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Abstract. In this study, a basis for the feasibility of a successful ASF vaccine design program using 
live attenuated vaccines was sought. One of the challenges to African swine fever (ASF) vaccine 
development is having a cell line that will provide commercial utility for vaccine production. We set 
out to address this problem by innovatively identifying possible cell lines from local domestic pigs 
in the country. Eight tissue types from ASF-negative animals were identified for incorporation into 
cell line development. These were degraded, incubated, and monitored for cell growth. One cell line, 
the SIR2-P, grew consistently and confluently and was tested for the ability to grow and isolate field 
ASF viruses. We report the isolation of ASF viruses in our laboratory for the first time. The P9C virus 
from Namayingo district exhibited the largest plaque sizes compared to the SQ517B virus from 
Mukono. The innovative identification of the SIR2-P cell line is proof of concept that newer species-
specific cell lines can be developed in the Infectious Animal Disease Laboratory (IADL), and utilized 
to study other animal viruses like Porcine Reproductive and Respiratory Syndrome (PRRS) virus, 
Foot and mouth disease (FMD) virus, and Swine Influenza.  Such cells can be used in vaccine 
production for other endemic diseases in Uganda. The SIR2-P cell line is currently at passage 65. 
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Introduction 

African swine fever (ASF) is a notifiable porcine disease caused by a double-stranded DNA 
virus, the African swine fever virus (ASFV). It is endemic in Uganda, with outbreaks happening 
every year, in a near-predictable fashion. ASF causes huge and sometimes irremediable 
production losses to mostly subsistent smallholder pig farmers in Uganda. Pig farmers usually 
never recover to continue with the piggery business after an outbreak. Although the disease is 
endemic, the country would desire to keep track of and control all ASF outbreaks, an 
undertaking that is hard to achieve financially and sustainably.  

In this study, a basis for the feasibility of a successful ASF vaccine design control program 
using live attenuated vaccines was sought. One of the challenges to ASF vaccine development 
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is having a cell line that will provide commercial utility for vaccine production. We therefore 
sought to address this problem by identifying possible cell lines from local domestic pigs in 
Uganda, since it is common for such a resource to be very expensive to obtain from 
international vaccine producers or manufacturers. We therefore selected several ASF-negative 
tissues for inclusion in our experiments.  

Methodology 

Selection of Tissue Types 
Following several cross-sectional field surveys involving the collection of suspected ASF-
positive tissue (Ezinga, unpublished), we obtained several porcine tissues from several 
geographically-spread and distinct domestic pigs in Uganda. We selected 8 tissue types from 
negative animals for incorporation into development of a cell line (Table 1). 
 
Table 1. Tissue types that were used for the cell extraction experiments 

 Unique ID Animal origin Tissue type 
1 KAP09 Porcine Tonsil 
2 SIR2 Porcine Muscle 
3 KAP13 Porcine Lung 
4 SIR4 Porcine Muscle 
5 AMU1 Porcine Spleen 
6 KAP10 Porcine Lung 
7 KAP05 Bovine Lung 
8 KWN07 Porcine Lymph node 

All field tissues are currently stored at -80oC in NaLIRRI. 
 
Approximately, 1 x 1 x1 cm3 sized field tissues were aseptically debrided from original field 
tissues and carefully aliquoted into 2ml sterile cryovials.  

Tissue degradation and incubation 
Tissue aliquots were then homogenised and crushed using liquid nitrogen, followed by 
enzymatic degradation using 1 mL trypsin (2000 U/G batch no. L250461806) for 30 min. The 
cryovials were then centrifuged briefly at 2000 rpm for 5 mins, and the supernatants were 
transferred into 8 already prepared and well-labelled T25 cell culture flasks (Eppendorf AG). 
The supernatants were incubated under 5% CO2 and at 37oC using Eagle’s Minimum Essential 
Medium (Lot# RNBJ1562), 10 % Fetal Calf Serum and 1% Penicillin/Streptomycin for at least 
5 days. 

Checking cell growth and adhesion 
The T25 flasks were then checked for possibility of cell growth and confluency using a light 
microscope (Motic Light Microscope) at x20 and x40 magnification. Cells grew variedly and 
three cell lines were eventually selected for continued growth and passage. After three passages, 
one cell line grew consistently and confluently. This prompted testing of the new cell line for 
the growth and isolation of field viruses of African swine fever.  
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Isolation of African swine fever viruses on newly selected cells 
Using previously confirmed ASFV-positive field viruses (Ezinga, unpublished) (Fig. 1), we 
infected and incubated for 5-7 days the newly-selected cell line with 3 matching virus 
supernatants derived from outbreaks in Namayingo (P9C), Bunyangabu (BUN05) and Mukono 
(SQ517B) districts during the 2019 – 2020 period. Viruses SOR36 and KAS04 from Soroti and 
Kasese, respectively, were infected and incubated on the new cell line too.  

 
Figure 1. Positive identification using partial amplification of the p72 gene of ASFV.  

 
P9C represents the amplification of an outbreak strain from Namayingo district (Eastern Uganda), BUN05 

from Bunyangabu district (Western Uganda), and SQ517B from Mukono district (Central Uganda). 

Results 

Selection of the three cell lines 
Using an inverted light microscope, 8 T25 flasks were observed, and cells were checked for 
growth and adhesion to the flasks. In three T25 flasks cells grew to at least over 60% confluence 
(Fig 2). 

 
Figure 2. Confirmation of three cell lines – SIR2-P, SIR4-P, and KAP10-P all derived from 

domestic pigs observed at x20 magnification. 
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SIR2-P exhibited over 90% confluence and grew consistently across several passage cycles. In 
the remaining 5 T25 flasks, cells grew in isolation and were monitored for a few more days and 
did not continue to show the possibility of further growth. These were discarded and 
discontinued. 

Continued passaging of selected cell lines to check for stability  
We continued to split and incubate the three cell lines SIR2-P, SIR4-P, and KAP10-P up to 
three rounds. SIR-4 and KAP10-P showed varied confluence of utmost 50% and were 
disregarded (Fig 3). 
  

 
Figure 3. Continued passage of three cell lines to check for stability and survivability of 

seeded cell, X 20 magnification. 
 

SIR2-P selection (at Passage 3) 
After three passages, the SIR2-P cells appeared confluent and healthy and were selected as the 
new cell line for which to carry forward with several analyses. 
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Figure 4. SIR2-P cells after the 3-passages observed at x20 magnification 

 

Isolation of African swine fever viruses on the SIR2-P cell line 
After 5-7 days of infection and incubation, 3 T25 flasks (Fig. 5) were analysed for virus growth 
on the SIR2-P cells, and virus plaques were identified in all three flasks. 
 

 
Figure 5. Infection of SIR2-P cells with ASFV-positive supernatants derived from positively 

identified field outbreaks 
 
The viruses exhibited varied plaques sizes with P9C from Namayingo district displaying the 
largest plaques, and SQ5173 from Mukono having the smallest sized plaques as shown in Fig 
6.  

 
Figure 6. White arrows show ASFV plaques seen under light microscopy, at X40 

magnification 
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The P9C virus from Namayingo district exhibited the largest plaque size, while SQ517B from 
Mukono showed variably smaller plaque sizes. 

Aliquoting the SIR2-P domestic pig cell line for storage and vaccine development work 
Several 2ml cryovials were labelled well and the SIR2-P cells were briefly centrifuged at 2000 
rpm for 10 mins. The pellets were resuspended in MEM with 10% DMSO and cryo-preserved 
under absolute ethanol at -80oC (Fig 7). 
 

 
Figure 7. Cryo-preservation of SIR2-P cell line aliquots in the NaLIRRI cryo-bank for future 

reference 

Discussion 

African swine fever continues to be endemic in Africa (Gallardo et al., 2011, Yona et al., 2020) 
with a constant threat of spread to newer trans-continental boundaries where it has not existed 
before (Rahimi et al., 2010, Alkhamis et al., 2018, Schulz et al., 2020) (Chenais et al., 2015, 
Gallardo et al., 2015, Smith et al., 2019) (Sanchez-Cordon et al., 2019). Furthermore, ASF still 
has no licensed commercial ASF vaccine (Penrith et al., 2009), and it is known that within the 
current 24 genotypes (Bastos et al., 2003), there is no possibility of cross-protection, and 
conventional ASF virus genotyping may not distinguish between viruses of different virulence 
(Malogolovkin et al., 2015). The possibility of making ASFV vaccines has been shown (Arias et 
al., 2017, Gaudreault et al., 2019) (Sereda et al., 2020), for instance, a trial intra-genotypic ASF 
vaccine only offers homologous protection (O'Donnell et al.,2015, Sanchez-Cordon et al., 
2020) (Sang et al.,2020). Similarly, it is known that for ASF, elevation of regulatory components 
of the immune system like regulatory T cells and IL-10 may inhibit effective protection 
(Sanchez-Cordon et al., 2020).  

In Uganda two genotypes exist, for which genotype IX is the most prevalent in domestic 
pigs (Atuhaire et al., 2013, Kabuuka et al., 2014, Nantima et al., 2015, Chenais et al., 2017, 
Masembe et al., 2018, Onzere et al., 2018, Norbert et al., 2019). Given the endemicity and 
rebound nature of ASF outbreaks in Uganda (Muhangi et al., 2015, Penrithet al., 2021), we 
desired to have home-grown solutions to address the continued problem of ASF outbreaks. 
We attempted to design a live-attenuated vaccine (LAV) for the prevalent genotype IX ASF 
viruses in Uganda, since it has been shown that LAVs elicit and provide some levels of immune 
protection (O'Donnell et al., 2015, O'Donnell et al., 2017, Bosch-Camos et al., 2020, Gladue et 
al., 2020, Teklue et al., 2020) (Lopez et al.,2020 , Reis et al.,2020).  

With the increasing technical ability in the country for vaccine design, and sometimes, the 
expensive cost coupled with the inability to acquire biological requirements for vaccine research 
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in Africa, we opted to inventively identify possible ways of growing cells in our laboratory 
(Sanchez et al.,2017, Portugal et al.,2020, Rai et al.,2020, Masujin et al.,2021, Meloni et al.,2022), 
and further use them to isolate ASF viruses for the first time in Uganda (Hurtado et al.,2010). 
Eventually, we desire to potentially use these cells as a precursors for virus production of live-
attenuated vaccines (Hubner et al.,2019, Borca et al.,2020, Ramirez-Medina et al., 2022) (Keil 
et al., 2014) or attenuated strains of ASFV (Krug et al., 2015).  

From our study, we categorically identified the SIR2-P cell line from a domestic pig that was 
ASF-negative. Cell lines are used to study and characterise viruses in well-laid out biosafe 
environments. This new cell line provides our laboratory with a set of new dimensions to study 
ASFV. We managed to show that the new cell line can be deplored for virus isolation, which is 
often a preserve of highly advanced laboratories in Africa. Since at our disposal was 
conventional PCR (partial amplification of the p72 gene of ASFV) as a confirmatory test, the 
observation of virus plaques under light microscopy needs to be backed up with indirect 
immunofluorescence antibody tests to mark-out the virus plaques. Subsequently after virus 
isolation, we investigated plaque sizes for viruses representing three broad regions in Uganda. 
From eastern Uganda, P9C and SOR36 viruses from Namayingo and Soroti districts, 
respectively, grew to comparable plaque sizes. From Western Uganda, BUN05 and KAS04, 
representing Bunyangabu and Kasese districts, respectively, showed varying plaque sizes.  
SQ517B from Mukono district, a representative of central Uganda was analysed and formed 
the larger plaque of all strains. It is worth noting that plaque-size differences from the ASFV 
strains warrants further in-vitro analyses for titer determination. Our new cell line 
accommodates this purpose very well.   

To create live-attenuated ASFV vaccine candidates, transfection of permissive cells with the 
desired plasmids is essential. Our team will therefore attempt to transfect the SIR2-P cell line 
with deletion plasmids followed by superinfection of utmost three field viruses as determined 
by results from the in-vitro growth kinetics of the five isolated viruses. Upon evaluation of the 
three vaccine candidates, the SIR2-P cell line will be used for propagation of our vaccine 
candidates for production of trial batches. 

Our group now seeks to serially passage the five isolated field ASF viruses and this will be 
followed by possible identification of an attenuated strain for further trial as a vaccine candidate. 

The identification of the SIR2-P cell line is proof-of-concept that newer species-specific cell 
lines can be developed in NaLIRRI, and utilised to study important viruses affecting animals 
and further, be used in home-grown vaccine production of endemic diseases in Uganda.  

Our work therefore brings to front a biological innovation of a cell line with the ability to 
improve research in Uganda and Africa at large through improved diagnosis through virus 
isolation, ability to conduct experiments that attenuate virulent viruses, and lastly, to provide a 
backbone for vaccine production at both small and large-scale in Uganda. Our new cell line will 
bring further use through studies involving molecular genetic characteristics and immune-
pathogenic mechanisms of ASFV. The SIR2-P cell line continues to grow well and is currently 
at passage 42.  
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