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Abstract 

Since the methods employed during teacher-learner interchange are constrained by the 

internal structure of a discipline, a study of the interaction amongst verbal language, technical 

language and structure of disciplines is at the heart of the classic problem of transfer in 

teaching-learning situations. This paper utilizes the analytic method of philosophy to explore 

aspects of the role of language in mathematics education, and attempts to harmonize 

mathematical meanings exposed by verbal language and the precise meanings expressed by 

the mathematics register (MR) formulated in verbal language. While focusing on the 

integration of language use and meaning construction in mathematics education, the paper 

explores the relationship between the conceptual understanding revealed by the mathematics 

register and the procedural knowledge that refers to the mathematical content through 
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ordinary discourse. 

 

Keywords: mathematics register (MR); Mathematics Problem Solving Strategy (MPSS); 
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Conceptually-driven processing. 

 

Introduction 

The fact that mathematical language formulated as mathematics register (MR) is expressed in 

grammatically well-formed sentences and phrases in verbal language shows that mathematics 

and verbal language interact. Every language seems to have ways in which it expresses 

mathematical operations. For instance, the mathematics register in English is the distinct way 

in which mathematical meaning is expressed in that language despite the Hindu-Arabic 

numerical system that it uses. Dale & Cuevas (1987) describe MR in terms of the unique 

vocabulary and syntax (sentence structure), and discourse (whole text features) in which it is 

expressed. Some scholars have even gone further to claim that mathematical language could 

be subsumed under verbal language (Sidhu 1984; Eshiwani 1987; Hjelmslev 1974; Pimm 

1987; Mutio 1989; Ernest 1991; Huang & Normandia 2007). According to Schindler & 

Davison (1975), Mathematics Register (MR) is the sense of the meanings by which a natural 

language accommodates and integrates the mathematical system in natural language as a sub-

system of the same linguistic system, thus defining the mathematical use of the natural 

language. It is the meanings, including the styles of meaning and modes of argument, that 

constitute the register, rather than the words and natural language structures as such.  

 

While this study concurs with the above scholars that mathematics is akin to verbal language, 

the isomorphism that is claimed between mathematics and verbal language is yet to be 

established or disproved. Indeed, that mathematics is a tool of communication which uses a 

special language, or at least that it uses language in a special way, is intelligible considering 

the formation of MR. However, the more radical view that there is a direct equation between 

mathematical language and verbal language, and that the teaching of mathematics involves, 

to some extent, the teaching of certain linguistic patterns, needs closer attention.  

 

Works that treat mathematics as a language leave the following questions unanswered: 

(1) What linguistic meanings do mathematics embody, and of what consequence could such 
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conceptions be towards the development of a solid foundation for mathematics, and 

for improvement of mathematical pedagogy? 

(2) Does mathematical language expressed in mathematics register (MR) suggest appropriate 

Mathematics Problem Solving Strategy (MPSS) as a dialogical tool for tackling 

mathematical problems? 

 

It may be realized that if we accept the claim that “Mathematics (A) is a language (B)”, then 

there is reason to suppose that A relates specifically to a whole sub-class of B, or that “B is 

A” is also true. The claim that “Mathematics is Language” may need to be justified using the 

foregoing logic if the claim is to be intelligible. 

 

  

 

 

 

 

 

      

 

  

 

 

 This position raises the question concerning the existence of significant or partial similarity 

between what is ordinarily called language on the one hand and mathematics on the other, or 

whether they are so alike as to fall under the same definition.  

 

 

 

 

The Significance of the Discipline of Mathematics 

Mathematics is one of the most important subjects in educational curricula. It is estimated 

A B A B 

A is B 

A ⊂ B 

A is B and B is A 

(A ⊂ B) ∧ (B ⊂ A) 

Figure 1: A is a subset of B       Figure 2: A is a subset of B and B is a subset of A  
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that in most school systems of the world, between 12 and 15 percent of students’ time is 

devoted to it (Travers et.al., 1989). The importance of Mathematics for potential future 

careers of students cannot be overemphasized. Mathematics is fundamental to national 

prosperity in providing tools for understanding science, technology and economics (Brown & 

Porter 1996). A student who chooses to ignore mathematics, or to treat it casually, forfeits 

many future career opportunities. 

 

Mathematics is crucial not only for success in school, but also in producing informed citizens, 

productive in their careers and in their personal endeavours. In today’s technology-driven 

society, demands are placed on individuals to be able to interpret and use mathematics to 

make sense of information in diverse situations. The study of mathematics equips students 

with knowledge, skills, and habits of mind that are essential for successful and rewarding 

participation in society. Learning mathematics results in more than a mastery of basic skills: 

it equips students with a concise and powerful means of communication. Mathematical 

structures, operations, processes, and language provide students with a framework and tools 

for reasoning and expressing ideas clearly. Through mathematical activities that are practical 

and relevant to their lives, students develop insight, problem-solving skills, and related 

technological skills that they can apply in their daily lives and, eventually, in the workplace 

(Ministry of Education 2005, 3). 

 

Mathematics has been conceived as a system of problem solving. By reflecting the laws of 

the universe, mathematics serves as a powerful instrument for human knowledge and mastery 

of nature. It reveals and predicts order in the universe, and as far as education is concerned, 

its importance arises from its inherent power to describe, explain and predict natural trends. 

Other than possessing practical utility as a means to technological advancement for the 

improvement of the human condition, mathematics also possesses analytic utility. It is a tool 

for exploring the possible world of existence and a precise means of communication that 

employs the logic of relational thought which gives us intellectual independence to engage in 

abstract thinking. 

 

Mathematics in the Kenyan Context 

In Kenya, the central place of mathematics in education has been demonstrated through 

periodic reviews of curricula in order to make the mathematical content and experiences 



The Impact of the Interaction between Verbal and Mathematical Languages in Education 83 

 

 

 

consistent with current developmental and technological demands. “Traditional 

Mathematics” was in vogue in the 1960s. “New Mathematics” was introduced in the 1970s as 

a response to strategic and computational needs for global technological advancement. 

However, this change of emphasis did not produce the expected results. Features of the “New 

Mathematics” curriculum were, apparently, least understood and not applied by teachers as 

expected. The world over, dissatisfaction began to be voiced with the low arithmetical ability 

of the new crop of students, more so in developing countries like Kenya (Eshiwani 1981). 

The failure of students to meet societal demands with respect to their numeric capacities 

created disillusionment among educators and employers alike. 

 

In the early 1980s, the Kenya government introduced “Appropriate Mathematics”, and 

changed the education system from 7-4-2-31 to 8-4-42. It was assumed that the new structure 

of education and the new curriculum would not only improve pupils’ performance in 

mathematics, but also solve problems related to unemployment. The programme, which is 

still running currently, is yet to be evaluated effectively, although a few changes have been 

introduced into it lately, especially after the implementation of free primary education in 

2003 (UNESCO 2004). 

 

The challenges faced by the 8-4-4 system of education have been pointed out and its 

conceptual validity questioned by several scholars (e.g. D’Souza 1987; Sifuna 1990; Kibera 

1993; Nyaigotti-Chacha 2004). Criticisms levelled against its mathematics curriculum are 

similar to the ones earlier averred against “New Mathematics” and “Traditional 

Mathematics” worldwide. A close look at the developments in terms of pupils’ competence 

and level of numeracy measured in the form of comparative performance vis-a-vis 

performance in other subjects shows a stable failure trend. This is not surprising, as it is 

noteworthy that the trend of poor performance in mathematics has been a global problem 

(Bockarie 1993; Aguele & Usman 2007). 

  
                                                

 
1 7-4-2-3 means Seven years of Primary or basic education, Four years of lower Secondary education, Two 
years of Upper (Higher) Secondary education and a minimum of Three years of University education. 
 
2 8-4-4 means Eight years of Primary or basic education, Four years of Secondary education and a minimum of 
four years of University education. 
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From the foregoing observations, it is apparent that perpetual poor performance in 

mathematics may not be adequately addressed by intermittent changes in the structure of 

education. Neither do changes in the “types” of mathematics curricula such as “New 

Mathematics” and “Appropriate Mathematics” seem to solve the problem. It should be noted 

that the mathematics register (MR) in the English language, for instance, is an international 

‘medium’ for expressing mathematical considerations among English language speakers. The 

use of MR in the English language and its relation to curricula formulation is a matter of 

global concern, and does not have to be unduly varied by Kenyan curricula developers in the 

name of making mathematics more ‘appropriate’. 

 

One of the reasons for poor performance in mathematics arises from language considerations 

(Eshiwani 1983) rather than just from inherent conceptual difficulties of mathematics itself. It 

should be noted that verbal language spoken by children outside mathematics classrooms is 

not directly formulated as Mathematics Register (MR) (Halliday 1975, 61-72), which always 

uses words of the verbal language more precisely. The interaction between Mathematical 

language (expressed in the form of mathematics register) of a verbal language, and the well-

formed phrases of the verbal language apparently creates difficulty for pupils. The difficulty 

experienced in understanding a mathematics problem is further heightened when a pupil has 

to interpret the MR into appropriate mathematics problem solving strategy (MPSS)3. 

 

Analysis of the Concept of Mathematical Language 

The concept of mathematical language brings to the fore the following questions: 

• What is mathematics? 

• What is language? 

The necessity of definitions cannot be over emphasized, because the beliefs of teachers and 

pupils about what mathematics is frequently influence their approach to mathematics. If 

children believe that mathematics is a collection of rules, for example, then their learning 

might be influenced by their search for rules to memorize and attempt to apply. If teachers 

think of mathematics as a rigid formal system, they might remain unaware of alternative 

                                                

 
3 Mathematics problem solving strategy (MPSS) is an intelligible principle which is capable of yielding an 
algorithm whose transformation through computation gives the solution to a mathematics problem. 
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concepts or ways of perceiving mathematical ideas. 

 

A definition need not be absolutely explicit, since the definiens4 has to match the conceptual 

capacity of pupils. For example, at the primary school level of education, it is not misleading 

to define a circle as a round figure and to accompany the verbal definition with a model of a 

ring, or an illustration on the black board. Consequently, in ordinary language, it is normal to 

talk of the area of a circle. As the pupils acquire competence in higher level mathematics, the 

definition is modified. A circle is then defined as the locus of a moving point whose position 

is equidistant from a fixed point called the centre of the circle. With such a definition, the 

concept of “area of a circle” is mathematically meaningless and instead we talk of “the area 

enclosed by the circle”. 

 

One of the major problems facing attempts to give definitions is the choice of vocabulary to 

be used in the definiens, which should be clearer than the term it defines, that is, the 

definiendum5. When it comes to defining ‘mathematics’ and ‘language’, the terms that 

constitute the definiens fall short of ideal clarity. For example, a definition of mathematics as 

"the logical study of shapes, arrangement, quality and many related concepts” (Mathematics 

Dictionary, 1976) is so vague a phrase that it does not explicate what mathematics is. Others 

define it as the science of abstract form (Sidhu 1984, 1). It is largely due to lack of precision 

that mathematicians have tended to approach the characterization problem indirectly through 

axiomatics (the art of using self-evident truths). 

 

Similarly, Strang (1962, 2) observes that there are countless definitions of language, simply 

because the semantic spread of the word ‘language’ in ordinary usage is so great that any 

manageable definition will leave out or distort something. So, while this paper attempts to 

provide guiding definitions of language and mathematics, the main focus will be to provide a 

working account or description of each. Accordingly, it is expected that such an approach 

would bring out those characteristics most important to the understanding of how they 

function, and thereby explicate the concept of mathematical language. 

                                                

 
4 Definiens is the symbol or group of symbols used to explain the meaning of a term (Copi 1986, 41). 
5 Definiendum is the term being defined by the definiens (Copi 1986). 
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Since the method of mathematics is basically argumentation and computation, language 

considerations play a significant role in mathematical exposition. The first step in resolving 

any mathematical issue is to translate it into everyday language. Teaching and learning 

mathematics, therefore, involves a rather complex interaction between a highly stable old 

knowledge structure and permanent verbal linguistic mechanisms on the one hand, and new 

knowledge structure and symbol systems on the other (Kaput 1982). In this context, Miller 

(2008) believes that mathematics is indeed a universal language: 

… mathematics is indeed a powerful language ... mathematical symbols - 
including numbers - are no more or less than the symbols (letters) we string 
together to make words and sentences, to communicate our thoughts and 
feelings, to articulate and illustrate our imaginations. Mathematics as a 
language also has a powerful quality that it shares with music and art: that of 
crossing cultural and language barriers.… in general, a mathematics equation 
or expression means the same thing to someone whose native language is 
Mandarin Chinese or American English (Miller 2008, par. 4). 

 

Mathematics seems to be an outgrowth of verbal language (Barton & Neville-Barton 2004). It 

is a language which works with ideograms (symbols for ideas) rather than phonograms 

(symbols for sounds) (Pimm 1987). Ideograms make algorithmic manipulation accurate and 

efficient, thereby serving as mental labouring devices for expressing the formal relations that 

are implicit in the verbal medium. 

 

Any particular verbal language expresses thought which has already been formulated 

indifferently and non-linguistically before the verbal expression of it. Mathematics is seen to 

be concerned with universal formulation of thought guided by the principles of logic. While 

verbal language is guided by a grammar which conforms to norms of conventional and social 

correctness, mathematical language is guided by a grammar consistent with intelligible forms 

of rational thought. While mathematics operates in the realm and laws of pure thought, verbal 

language operates according to acceptable social conventions. 

 

The view that mathematics is a language is held by those who believe that mathematics, like 

any other language, has its own symbols, and its expressions conform to a unique grammar. 

Although mathematical language is not a language in the conventional philological sense, it is 

functionally isomorphic to verbal language as a transactional device rather than an 

interactional one. Thompson & Chappell (2007) observe that both mathematics and English 
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share words that have distinct meanings in the different contexts, such as product, volume, 

and difference. Some words are shared with other disciplines, but have different technical 

meanings in the various disciplines (for example, “radical” in mathematics has a different 

meaning from what it has in the social and natural sciences). Even within mathematics, some 

words have different meanings depending on the context (for example, “median” in geometry 

versus statistics). Furthermore, technology has rendered particular meanings to certain words 

and symbols (for example, “log” on a calculator always means “logarithm in base 10” and 

“ln” always means logarithm in base e). 

 

The general theory of mathematical language provides a scheme and notation for 

grammatical description - a precise formulation of grammatical rules. The rules of grammar 

in mathematics are functions variously expressed in the form of algorithms generated by 

various operations and allowable transformations. Mathematical discourse involves 

quantification of the givens within a problem situation, expression of such quantities into 

condensed relationships called formulae, synthesis of formulae into explanatory systems, and 

the testing of the ensuing conclusions against intelligible data. 

 

Mathematical language has its syntax (sentence structure), semantics (meaning structure), 

logic and pragmatics, albeit relational. The functional isomorphism between the two systems 

is revealed through their dealings with relational properties within categories of abstract 

experience. Symbolic language, for instance, is used in mathematics to express mathematical 

parts of ‘speech’ analogous to the way verbal language is constructed. When a ‘number 

sentence’ is read aloud, it appears in spoken medium as mathematics register (MR) which 

obeys all the grammatical rules of the particular verbal language in a way that is 

philologically sound. In mathematics, it is not the verbal sentences in MR that are important, 

but the sentence-forms expressing only the essential relations. Symbolism in mathematics is 

just a short-hand for otherwise cumbersome word-names: it is simply a means of 

manipulating concepts according to precise rules, since it condenses a hierarchy of concepts 

into manageable form. 

 

While verbal language describes actual or imagined existence, mathematical language 

describes all logically possible existence. While verbal language describes the sorts of things 
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in the actual world, mathematical language describes relational properties of pattern, order, 

sizes and shapes of intelligible entities in possible worlds. Just as verbal language develops 

through the need to talk about categories of things that are important in everyday life like 

food, bed et cetera, mathematical language is adequate to describe and analyse the 

experiences of shape, space and order found in active play and observation. While verbal 

language is guided by a grammar which conforms to norms of conventional and social 

correctness, mathematical language is guided by a grammar consistent with the logic of 

intelligible forms of relational thought. Indeed, while verbal language operates according to 

acceptable social conventions, mathematical language operates in the realm and laws of pure 

thought.  

 

Mathematical discourse is largely argumentation and computation, since the first step in 

solving a mathematical problem in MR is to express it in verbal language. It may also be 

realized that language, thought and calculation are interwoven. All thought expressed by 

whatever means acquire intelligibility in a linguistic medium (Urban 1971, 300-340). The 

first step in solving any mathematical problem is to look at it intuitively by verbalizing it. 

Looking at problems from different angles and asking questions are strategies for solving any 

problem whatsoever; it is such approaches that always trigger and order thought processes 

and conceptual schemata. By putting down our arguments extracted from MR, we come to 

verbally present the rationale that underlies various transformations within the solution 

process. For instance, before we can apply a given relation and associated transformations to 

a particular problem situation, we must first apprehend a structural isomorphism between the 

problem situation and the accompanying relations and transformations. It is in this sense that 

mathematical conceptions acquire intelligibility in discourse, and therefore the general 

interchange between linguistic and mathematical systems suggests isomorphic functions. 

 

The solution to a mathematics problem requires a transformation procedure. The 

transformation starts from formulation in colloquial language to MR, to MPSS through 

computation, to the solution of the problem. This procedure requires some level of 

competence in identification of the logical form of linguistic patterns that guide the process. 

 

Communication of Mathematical Experience in the Classroom 

The first stage in general human perception is the attempt to fit experience into verbal 
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language. It is precisely in this sense that concepts are consequently developed and 

experiences categorized. The special sub-division within categories of experience managed 

by precise use of verbal language becomes the starting point of partitioning collections of 

things, identification of positions and relations of things which lead to development of 

mathematical concepts (Liebeck 1984). For instance, in an attempt to describe the experience 

of shapes and positions, concepts such as ‘nearness’ related to distance and “move” related to 

translation come to be developed. 

 

In education, all teaching and learning of mathematics involves an understanding of relational 

properties of elements within the modes of categories of human experience. In pedagogy, 

there is interaction between such modes of experience and verbal linguistic mechanisms on 

the one hand, and knowledge of the levels of the structure of mathematics and the role of 

symbolic systems on the other. To discern the subtleties of this sort of interaction, 

engagement in mathematics education has to involve the use of instructional procedures that 

discern phases of intelligibility within discourse expressed in MR as follows: 

(1) Problem exposition to identify the givens and relations that subsist in a problem situation. 

The relations amongst the givens may be necessary, causal or contingent. 

Functionally, mathematics and verbal language are isomorphic, that is, although they 

differ in content, they are morphologically identical. Therefore, just as we have 

sentences in English language, so we also have number sentences in mathematics. The 

only subtle difference is that with mathematics, there are distinctions amongst 

hierarchies of language layers with respect to abstraction, formalization, precision, 

symbolization and generalization. A choice often has to be made as to which language 

layer is appropriate for specific tasks within a given problem situation. Necessary 

transactions have to be carried out by rephrasing the problem situation through verbal 

language, which already contains mathematical relations expressible in the form of 

the mathematics register (MR). 

(2) Problem representation to discover structural properties of operations that give 

significance to the semantic relations in terms of allowable transformations. There is 

the development of number sentences ‘hidden’ in the verbal text, and identification of 

the necessary syntactic actions that ought to be performed to produce other acceptable 

transformations. Generally, under problem representation, there is the formulation of 
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number sentences through syntactic and semantic actions, thus initiating algorithmic 

transformations, that is, specification of “what to do” and “how to do” rules. 

 

Problem representation is the discovery of the number sentence ‘hidden’ in the verbal text. It 

involves the processing of verbal input as well as the activity of the pupil’s cognitive 

schemata. The major aim of problem representation is to yield number sentences which 

function in two ways: as a formal mathematical representation of the semantic relations 

between quantities involved in the problem, and as an algorithmic expression which reveals 

the syntactic actions that ought to be performed to produce acceptable transformations. 

 

The successful solution of a mathematical problem depends on the appropriate formulation of 

problem representation, which in turn presents semantic relations between word problems 

and number sentences. It is important that the underlying semantic relations between the 

givens and the unknown quantities be made explicit and expressed in appropriate sentences. 

It is also crucial to realize that the level of difficulty of a problem is determined by its 

semantic structure (Oldham 1989). More specifically, the relationship between children’s 

solution strategies and the semantic structure of word problems holds regardless of the kind 

of strategy adopted, that is, whether use is made of concrete objects, mental-solution or 

recalled number facts. These considerations reveal that failure to solve word problems is due 

to lack of appropriate schema rather than poor arithmetical or logical skills. Schemata clarify 

the problem by identifying the sequences of steps of a problem representation. 

 

Solving a Mathematics Problem 

To illustrate the subtleties of problem representation, we utilize the results of an empirical 

investigation which was undertaken by the authors. Note that “Q1” is a standard verbal 

problem, and “Q’1” is the reworded problem derived from the former. Although this paper 

utilises a philosophical method, it is our contention that drawing its implications from 

practical educational experience is consistent with its objectives. 

 

Q1: “When I multiply a certain number by ten and subtract the product from ninety two, the 

answer I get is four less than twice the number. Find the number." 

 

Q’1: "When I multiply a certain number by ten and subtract the product from ninety two, I get 
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another number. If I take the initial number and double it, I get yet a different number. If I 

add four to the number I got in the first case, I get the same number as the one I got in the 

second case. Find the initial number." 

 

The questions listed above were presented to pupils in their standard verbal forms, and 

interviews conducted to determine how they processed problem solving strategies. The 

question was then reworded by the pupils and the interviews repeated in order to enable the 

researcher to perform a comparative analysis of problem representation by the pupils. 

 

The interview revealed that the conceptual reality of mathematics is analysable in terms of 

some logical form - a study of relational invariants that define the structure of mathematics. 

The understanding of problems expressed in the mathematics register (MR) is not easily 

accessible to pupils. The surface structure of MR does not readily reveal the semantic relation 

within a mathematics problem. However, when MR is translated into its equivalent reworded 

verbal text, pupils solve problems relatively better as table 1 reveals. 

 

 A= Percentage of pupils who 

solved the problems correctly 

 

B= Percentage of pupils who translated 

number sentences correctly into 

corresponding verbal problems 

Standard 

verbal 

problems    

68 48 

Reworded 

verbal 

problems    

92 60 

Table 1: Relative Ability to Translate and Solve Problems 

 

When the problem Q1 is in its standard verbal form, its surface structure does not make 

obvious the semantic relations within the problem. While 68% of the pupils got the problems 

right in its standard verbal form, 92% got it right after it was reworded. It is therefore clear 

that reworded problems are solved significantly better than standard verbal problems. An 

explanation for this state of affairs is that semantic schemata of categories of relations are not 
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easily developed in children. Teachers who were interviewed believe that pupils tend to 

depend more on text driven processing to construct an appropriate problem representation. 

 

Concerning syntactic translation, pupils assume that the sequence of words maps directly 

onto a corresponding sequence of literal symbols implied by a number sentence. For 

example, in an attempt to solve Q1, 60% of the pupils wrote the following number sentence 

which is rather misconceived, despite the fact that solving it gives the same numeral as the 

right answer: 

 

X * 10 - 92 = 4 - 2X 

Unknown 

number X 

Multiply Ten Subtract Ninety 

Two 

Result 

is 

Four Less 

than 

Twice 

the 

number 

X 

Table 2: Sequence of Literal Symbols of a Number Sentence 

 

Although when the number sentence 10x - 92 = 4 - 2x is solved it yields a figure which is the 

same as the right answer, the conceptual inclinations that generated it are misplaced and 

cannot be replicated in a different problem with the same level of consistency. This is an 

example of a wrong mathematics problem-solving strategy (MPSS). It should be noted that 

the right MPSS gives the number sentence as 92 - 10x = 2x - 4. 

 

It is apparent that pupils tend to depend on text-driven processing of problem representation 

while in the ideal sense, they need to process MR in a conceptually-driven way using their 

semantic schemata. It seems that pupils tend to assume that the sequence of words in MR 

maps directly onto corresponding sequences of literal symbols implied by a number sentence, 

thus misrepresenting the syntactic translation. By asking students to explain their thinking, 

write their own problem, or compare and contrast concepts, teachers can pinpoint difficulties 

students are having with content. They can then adjust instruction to address those 

misconceptions early, rather than waiting until an assessment to determine what students do 

not know (Thompson & Chappell 2007). Although attempts at bridging the apparent 

dichotomy between text-driven and conceptually-driven processing is beyond the scope of 

this paper, we have suggested the movement from problem exposition, through problem 
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representation, to problem solution as an alternative solution procedure. This implies that 

pupils should be given a chance to reconstruct the word problem, which should in turn be 

assessed for correctness. It is the reconstructed word problem which would yield the 

corresponding number driven problem that would be transformed into a solution. 

 

The elements of mathematical discourse are as follows: 

* Ordinary terms of verbal language made technical by giving them precise conceptual 

meanings. 

* Stipulation of distinctive modes of representing concepts. For instance, an ordinary fraction 

has been presented as 

    

  

 

 

 

* Usage of stylized icons called pictograms. 

* Usage of symbols as signs having no significance in themselves, except as code elements 

representing concepts unambiguously. 

* Formulation of mathematical sentences expressed as semi-formal language consisting of 

verbal language supplemented by special symbols. 

* Development of mathematics register which involves expression of relations, operations, 

positions, sequences and patterns through special vocabulary within discourse of common 

speech. 

 

The consequent procedure for problem-solving is here stipulated as a possible aid to the 

development of effective instructional designs as follows: 

• Problem exposition. 

• Problem representation. 

• Identification of the givens within the problem situation. 

• Identification of the goal state. 

• Increasing specificity of the goal state by deriving its properties from the givens. 

• Development of necessary working concepts for reaching the goal. 

a Numerator 

b Denominator 

Figure 3: Fraction 
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• Identification of sub-problems and sub-goals which test some specific level of 

competence. 

• Generation of materials which act as inputs and Showing that the goal is (or is not) a 

possible derivative of the givens acts as the solution to the problem situation. 

 

In performing a semantic translation, there is a tendency for pupils to link the equation being 

generated to the perceivable meaning of the problem. This is evident in their response to 

specific words and phrases in the problem. Instead of generating the equation as an 

expression of equivalence, they do it as a description of words and phrases in the order they 

appear in the problem, and therefore misrepresent it. 

 

The foregoing observations indicate that whether the cause of difficulty is syntactic or 

semantic, verbal language interferes with translation of Mathematics Register (MR) into 

number sentence and vice versa, thereby leading to occasional misrepresentation of the 

Mathematics Problem Solving Strategy (MPSS). When mathematical problems are presented 

to pupils in their standard verbal forms, their surface structures do not make obvious the 

semantic relations within each problem. However, reworded problems are significantly 

solved better, as pupils tend to depend on text-driven processing to construct an appropriate 

problem representation. Only the competent pupils process the verbal text in a conceptually-

driven way using their well developed semantic schemata. It is noteworthy that while text 

driven processing causes syntactic confusion due to the literal and lineal description of words 

in a problem situation, conceptually-driven processing emanates from a developed semantic 

schemata which generates number sentences as expressions of equivalence. 

 

Problem Representation 

Adequate problem representation is a prerequisite for successful problem-solving, the latter 

being a succession or sequence of problem states which terminate with a goal state. Each 

successive state is obtained from a preceding state by means of an allowable action.  A 

solution procedure is an ordered succession of events which involve building sub-goals with 

a range of possible given materials and operations which have to deal with constraints 

specified in the problem situation. Problem solving procedure may be ordered as follows: 

• Identification of the givens and the goal. 
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• Identification and attainment of sub-goals. 

• Performance of operations and transformations toward a solution. 

 

Let us briefly examine these elements. 

 

The Givens and Goal 

The first step toward solving a problem is the identification of the ultimate goal. A goal is the 

expression to be arrived at as the solution to a problem. For instance, in the number sentences 

generated by Q1, "92 - 10x = 2x - 4, find x", the goal would be of the form x =? Where "?", 

becomes the solution to the problem and may be evaluated as right or wrong when it is found. 

 

It is helpful to have a detailed representation and understanding of the goal. This may be done 

by increasing the specificity of the goal by deriving its additional properties using either the 

statement of the properties of the goal as given in the original problem, or by using given 

information to derive properties of the goal. The purpose of increasing the specification of the 

goal is to introduce the necessary working concepts for reaching it, which in turn reveals the 

necessary sub-goals. 

 

Sub-problems, Sub-goals and Solutions 

Between problem representation and identification of the goal, there are sub-problems which 

are solved by reaching the corresponding sub-goals. These sub-goals are always determined 

to have intermediate values between the givens and goal state, according to some explicitly 

defined evaluation functions. 

 

Suppose we represent SG1, SG2 ... SGn as the first to the nth sub-goal respectively, then we 

may develop the following picture. 

  

 

 

Figure 4: Successive Sub-goals from Problem Representation to Goal 

 

Givens (SG1) (SG2) (SGn) The goal … 
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Each sub-goal tests some specific competence, and normally generates materials which act as 

inputs for the subsequent sub-goals. 

 

Although in utilizing our intuitive capacities we tend to formulate a problem-solving 

procedure from the givens state to the goal state, the initial approach to obtaining a solution 

may involve identification of sub-goals in the reverse order. Working backwards is a problem 

solving strategy in which the problem solver starts from the goal and determines the 

preceding statements which do not necessarily belong to the givens, but which when taken 

together will produce the goal. 

 

While, in a theoretical sense, the solution to a problem requires working from the first sub-

goal to the last sub-goal, actual problem-solving often requires identification of the order and 

forms of sub-goals from the last to the first. In this sense then, pupils may have to know the 

approximate form of the nth sub-goal first and then to determine other sub-goals in the reverse 

order until the first one is reached. The first sub-goal is usually reached as a solution to the 

first sub-problem which is the immediate product of the relation between the givens at face 

value. Polya (1962), for instance, advises that it is useful to imagine that a problem is already 

solved, and then to ask oneself "what have I used to get this if I have these ‘givens’ and these 

‘operations?” 

 

Consider, for instance, the backward method of solving Q2: A trader bought 60kg of maize 

flour at Sh. 4 per kg and another 40kg of millet flour at Sh. 6 per kg. She mixed the two types 

of flour and sold the mixture at Sh. 6 per kg. What percentage profit did she make? 

 

Percentage profit = (Profit / Buying Cost) * 100% 

  

Profit = Cost of mixture - Buying cost (of maize and millet) 

Cost of sale = Mass of mixture * price (kg-1) of the  mixture 

      = (60 + 40) kg * Sh. 6 kg-1 

      = Sh. 600 

Buying cost = Cost of maize + cost of millet 

      = Mass of maize * price of maize + mass of  millet * price of millet 

      = 60kg *sh. 4 kg-1 + 40kg * sh. 6 kg-1 

      = Sh. 240 + Sh. 240 
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      = Sh. 480 

Profit  = Sh. 600 - Sh. 480 

     = Sh. 120 

Percentage profit = Sh. 120   x 100% =25% 

               Sh. 480 

     

The advantage of the backward method of problem-solving is that it is possible to detect 

contradictions. A contradiction would suggest that the goal is not a possible derivative of the 

givens. The givens in a problem may have a conjunctive or disjunctive relationship. When 

there are large numbers of given statements which have conjunctive relationships to one 

another, then working up a problem ‘backwards’ from the goal to the sub-goals is effective 

on condition that there is a single specified goal in the problem. However, the ‘forward’ 

method, which is working from the givens through sub-goals to the ultimate goal, is the 

conventional approach to problem solving, albeit not always efficient. 

 

Conclusion 

The foregoing discussion has observed that mathematics education in general and 

mathematical communication in classroom in particular is a discourse which oscillates 

between understanding verbal language, mathematics register (MR) and Mathematics 

Problem Solving Strategy (MPSS). The interaction develops into a dialogue which 

culminates in ‘mathematical dialectics’. The discourse is carried out in MR which contains 

sentences and phrases specifying components of a problem situation, namely the givens, 

operations, functions, relations, sub-goals and goals. These components are discerned through 

the semantic and syntactic analysis of the problem. Mathematical pedagogy is therefore the 

development of an understanding of the interaction amongst verbal language, MR and MPSS 

through the following procedure: 

• Problem exposition. 

• Problem representation. 

• Problem solution. 

 

Moreover, since the method of mathematics is basically argumentation and computation, 
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language considerations play a significant role in mathematical exposition (Kaput 1982; 

Pimm 1987). As such, the first step in resolving any mathematical problem is to translate it 

into everyday language. Consequently, curriculum development should not only concentrate 

on individual mathematical entities, but also on explicating the structural features of the 

mathematical system through an analysis of mathematical language. In this case then, it is the 

concern with translation of the structure of mathematics through mathematical language into 

instructional procedures that should pre-occupy teachers.  
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