models is to use 

unsupervised neural language models to initialized the word vectors 

(Socher et al., 2011). In addition, Kim (2014) proved that using the 

unsupervised neural language models is a good ingredient in NLP, 

especially in sentiment analysis. Therefore, we used 

GloVe1(Pennington et al., 2014)context predicting model, which is 

publicly available. GloVe word embedding inherits the benefits 

                                                           
1
Available from:  https://github.com/stanfordnlp/GloVe 
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offered by global matrix factorization and local context methods. 

GloVe has been trained on Wikipedia 2014 and Gigaword 5 with a 

total number of 6 billion tokens. During the training process, we 

fine-tuned the embeddings. This word embedding method allows 

our model todeal with important features like contextual, syntactic, 

and semantic features. 

 Let   be the sentence input to the model. After encoding,   

                          where      is the word in the 

sentence,   is the embedding dimension, and   is the length of 

sentence  . 

3.3 Convolutional and Pooling layers 

We propose three concurrent convolutional layers coupled by max-

pooling layers, motivated by the effectiveness of CNN models 

presented in the literature.The length of the sentence often 

determines the structure of the convolutional that is applied to the 

sentence representation and the length of the word, which are 

denoted by N and d, respectively.The convolutional layer creates a 

feature map   by applying a filter with the weight matrix   

    on a window of n words in the sentence matrix S. Equation (1) 

gives the ith element of the feature map M in formal terms: 

                        (1) 
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where   is a bias term, and   is a non-linear function, normally tanh 

or ReLu.            is from the ith to i+nth word vectors in the 

sentence matrix.   is the element-wise product between two 

matrices. The filter   is applied to each possible window of words 

in the sentence vector to generate the final feature map    given by 

equation (2): 

                               (2) 

 We apply max pooling to the resulting feature map described by 

equation 2 because of its performance in discovering critical 

features with minimal computational cost. We use size two max-

pooling, which halves contiguous features in the feature map M by 

extracting the maximum among them. 

The max-pooling operation transforms the feature map   to 

    
     

 
 . Formally,    is defined by: 

               
 
     

 
 
 (3) 

 Therefore, stimulated by the idea (Kim, 2014), we apply 

multiple filters with sizes 4, 5, and 6 to get the final feature 

map  which is the concatenation of individual feature maps 

            . Thus,   is given by the following equation: 
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                  (4) 

where  denotes the concatenation operator. 

Applying multiple kinds of filters with different sizes helps 

capture possible local contextual features over the sentence 

matrix  . 

3.4 Bi-directional Gated Recurrent Unit 

RNNs are the type of feed-forward neural network that is 

specialized in the modeling input sequence and long-range 

dependencies.  In this work, we adopt the Bi-GRU variant of RNNs 

suggested to overcome the vanishing and exploding gradient 

(Hochreiter, 1998) that the traditional RNNs suffer. Bi-GRU learns 

the input in forward and backward directions. Modeling the input 

sequence in both directions allows the model to have previous and 

upcoming contextual information. Therefore, this solvesthe bias 

problem that single channel RNN suffers.  

The input to our Bi-GRU is the encoded features produced by the 

CNN layer. We represent the encoded features by 

                   with length  . The Bi-GRU is made of 

forward GRU and backward GRU layers. The forward GRU outputs 

a sequence       a set of hidden vectors produced in the forward 

direction while the backward GRU produces a sequence    , a set of 
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hidden vectors produced in the backward direction. Finally, the 

hidden vectors      and     are concatenated to make the final output 

  for the Bi-GRU.   

The outputs for both forward and backward layers are calculated 

using the standard GRU updating equations described below. 

Formally, the GRU has different gates that govern the operations of 

the unit. At time step t, the GRU outputs the hidden vector    that is 

a linear interpolation of the previously hidden vector      and the 

candidate activation  . During this operation, the update gate   

regulates how much the unit updates its activation while the reset 

gate    allows the unit to forget the previous computation and 

pretends that the input sequence starts. 

 To sum up, the computation process of GRU hidden unit   at 

time t is governed by the equation (5)-(8)(Cho et al., 2014): 

  
 
      

 
     

 
   

 
    

 (5) 

  
 
               

                            (6) 

   
 
                      

            (7) 

  
 
               

                            (8) 
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where   is the sigmoid function,  is the element-wise 

multiplication,          are weight matrices. 

The output of the GRU is a vector H containing hidden vectors 

H                . Therefore, H is the output of the forward 

GRU layer, denoted as    .  While, the backward GRU does the same 

thing, except that its input sequence is reversed, thus, its output is 

denoted by     . 

The Bi-GRU layer generates an output vector   

                  in which each element   is a concatenation of 

the forward and backward hidden states.  

                     (9) 

where   signifies the element-wise sum of the two hidden state 

vectors, forward and backward. 

3.5 Attention Mechanism 

For sentiment classification, not all words in the phrase are equally 

relevant. Therefore, we propose an attention mechanism that helps 

to prioritize the important word responsible for sentiment in the 

sentence. This study applies a simplified attention mechanism 

applied in neural translation (Luong et al., 2015). The attention 

mechanism in our model works on each output   of the Bi-GRU. 
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With this attention mechanism, our model can model the long-term 

information at any location in the sentence. 

Let                    be the input to the attention layer. 

     a matrix representing the output of Bi-GRU. 

                     (10) 

   
      

    

        
    

 
   

  (11)        

     
 
        (12)        

where   is the number of encoded-word features in the sentence,    

is a hidden attention vector,    is a vector containing the normalized 

weight for an encoded feature of word   ,    is global contextvector, 

and   is the weighted representation of the encoded features of the 

sentence. 

3.6 Output Layer 

The output layer gets the vector r, a weighted representation of a 

sentence's encoded features as input. After that, for each sentiment 

class label, the softmax is used to estimate the probability 

distribution. The softmax process is defined in precise terms as 

follows: 

              
   

   

  
  

    
   

(13) 
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where   is the number of classes,    and     are bias and weight for 

class  .  

For each training sample, we use the cross-entropy loss to reduce 

the difference between the actual probability distribution and the 

anticipated probability: 

 

       
 
                         (14) 

where       is a one-shot vector that represents the actual 

sentiment label distribution,                is the predicted 

probability. 

 

         

 

 

 

 

    

Table 1: Statistics of the datasets used 

S, C denote the number of samples and classes, respectively. 

Data S Train Val Test C 

IMDb 50000 37500 6250 6250 2 

SSTb 11855 8544 1101 2210 2 
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4 Experiments 

This section presents the details of the datasets used to evaluate the 

effectiveness of the CAGRNmodel, CAGRNhyper-parameters, and 

training details. Finally, it shows the experimental results obtained 

by CAGRNand the comparison with baseline models. 

4.1 Datasets 

We evaluated the performance of our model on IMDb2(Maas et al., 

2011) Large Movie Review and SSTb3(Socher et al., 2013)Stanford 

Sentiment Treebank datasets. We evaluate the model for binary 

sentiment classification. For the first dataset IMDb, samples are 

balanced 50% for training and 50%for testing. In addition, the 

reviews in this dataset contain multiple sentences. While evaluating 

our model, we used75% for training,12.5 % validation, and the 

remaining 12.5% for testing. We did not follow the proposed 

distribution because we wanted to give our model many training 

samples and provide a validation set. The second dataset, SSTb, 

consists of 11,855 movie reviews collected from the Rotten 

Tomatoes site. The reviews in the dataset contain a single short 

                                                           
2
Available from: http://ai.stanford.edu/~amaas/data/sentiment/ 
3Available from: https://nlp.stanford.edu/sentiment/   
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sentence per review. The statistics for each dataset are presented in 

Table 1. 

4.2 CAGRN Hyper parameters 

The embeddings with dimension 200 that GloVe initialized are the 

inputs to the model. We utilize three channels in the CNN model, 

each with a one-dimensional convolutional layer with 256 filters 

and a kernel size of d(4,5,6). For each convolutional layer, we 

employ the rectified linear units (ReLu) activation function. In 

addition, each channel employs a two-size max-pooling layer. On 

the IMDb and SSTb datasets, the Bi-GRU uses the hidden state of 

size 300 and 70, respectively. On both datasets, the number of 

epochs used to train the proposed model differs between (3,8). We 

set the batch size to 32 for each iteration of the training procedure. 

To prevent our model from overfitting, we applied the early 

stopping and dropout (Srivastava et al., 2014). We applied the 

dropout probability between 0.5 and 0.8 after the convolution layer 

and after the Bi-GRU layer.  The model was trained via Adam 

optimizer (Kingma &Ba, 2015) with default parameters. We 

minimized the cross-entropy loss given by equation 14 when 

training our model. Finally, we used the Keras Python package with 

the TensorFlow backend to create our model. 
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4.3 Baseline models  

We compare the effectiveness of our proposed model to the 

following state-of-art approaches: 

PL(Maas et al., 2011) is a probabilistic model that performs 

sentiment analysis. The IMDb dataset was designed in this work. 

RNTN(Socher et al., 2013)  is a well-known recursive neural tensor 

network that represents the sentence in the form of a tree. The SST 

dataset was created in these results. 

CNN-multichannel(Kim, 2014) is a commonly used model that 

applies multiple convolutional with different filters to perform 

sentiment analysis. 

DCNN (dynamic CNN ) (Kalchbrenner et al., 2014)is a graph-

based model of the features of a sentence. 

DeepCNN(Santos & Gatti, 2014) uses character information and 

sentence representations for the sentiment classification. 

CNN (Semantic CNN) (Yin et al., 2017)augments the features 

extracted by CNN  with sentiment information from the lexicon. 

CNN-SA (CNN Sensitivity Analysis)(Y. Zhang & Wallace, 

2017)performs the analysis of effect of CNN architecture to the 

results in sentiment analysis. 
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Table 2: Results of our models and baseline models 

 Model IMDb SSTb 

Baseline 

models 

CNN-multichannel 

DCNN  

DeepCNN  

SCNN  

CNN-SA  

RNTN  

CNN-LSTM  

Tree-GRU  

BLSTM-2DCNN  

DAN  

DSCNN  

PL  

HRL  

CBA+LSTM  

Deep CNN-LSTM  

  

  

  

  

  

  

  

  

  

 

89.4 

90.7 

88.89 

90.92 

90.1 

89.5 

  

  

  

  

88.1 

 

86.8 

85.7 

87.9 

85.49 

85.4 

88.3 

89.5 

89.5 

86.3 

89.1 

Ours 

CGRN 

CAGRN 

91.39 

91.50 

89.71 

89.83 
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CNN-LSTM(Hassan & Mahmood, 2017)is a hybrid approach that 

uses an LSTM layer to replace CNN's pooling layer. 

Tree-GRU(Kokkinos & Potamianos, 2017)represents the 

information in a sentence as a tree, with nodes picked according to 

the weight of each word. 

BLSTM-2DCNN(Zhou et al., 2016) is a combined approach of 

BLSTM with two-dimensional CNN.  

DAN (Deep Averaging Network )(Iyyer et al., 2015) is a simple but 

efficient model that performs the sentiment analysis by ignoring the 

syntactic structure of the inputs. 

DSCNN (Dependency sensitivity CNN) (R. Zhang et al., 2016)uses 

an LSTM for sentences representation and applies CNN in 

extracting the features. 

HRL(Yiren Wang & Tian, 2016)is a Hybrid Residual LSTM model 

that performs sequence classification by combining the ResNet 

connection with LSTM. 

CBA+LSTM (Cognitive Based Attention LSTM)(Long et al., 

2017) is an approach that represents the attention of a given the 

word in a sentence. Also, it captures the attention of a given 

sentence in the document. 

Deep CNN-LSTM(Yenter & Verma, 2017) applies multiple 

branches of hybrids of CNN and LSTM. 
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4.4 Experimental Results 

The evaluation results achieved by our models and baseline models 

are shown in Table 2.  We report the results in terms of accuracy 

expressed in percentage. It is observed that our proposed model 

CAGRN obtained superior results compared to the state-of-the-art 

models.CAGRN improved theperformance of both datasets. 

CAGRN raised the accuracy by 0.58 on IMDb and 0.3-3 on 

SSTb.Among the results presented in the literature, the model with 

the highest accuracy is Hybrid Residual LSTM (HRL) (Yiren Wang 

& Tian, 2016) with 90.92% on IMDb and Tree-GRU (Kokkinos & 

Potamianos, 2017) with 89.5% on SSTb.  

The good performance of our model is related to the advantages 

of using contextual information extracted by the combined 

approaches. In addition, the attention mechanism helps our model 

perform a wise selection of important words containing the 

sentiment information at any location in the sentence. The results 

reveal that our model, without attention, CGRN, got comparable 

results to the baseline models. 

In brief, the experimental results strongly agree with our idea of 

using contextual information to perform the sentiment 

classification.  
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5 Conclusion 

In this paper, we augment the CNN with a Bi-GRU joined with an 

attention mechanism to perform the contextual sentiment analysis. 

In particular, the multiple convolutional applied helps the model to 

extract possible local features by retaining the order of the input 

sentence. On the other hand, the Bi-GRU learns global features. 

Besides, the attention mechanism helps the model to select the 

important words responsible for the sentiment information. We 

evaluated the effectiveness of the proposed model for binary 

sentiment classification on IMDb and SSTb datasets. The obtained 

results reasonably agree with our idea of using contextual 

information to realize contextual sentiment analysis.  

The experiments, including performing various ablation 

experiments of our model’s components, will be done in future 

work. In addition, our model can be applied to other sequence 

learning tasks. Specifically, future work in neural machine translator 

can investigate whether this can enjoy the beauty of our model. 
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