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Abstract 

This study develops a mathematical model to analyze the transmission dynamics of Monkeypox 

and evaluate the effectiveness of control strategies. The model is formulated as a system of 

nonlinear differential equations, capturing key factors such as human-to-human transmission, 

zoonotic reservoirs, and control measures like vaccination, culling, personal hygiene and 

treatment. The model's equilibrium points, including the disease-free and endemic equilibria, are 

determined and analyzed for stability using the effective reproduction number, 𝑅e. Conditions 

under which 𝑅e < 1  ensure the elimination of Monkeypox, while 𝑅e > 1 indicates sustained 

transmission. A sensitivity analysis is performed to identify parameters that significantly 

influence 𝑅e, such as the contact rate, effectiveness of control measures, and the rate of recovery. 

Numerical simulations demonstrate the impacts of individual control strategies such as 

vaccination, treatment, culling, and personal hygiene when applied alone. All of the control 

shows positive impact on the disease prevalence. This analysis provides critical insights for 

optimizing resource allocation and improving public health responses to Monkeypox outbreaks. 

The findings underscore the importance of timely and effective implementation of control 

measures to curb the spread of Monkeypox and mitigate its public health impact. 
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Introduction 

Monkeypox (Mpox) is a zoonotic disease 

caused by a virus belonging to the Poxviridae 

family, Chordopoxvirinae subfamily, and 

genus Orthopoxvirus (Rahman et al. 2020, 

Peter et al. 2021, Heskin et al. 2022, Rizk et 

al. 2022). The disease is endemic in certain 

areas of West and Central Africa, particularly 

near forests where contact with wild animals 

is more likely (Usman and Adamu 2017, Peter 

et al. 2021, Rizk et al. 2022, Railian et al. 

2023). Countries affected include the 

Democratic Republic of Congo, Cameroon, 

Liberia, the Central African Republic, Nigeria, 

Côte d’Ivoire, Gabon, and Sierra Leone (Peter 

et al. 2021, Velavan and Meyer 2022). 

On May 21, 2022, the World Health 

Organization (WHO) reported 120 Mpox 

cases, of which 92 were confirmed and 28 

were under investigation, from 12 countries, 

primarily in Europe and America. 

Additionally, 1,315 cumulative Mpox cases 

were reported from December 15, 2021, to 

May 1, 2022, across four African countries 

(Velavan and Meyer 2022, WHO 2022). The 

WHO also reported 57 deaths in the 

Democratic Republic of Congo and less than 5 

deaths in Cameroon and Central African 

Republic (Velavan and Mayer 2022, WHO 

2023). 

There are two species of the Mpox virus, 

classified based on their geographical origins, 
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the West African and Central African species. 

These species cause human fatalities ranging 

from 3.6% to 10.6% (Martinez et al. 2022, 

Titanji et al. 2022, Velavan and Meyer 2022). 

Mpox primarily affects children and youths, 

with more severe cases observed in 

individuals with weakened immune systems 

(Rimoin et al. 2010, Hraib et al. 2022, 

Martinez et al. 2022, Seang et al. 2022, Titanji 

et al. 2022). The Mpox virus was first 

discovered in 1958 by Danish virologist 

Preben Alexander von Magnus in Copenhagen 

(Vera et al. 2022, Golden 2023). 

The Mpox virus can be transmitted through 

human-to-human and animal-to-human 

transmissions (CDC 2022, Murphy and Ly 

2022). Animal-to-human transmission occurs 

when infected animals such as primates, 

rodents, or pets bite humans or when humans 

come into direct contact with the fluids, blood, 

or raw meat of infected animals (Titanji et al. 

2022, Beeson et al. 2023). Human-to-human 

transmission happens through sexual contact, 

direct contact with respiratory fluids, mucous 

membranes, skin lesions, or contaminated 

clothing or bedding of infected individuals 

(Usman and Adamu 2017, Titanji et al. 2022, 

Beeson et al. 2023, Diseases TLI 2023). Mpox 

typically takes one to two weeks from the 

initial day of infection for clinical signs to 

appear, however, in some cases, it may take up 

to three weeks (Usman and Adamu 2017, 

CDC-AFRICA 2022, Hraib et al. 2022, Luo 

and Han 2022, Shaheen et al. 2022). Early 

signs of Mpox include fever, headache, 

restlessness, and lymphadenopathy, while late 

signs include rashes of varying sizes, skin 

lesions, and swollen lymph nodes (Goyal 

2022, Hraib et al. 2022). 

Mathematical modeling plays a crucial role 

in analyzing the transmission dynamics of 

infectious diseases such as Mpox (Kermack 

and McKendrick 1927, Grassly and Fraser 

2008, Brauer 2009, Badshah et al. 2013). 

Consequently, numerous studies have 

concentrated on developing mathematical 

models to understand Mpox transmission and 

evaluate control strategies. Such studies 

include Usman and Adamu (2017), who 

formulated and analyzed a transmission 

dynamics model for Mpox by incorporating 

treatment and vaccination control measures, 

and Somma et al. (2019), who developed and 

analyzed a mathematical model of Mpox 

transmission dynamics that included 

quarantine and public enlightenment 

campaigns as control strategies. Furthermore, 

Peter et al. (2021) examined the transmission 

dynamics of Mpox by incorporating the 

isolation of infected individuals as a control 

measure. 

To the best of our knowledge, no study has 

incorporated personal hygiene as a control 

measure against the transmission dynamics of 

Mpox in human populations. Therefore, this 

study develops and analyzes a mathematical 

model for Mpox transmission dynamics, 

incorporating personal hygiene, treatment, 

vaccination, and culling of rodents to 

investigate their effectiveness in controlling 

the spread of Mpox. 

 

Mathematical Model Development 

A nonlinear deterministic mathematical 

model for the transmission dynamics of Mpox 

in human and rodent populations is developed. 

The model incorporates four control 

strategies: personal hygiene, treatment of 

humans, vaccination of humans, and culling of 

rodents. The human population Nh is divided 

into six compartments. Namely, Hygienic 

humans (Hh), Susceptible humans (Sh), 

Exposed humans (Eh ), Infected humans (Ih ), 

Recovered humans (Rh), and Vaccinated 

humans (Vh). Therefore, at any time, 

Nh(t)=Hh(t)+Sh(t)+Vh(t)+Eh(t)+Ih(t)+Rh(t). On 

the other hand, the rodent population (Nr) is 

divided into Susceptible rodents (Sr) and 

Infected rodents (Ir) Hence, the total rodent 

population at any time is given by 

Nr(t)=Sr(t)+Ir(t). 

The model is developed based on the 

following assumptions: 

(i) Individuals in the populations interact 

with each other freely and uniformly, 

with no significant barriers or 

separations between them. 

(ii) After humans become infected with the 

disease and recover, they gain temporary 

immunity, but this immunity does not 

last indefinitely. As a result, these 

individuals eventually lose their 
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immunity and are considered susceptible 

to re-infection, and thus move back into 

the susceptible compartment of the 

model. 

Humans are recruited at a rate Λ. Recruited 

humans are protected by adhering to personal 

hygiene rules and then enter the hygienic 

compartment at a proportion ε. The 

unprotected humans move to the susceptible 

compartment at a proportion of (1−ε). The 

hygienic humans who ignore hygiene 

protection are moved to the susceptible 

compartment at a rate ρ. The susceptible 

humans either get infected through human-to-

human or rodent-to-human contact at a force 

of infection. 

𝜆ℎ = (
𝛽𝐼ℎ+𝜎𝐼𝑟

𝑁ℎ
)  (1) 

Humans can either get vaccinated against the 

Mpox virus at a rate ν, or they may lose 

immunity after vaccination and return to the 

susceptible compartment at a rate τ. The 

infected humans remain in the exposed 

compartment for one to two weeks, during 

which they neither show clinical signs nor 

become infectious (Hraib et al. 2022, Luo and 

Han 2022, Shaheen et al. 2022). After two 

weeks, the exposed humans move to the 

infected compartment at a progression rate γ, 

becoming infectious and showing clinical 

signs of the Mpox virus. The infected humans 

in this compartment either die due to the 

disease at a rate ω or recover through 

treatment at a rate φ. The recovered humans, 

who lose immunity, return to the susceptible 

population at a rate δ. In each compartment, 

humans undergo natural death at a rate μ. 

Moreover, susceptible rodents are recruited at 

a rate Π and get infected through contact with 

infected rodents at a force of infection. 

 

 𝜆𝑟 =
𝜓𝐼𝑟

𝑁𝑟
 (2) 

Rodents are reduced due to natural death at 

a rate Φ and culling at a rate 𝜂. Furthermore, 

the infected rodents undergo disease-induced 

death rate 𝛼. 

 

 
Figure 1: Schematic Representation of the Monkeypox Transmission Dynamics. 

 

The model's non-linear differential equations are given as 
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𝑑𝐻ℎ

𝑑𝑡
= 𝜀Λ − (𝜇 + 𝜌)𝐻ℎ

𝑑𝑆ℎ

𝑑𝑡
= (1 − 𝜀)Λ + 𝜌𝐻ℎ + 𝜏𝑉ℎ + 𝛿𝑅ℎ − (𝜆ℎ + 𝜇 + 𝜈)𝑆ℎ

𝑑𝑉ℎ

𝑑𝑡
= 𝜈𝑆ℎ − (𝜏 + 𝜇)𝑉ℎ

𝑑𝐸ℎ

𝑑𝑡
= 𝜆ℎ𝑆ℎ − (𝜇 + 𝛾)𝐸ℎ                                                       

𝑑𝐼ℎ

𝑑𝑡
 = 𝛾𝐸ℎ + 𝜏𝑉ℎ − (𝜇 + 𝜔 + 𝑢3)𝐼ℎ

𝑑𝑅ℎ

𝑑𝑡
= 𝜙𝐼ℎ − (𝜇 + 𝛿)𝑅ℎ

𝑑𝑆𝑟

𝑑𝑡
= Π − (𝜆𝑟 + Φ + 𝜂)𝑆𝑟

𝑑𝐼𝑟

𝑑𝑡
= 𝜆𝑟𝑆𝑟 − (Φ + 𝛼 + 𝜂)𝐼𝑟

(3) 

With initial conditions: 𝐻ℎ(0) > 0, 𝑆ℎ(0) > 0, 𝑉ℎ(0) > 0, 𝐸ℎ(0) ≥ 0, 𝐼ℎ(0) ≥ 0,  

𝑅ℎ(0) ≥ 0, 𝑆𝑟(0) > 0, 𝐼𝑟(0) ≥ 0. 

 

Basic Properties of the Model 

Invariant regions and positivity of the 

solutions are the fundamental properties that 

make a mathematical model relevant for 

studying transmission dynamics of infectious 

diseases (Ayoade et al. 2019). Therefore, this 

section describes the satisfaction of the model 

system (3) with the aforementioned properties. 

Positivity of the Solutions 

The positivity of solutions is the model 

property that requires all solutions of the state 

variables to be positive ∀𝑡 > 0 given that the 

initial values are positive (Edward and 

Nyerere 2015, Mbuthia and Chepkwony 

2019). 

 

Theorem 1. The solutions of the state variables of model system (3) are such that 𝐻ℎ(𝑡) > 0, 

𝑆ℎ(𝑡) > 0, 𝑉ℎ(𝑡) > 0, 𝐸ℎ(𝑡) > 0, 𝐼ℎ(𝑡) > 0, 𝑅ℎ(𝑡) > 0,  𝑆𝑟(𝑡) > 0, 𝐼𝑟(𝑡) > 0∀𝑡 > 0 given that 

the initial values are positive. 

 

Proof. Consider the first equation of the model system (3) given by 
𝑑𝐻ℎ

𝑑𝑡
= 𝜀Λ − (𝜇 + 𝜌)𝐻ℎ 

It follows that 

      
𝑑𝐻ℎ

𝑑𝑡
≥ −(𝜇 + 𝜌)𝐻ℎ (4) 

Separating variables in equation (4) gives 

         
𝑑𝐻ℎ

𝐻ℎ
≥ −(𝜇 + 𝜌)𝑑𝑡 (5) 

Integrating equation (5) on both sides gives 

        ∫  
𝑑𝐻ℎ

𝑑𝑡
≥ −∫  (𝜇 + 𝜌)𝑑𝑡 (6) 

Then 

        ln 𝐻ℎ ≥ −(𝜇 + 𝜌)𝑡 + 𝐶 (7) 

where, C is the constant of integration When 𝑡 = 0, 𝐻ℎ = 𝐻0ℎ, implies 𝐶 = ln 𝐻0ℎ, therefore 
ln 𝐻ℎ ≥ −(𝜇 + 𝜌)𝑡 + ln 𝐻0ℎ (8) 

Implies 

𝐻ℎ ≥ 𝐻0ℎe
−(𝜇+𝜌)𝑡 > 0,    ∀𝑡 > 0  and  𝐻0ℎ > 0. 

 

By using a similar procedure, it is clear that 𝑆ℎ > 0, 𝑉ℎ > 0, 𝐸ℎ > 0, 𝐼ℎ > 0, 𝑅ℎ > 0, 𝑆𝑟 > 0, 

and 𝐼𝑟 > 0, ∀𝑡 > 0. Therefore, solutions of state variables of the model system (3) are positive 

∀𝑡 > 0, hence the model satisfies the positivity property of solutions. 
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Invariant Region of the Solutions 

The invariant region of the solutions is the 

model property that requires the feasible 

region Θ = {𝚪, Ω} of the model system (3) to 

make sense mathematically and biologically 

(Ayoade et al. 2019). Where Γ and Ω are 

feasible regions of the model in the human and 

rodent populations respectively. Since the 

developed model deals with human and rodent 

populations, all state variables and parameters 

are assumed to be positive ∀𝑡 > 0. Therefore, 

this subsection shows that the feasible region 

of the model system (3) remains positive ∀𝑡 >
0 and is globally attracted to the model. 

 

 

Theorem 2. The feasible region 

 𝚪 = {(𝐻ℎ , 𝑆ℎ , 𝑉ℎ, 𝐸ℎ , 𝐼ℎ , 𝑅ℎ) ∈ ℝ+
6 } in the human population is positively invariant ∀𝑡 > 0 and 

globally attracted in ℝ+
6 . 

 

Proof. From theorem 1, it is already shown that all solutions of the state variables in the human 

population are positive ∀𝑡 > 0. Then, it is supposed to show that the feasible region Γ is globally 

attracted in ℝ+
6 . Given that the total human population at any time is 

𝑁ℎ(𝑡) = 𝐻ℎ(𝑡) + 𝑆ℎ(𝑡) + 𝑉ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ(𝑡)                                              (9) 

 

By differentiating equation (9) with respect to 𝑡, yields 

 
𝑑𝑁ℎ

𝑑𝑡
=

𝑑𝐻ℎ

𝑑𝑡
+

𝑑𝑆ℎ

𝑑𝑡
+

𝑑𝐸ℎ

𝑑𝑡
+

𝑑𝑉ℎ

𝑑𝑡
+

𝑑𝐼ℎ

𝑑𝑡
+

𝑑𝑅ℎ

𝑑𝑡
                                                                          (10) 

  

Substitute the first to sixth equations of the model system (3) into equation (10) to get 
𝑑𝑁ℎ

𝑑𝑡
= Λ − 𝜔𝐼ℎ − 𝜇(

𝐻ℎ + 𝑆ℎ + 𝐸ℎ + 𝑉ℎ

+𝐼ℎ + 𝑅ℎ
) (11) 

But 
𝐻ℎ + 𝑆ℎ + 𝐸ℎ + 𝑉ℎ + 𝐼ℎ + 𝑅ℎ = 𝑁ℎ (12) 

Therefore 

        
𝑑𝑁ℎ

𝑑𝑡
= Λ − 𝜔𝐼ℎ − 𝜇𝑁ℎ (13) 

Then, equation (13) gives 

        
𝑑𝑁ℎ

𝑑𝑡
≤ Λ − 𝜇𝑁ℎ (14) 

Implies 
𝑑𝑁ℎ

𝑑𝑡
+ 𝜇𝑁ℎ ≤ Λ                                                  (15) 

Let 𝐼. 𝐹 = e∫ 𝜇𝑑𝑡  be the integrating factor of the equation (16), then 𝐼. 𝐹 = e𝜇𝑡 .  

By multiplying e𝜇𝑡  on both sides of equation (15) gives 

e𝜇𝑡 𝑑𝑁ℎ

𝑑𝑡
+ e𝜇𝑡𝜇𝑁ℎ ≤ e𝜇𝑡Λ (16) 

Then equation (16) gives 
𝑑(e𝜇𝑡𝑁ℎ)

𝑑𝑡
≤ Λe𝜇𝑡 (17) 

Implies 

𝑑(e𝜇𝑡𝑁ℎ) ≤ Λe𝜇𝑡𝑑𝑡 (18) 

Integrating equation (18) on both sides yields 

∫  𝑑(e𝜇𝑡𝑁ℎ) ≤ ∫  Λe𝜇𝑡𝑑𝑡 (19) 

which results to 

e𝜇𝑡𝑁ℎ ≤
Λ

𝜇
e𝜇𝑡 + 𝐶 (20) 

where C is the constant of integration. When 𝑡 = 0, 𝑁ℎ = 𝑁0ℎ, implies 𝐶 =
𝜇

Λ
𝑁0ℎ. 

Now, substitute 𝐶 =
𝜇

Λ
𝑁0ℎ into equation (20) to get  
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e𝜇𝑡𝑁ℎ ≤
Λ

𝜇
e𝜇𝑡 +

𝜇

Λ
𝑁0ℎ (21) 

Divide equation (21) throughout by e𝜇𝑡  to get 

𝑁ℎ ≤
Λ

𝜇
+

𝜇

Λ
𝑁0ℎe

−𝜇𝑡 (22) 

As  𝑡 → +∞,  𝑁ℎ ≤
Λ

𝜇
  (23) 

Therefore, the feasible region 

 Γ = {(𝐻ℎ , 𝑆ℎ , 𝐸ℎ, 𝑉ℎ , 𝐼ℎ , 𝑅ℎ) ∈ ℝ+
6 ): 0 ≤ 𝑁ℎ ≤

Λ

𝜇
} that is positively invariant ∀𝑡 > 0 and 

globally attracted in ℝ+
6 . 

 

Theorem 3. The feasible region  Ω = {(𝑆𝑟 , 𝐼𝑟) ∈ ℝ+
2 } in the rodent population is positively 

invariant ∀𝑡 > 0 and globally attracted in ℝ+
2 . 

Proof. It also already shown that all state variables in the rodent population remain positive 

∀𝑡 > 0, hence remains to show that Ω is globally attracted in ℝ+
2 . Given that the total rodent 

population at any time is given as 
𝑁𝑟(𝑡) = 𝑆𝑟(𝑡) + 𝐼𝑟(𝑡)  (24) 

By differentiating equation (24) with respect to t, gives 
𝑑𝑁𝑟

𝑑𝑡
=

𝑑𝑆𝑟

𝑑𝑡
+

𝑑𝐼𝑟

𝑑𝑡
 (25) 

Substitute the seventh and eighth equations of the model system (3) into equation (25) leads to 
𝑑𝑁𝑟

𝑑𝑡
= Π − 𝛼𝐼𝑟 − (Φ + 𝜂)(𝑆𝑟 + 𝐼𝑟) (26) 

But  𝑆𝑟 + 𝐼𝑟 = 𝑁𝑟  

Therefore 
𝑑𝑁𝑟

𝑑𝑡
= Π − 𝛼𝐼𝑟 − (Φ + 𝜂)𝑁𝑟 (27) 

Then, equation (27) becomes 
𝑑𝑁𝑟

𝑑𝑡
≤ Π − (Φ + 𝜂)𝑁𝑟 (28) 

By rearranging equation (28) results 
𝑑𝑁𝑟

𝑑𝑡
+ (Φ + 𝜂)𝑁𝑟 ≤ Π (29) 

Therefore 

𝑁𝑟 ≤
Π

(Φ+𝜂)
+

(Φ+𝜂)

Π
𝑁0𝑟e

−(Φ+𝜂)𝑡 (30) 

 As t → +∞,  𝑁𝑟 ≤
Π

(Φ+𝜂)
  (31) 

 

Therefore, the feasible region Ω = 

{(𝑆𝑟 , 𝐼𝑟) ∈ ℝ+
2 ): 0 ≤ 𝑁𝑟 ≤

Π

(Φ+𝜂)
}   in the 

rodent population is positively invariant ∀𝑡 >
0 and globally attracted in ℝ+

2 . 

Conclusively, the feasible region Θ = Γ × Ω is 

positively invariant ∀𝑡 > 0 and globally 

attracted with respect to the model (3). Hence 

the model is mathematically meaningful and 

biologically well posed in Γ. 

Existence of Equilibrium Points 

An equilibrium point of a dynamical system 

is a solution that does not change with time 

(Arrowsmith et al. 1990). This means that the 

state variables of the dynamical system remain 

constant over time when the system is at 

equilibrium. The model system (3) has two 

equilibrium points: the disease-free and 

endemic equilibrium points. To get the 

equilibrium points, initially, the model system 

(3) is set to zero as follows 
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𝜀Λ − (𝜇 + 𝜌)𝐻ℎ = 0
(1 − 𝜀)Λ + 𝜌𝐻ℎ + 𝜏𝑉ℎ + 𝛿𝑅ℎ − (𝜆ℎ + 𝜇 + 𝜈)𝑆ℎ = 0

𝜈𝑆ℎ − (𝜏 + 𝜇)𝑉ℎ = 0

𝜆ℎ𝑆ℎ − (𝜇 + 𝛾)𝐸ℎ  = 0                                                     

𝛾𝐸ℎ + 𝜏𝑉ℎ − (𝜇 + 𝜔 + 𝑢3)𝐼ℎ = 0

𝜙𝐼ℎ − (𝜇 + 𝛿)𝑅ℎ = 0

Π − (𝜆𝑟 + Φ + 𝜂)𝑆𝑟 = 0

𝜆𝑟𝑆𝑟 − (Φ + 𝛼 + 𝜂)𝐼𝑟 = 0

           (32) 

 

Disease-Free Equilibrium Point 

A disease-free equilibrium (DFE) point is an equilibrium point that is found when there is no 

infected individual in the population (Edward and Nyerere 2015, Upadhayay et al. 2022). 

Therefore, the DFE point of the model system (3) occurs when 𝐼ℎ = 𝐸ℎ = 𝐼𝑟 = 𝑅ℎ = 0. Suppose 

𝜑0 = (𝐻ℎ
0, 𝑆ℎ

0, 𝑉ℎ
0, 𝐸ℎ

0, 𝐼ℎ
0, 𝑅ℎ

0, 𝑆𝑟
0, 𝐼𝑟

0) is the DFE point of the model, then 

  (33) 

 

Also, at 𝜑0, 𝑁ℎ
0 = 𝐻ℎ

0 + 𝑆ℎ
0 + 𝑉ℎ

0, implies 

𝑁ℎ
0 =

𝜀Λ𝜇(𝜈𝜌+𝜈𝜇+𝜌𝜏+𝜌𝜇+𝜏𝜇+𝜇2)+(𝜇+𝜌)Λ(−𝜇𝜀+𝜌+𝜇)(𝜏+𝜇+𝜈)

𝜇(𝜇+𝜌)(𝜈𝜌+𝜈𝜇+𝜌𝜏+𝜌𝜇+𝜏𝜇+𝜇2)
, 

and 

𝑁𝑟
0 = 𝑆𝑟

0 =
Π

Φ + 𝜂
 

 

Endemic Equilibrium Point 

An endemic equilibrium (EE) point is an 

equilibrium point that is found when disease 

persists in the population (Neilan and Lenhart 

2010, Ugwa et al. 2013, Peter et al. 2021). The 

values of the state variables of the model 

system at this point are nonzero (Ugwa et al. 

2013). Therefore if 𝜑1 =

(𝐻ℎ
∗ , 𝑆ℎ

∗, 𝑉ℎ
∗, 𝐸ℎ

∗, 𝐼ℎ
∗ , 𝑅ℎ

∗ , 𝑆𝑟
∗, 𝐼𝑟

∗) is the EE point of 

the model system (3), then 
(𝐻ℎ

∗ , 𝐸ℎ
∗, 𝑆ℎ

∗, 𝑉ℎ
∗, 𝐼ℎ

∗ , 𝑅ℎ
∗ , 𝑆𝑟

∗, 𝐼𝑟
∗) ≠ 

(0,0,0,0,0,0,0,0). In this subsection, 𝜑1 is 

found by solving simultaneously the model 

equations in equation (33) (Ugwa et al. 2013). 

It follows that 

 

𝐻ℎ
∗ =

𝜀Λ

𝜇 + 𝜌
, 

 𝑆ℎ
∗  =

Λ(1 − ε)(µ + ρ)(µ + δ)(τ + µ) + ρεΛ(µ + δ)(τ + µ) + δφ(µ + ρ)(τ + µ)𝐼ℎ
∗

 ((λh + µ + ν) − τ ν)(µ + δ)(µ + ρ)
 

𝑉ℎ
∗ =

νΛ(1−ε)(µ+ρ)(µ+δ)+νρεΛ(µ+δ)+νδφ(µ+ρ)𝐼ℎ
∗

((λh+µ+ν)−τ ν)(µ+δ)(µ+ρ)
, 𝐸ℎ

∗ =
(µ + ω + φ)𝐼ℎ

∗

γ
,     

𝐼ℎ
∗ =

γλhΛ(1−ε)(µ+ρ)(µ+δ)(τ+µ)+γλhρεΛ(µ+δ)(τ+µ) 

(λh+µ+ν)−τ ν)(µ+δ)(µ+ρ)(µ+γ)(µ+ω+φ)−γλhδφ(µ+ρ)(τ+µ)
, 𝑅ℎ

∗ =
φ𝐼ℎ

∗  

µ + δ 
 ,  
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   𝑆𝑟
∗ =

 Π  

λ𝑟+ Φ + η  
 ,    and 𝐼𝑟

∗ =
λ𝑟Π

(λ𝑟+ Φ + η)(Φ + α + η)  
 

where, 𝜆ℎ = (
𝛽𝐼ℎ+𝜎𝐼𝑟

𝑁ℎ
)  𝑎𝑛𝑑 𝜆𝑟 =

𝜓𝐼𝑟

𝑁𝑟
 

 

Effective Reproduction Number 

The effective reproduction number 𝑅𝑒 is the 

number of secondary infections produced 

when a single infected person is introduced 

into a whole susceptible population for an 

entire period of infection (Yan et al. 2014 

Chitnis 2017, Perasso 2018, Fosu 2020, 

Olaniyi and Chuma 2023). The effective 

reproduction number is computed using the 

Next-Generation Matrix method (Yusuf and 

Benyah 2012, Mbuthia and Chepkwony 2019, 

Perasso 2018, Chuma and Mussa 2021, Majee 

et al. 2023). By this method, 𝑅e is given as the 

maximum absolute value of the eigenvalues of 

the next-generation matrix (Chitnis 2017, 

Mbuthia and Chepkwony 2019, Onyejekwe et 

al. 2019, Chuma and Mussa 2021). To 

compute 𝑅𝑒 of the model system (3), the 

model is grouped into new infections and rates 

of transfer. 

For this case, the equations of the model 

system (3) with disease compartments are 

considered as given in equation (34) 

 
𝑑𝐸ℎ

𝑑𝑡
 = (

𝛽𝐼ℎ + 𝜎𝐼𝑟
𝑁ℎ

) 𝑆ℎ − (𝜇 + 𝛾)𝐸ℎ

𝑑𝐼ℎ
𝑑𝑡

=𝛾𝐸ℎ + 𝜏𝑉ℎ − (𝜇 + 𝜔 + 𝑢3)𝐼ℎ

𝑑𝐼𝑟
𝑑𝑡

 = (
𝜓𝐼𝑟
𝑁𝑟

) 𝑆𝑟 − (Φ + 𝛼 + 𝜂)𝐼𝑟           (34)

 

 

Then, the system of equations in (34) is written in the form 
𝑑𝑌

𝑑𝑡
= ℱ(𝑌) − 𝒱(𝑌)  

where 𝑌 = (𝐸ℎ , 𝐼ℎ, 𝐼𝑟), ℱ(𝑌) is a function of new infections and 𝒱(𝑌) is a function of rates of 

transfer into and out of compartments. 

 

Therefore, 

ℱ(𝑌) =

(

 
 

(
𝛽𝐼ℎ + 𝜎𝐼𝑟

𝑁ℎ

) 𝑆ℎ

0

(
𝜓𝐼𝑟
𝑁𝑟

) 𝑆𝑟 )

 
 

 

𝒱(𝑌) = (

(𝜇 + 𝛾)𝐸ℎ

−𝛾𝐸ℎ + (𝜇 + 𝜔 + 𝜙)𝐼ℎ
(Φ + 𝛼 + 𝜂)𝐼𝑟

) 

  

Then, matrices 𝐅 and 𝐕 are computed at the DFE point as follows 

𝐅 = [
∂ℱ(𝑌)

∂(𝐸ℎ,𝐼ℎ,𝐼𝑟)
]
𝜑0

=

[
 
 
 
 0

𝛽𝑆ℎ
0

𝑁ℎ
0

𝜎𝑆ℎ
0

𝑁ℎ
0

0 0 0

0 0
𝜓𝑆𝑟

0

𝑁𝑟
0 ]
 
 
 
 

  transfer out and into the system given that  
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𝑆ℎ
0 =

(𝜏 + 𝜇)Λ(−𝜇𝜀 + 𝜌 + 𝜇)

𝜇(𝜈𝜌 + 𝜈𝜇 + 𝜌𝜏 + 𝜌𝜇 + 𝜏𝜇 + 𝜇2)
,

𝑁ℎ
0 =

𝜀Λ𝜇(𝜈𝜌 + 𝜈𝜇 + 𝜌𝜏 + 𝜌𝜇 + 𝜏𝜇 + 𝜇2) + (𝜇 + 𝜌)Λ(−𝜇𝜀 + 𝜌 + 𝜇)(𝜏 + 𝜇 + 𝜈)

𝜇(𝜇 + 𝜌)(𝜈𝜌 + 𝜈𝜇 + 𝜌𝜏 + 𝜌𝜇 + 𝜏𝜇 + 𝜇2)

 

 

and 

𝑆𝑟
0 = 𝑁𝑟

0 =
Π

Φ + 𝜂
 

Therefore 

 

𝐅 = [
0 𝐴12 𝐴13

0 0 0
0 0 𝜓

] 

Where 

𝐴12 =
𝛽Λ𝜆(𝜏 + 𝜇)(𝜇 + 𝜌)(−𝜇𝜀 + 𝜌 + 𝜇)

𝜀𝜆𝜇𝜈 + 𝜈𝜇 + 𝜌𝜏 + 𝜌𝜇 + 𝜏𝜇 + 𝜇2) + (𝜇 + 𝜌)𝜆(−𝜇𝜀 + 𝜌 + 𝜇)(𝜏 + 𝜇 + 𝜈)

𝐴13 =
𝜎Λ𝜇(𝜈𝜈 + 𝜈𝜇 + 𝜌𝜏 + 𝜌𝜇 + 𝜇𝜇 + 𝜇 + 𝜇) + (𝜇𝜇 + 𝜌 + 𝜌)𝜆(−𝜇) + 𝜌 + 𝜇)(𝜏 + 𝜇 + 𝜈)

𝜎Λ(𝜇 + 𝜇)(−𝜇)

 

Also 

𝐕 = [
∂𝒱(𝑌)

∂(𝐸ℎ , 𝐼ℎ , 𝐼𝑟)
]
𝜑0

= [

𝜇 + 𝛾 0 0
−𝛾 𝜇 + 𝜔 + 𝜙 0
0 0 Φ + 𝛼 + 𝜂

] 

Implies  

𝐕−1 =

[
 
 
 
 
 
 

1

𝜇 + 𝛾
0 0

1

(𝜇 + 𝛾)(𝜇 + 𝜔 + 𝜙)

1

𝜇 + 𝜔 + 𝜙
0

0 0
1

Φ + 𝛼 + 𝜂]
 
 
 
 
 
 

 

The next-generation matrix 𝐆 = 𝐅𝐕−1 and is given as follows: 

 

𝐆 = [

𝐴11 𝐴12 𝐴13

0 0 0

0 0
𝜓

Φ + 𝛼 + 𝜂

]  

Where  

A11=
γβ(τ + µ)((1−ε)µ + ρ) 

(τ+ν+µ)((𝜙+ω + µ)(𝛾+µ)εµ + (1−ε)µ + ρ) 
 

 

A12=
β(τ + µ)((1−ε)µ + ρ) 

(τ+ν+µ)(𝜙+ω + µ)εµ +((1−ε)µ + ρ) 
 

 

A13=
γβ(τ + µ)((1−ε)µ + ρ) 

(τ+ν+µ)(𝜙+ω + µ)εµ +((1−ε)µ + ρ)   
 

 

 

Lastly, the eigenvalues of 𝐆 can be found by taking |𝐆 − 𝜆𝐈| = 0 where 𝐈 is 3 × 3 identity 

matrix. Hence 
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|

𝐴11 − 𝜆 𝐴12 𝐴13

0 0 − 𝜆 0

0 0
𝜓

Φ + 𝛼 + 𝜂
− 𝜆

| = 0  

 

Gives: 

𝜆1 =
𝛾𝛽(𝜏+𝜇)((1−𝜀)𝜇+𝜌)

(τ+ν+µ)((𝜙+ω + µ)(𝛾+µ)εµ + (1−ε)µ + ρ)
, 

𝜆2 = 0, and 

𝜆3 =
𝜓

Φ + 𝛼 + 𝜂
 

Since 𝑅e is the maximum absolute value of the eigenvalues of the next-generation matrix 𝐆, 

therefore 𝑅e = max{𝑅eℎ, 𝑅e𝑟} where 𝑅eℎ and 𝑅e𝑟 are the effective reproduction numbers due to 

human and rodent populations respectively and they are given as: 

𝑅eℎ =
𝛾𝛽(𝜏 + 𝜇)((1 − 𝜀)𝜇 + 𝜌)

(τ + ν + µ)((𝜙 + ω +  µ)(𝛾 + µ)εµ +  (1 − ε)µ +  ρ)
                              

And  

𝑅0𝑟 =
𝜓

Φ + 𝛼 + 𝜂
 

 

Model Analysis 

This section analyses the stability for both 

the disease-free equilibrium and the endemic 

equilibrium points. Sensitivity analysis is also 

carried out to determine the effects of change 

of the model parameters in 𝑅e. 

 

Stability of Disease-Free Equilibrium Point 

The study uses the method by Castillo-

Sharvez (2002), Castillo-Sharvez (2004), 

Chuma and Mwanga (2019), Peter et al. 

(2021), and Shao and Shateyi (2021) to 

analyse the global stability of the disease-free 

equilibrium point. By this method, the model 

equations are expressed in the form 
𝑑𝑋

𝑑𝑡
 = 𝐹(𝑋, 𝑌)

𝑑𝑌

𝑑𝑡
 = 𝐺(𝑋, 𝑌)

 (35) 

Where 𝑋 ∈ ℝ𝑚 whose elements are the 

number of uninfected individuals and 𝑌 ∈ ℝ𝑛 

are the number of infected individuals for both 

infectious and incubation periods. The method 

states the necessary conditions that must be 

satisfied for the global asymptotic stability of 

the disease-free equilibrium. These conditions 

are stated as follows: 

𝑆1:
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋, 0), where 𝑋0 is globally 

asymptotic stable. 

𝑆2: 𝐺(𝑋, 𝑌) = 𝐵𝑌 − �̂�(𝑋, 𝑌), where 

�̂�(𝑋, 𝑌) ≥ 0 for (𝑋, 𝑌) ∈ Θ. 

In this case, 𝐵 is a matrix defined by 𝐵 = 

(
∂𝐹(𝑋0,0)

∂𝑌
) whose off-diagonal elements must 

be      non-negative and Θ is the invariant 

region of the model system (3). 

 

Theorem 4. The disease-free equilibrium point is globally asymptotic stable if and only if    

𝑅e < 1 and conditions S1 and S2 are satisfied. 

 

Proof. We are required to show that the model system (3) satisfies conditions 𝑆1 and 𝑆2 at the 

disease-free equilibrium point. From the model, 𝑋 = (𝐻ℎ , 𝑆ℎ , 𝑉ℎ, 𝑅ℎ , 𝑆𝑟) and 𝑌 = (𝐸ℎ, 𝐼ℎ , 𝐼𝑟). 

Therefore 

For condition 1 : 
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𝐹(𝑋, 0) =

(

  
 

𝜀Λ − (𝜇 + 𝜌)𝐻ℎ

(1 − 𝜀)Λ + 𝜌𝐻ℎ + 𝛿𝑅ℎ + 𝜏𝑉ℎ − (𝜇 + 𝜈)𝑆ℎ

𝜈𝑆ℎ − (𝜏 + 𝜇)𝑉ℎ

−(𝜇 + 𝛿)𝑅ℎ

Π − (Φ + 𝜂)𝑆𝑟 )

  
 

                                                                                                                                    (36)

 

It follows that the Jacobian matrix of 𝐹(𝑋0, 0) is given by 

𝐽𝜑0
=

[
 
 
 
 
−(𝜇 + 𝜌) 0 0 0 0

𝜌 −(𝜇 + 𝜈) 𝜏 𝛿 0

0 𝜈 −(𝜏 + 𝜇) 0 0

0 0 0 −(𝜇 + 𝛿) 0

0 0 0 0 −(Φ + 𝜂)]
 
 
 
 

                                                                                                                             (37)

 

The eigenvalues of the matrix in equation (37) are: 

𝜆1 = −(𝜇 + 𝜌), 𝜆2 = −(𝜇 + 𝜈), 𝜆3 = −
𝜇(𝜈+𝜏+𝜇)

𝜇+𝜈
, 𝜆4 = −(𝜇 + 𝛿), 𝜆5 = −(Φ + 𝜂). 

Since all eigenvalues are negative, then 𝑋0 is globally asymptotic stable, hence the condition 𝑆𝐼 

satisfies. 

 

For condition 𝑆2 

𝐺(𝑋, 𝑌) =

(

  
 

(𝛽𝐼ℎ + 𝜎𝐼𝑟)

𝑁ℎ

𝑆ℎ − (𝜇 + 𝛾)𝐸ℎ

𝛾𝐸ℎ − (𝜇 + 𝜔 + 𝜙)𝐼ℎ
𝜓𝐼𝑟
𝑁𝑟

𝑆𝑟 − (Φ + 𝛼 + 𝜂)𝐼𝑟 )

  
 

                                             (38)  

Then 

𝐵 = [
∂𝐺(𝑋0,0)

∂𝑌
]
𝜑0

=

[
 
 
 
 −(𝜇 + 𝛾)

𝛽𝑆ℎ
0

𝑁ℎ

𝜎𝑆ℎ
0

𝑁ℎ

𝛾 −(𝜇 + 𝜔 + 𝜙) 0

0 0
𝜓𝑆𝑟

0

𝑁𝑟
− (Φ + 𝛼 + 𝜂)]

 
 
 
 

                                                                                                                     

 (39) 

From equation (39), it is clearly shown that all off-diagonal elements of matrix B are 

nonnegative. 

Also 

�̂�(𝑋, 𝑌) =

(

 

(𝛽𝐼ℎ + 𝜎𝐼𝑟) (1 −
𝑆ℎ

𝑁ℎ
)

0

𝜓𝐼𝑟 (1 −
𝑆𝑟

𝑁𝑟
) )

                     (40) 

 

Implies, �̂�(𝑋, 𝑌) ≥ 0 given that 0 ≤ 𝑆ℎ ≤ 𝑁ℎ and 0 ≤ 𝑆𝑟 ≤ 𝑁𝑟 . 

Since, all off-diagonal elements of the matrix B are non-negative and �̂�(𝑋, 𝑌) ≥ 0, then the 

model satisfies condition 𝑆2. 

Generally, the model system (3) satisfies both conditions 𝑆1 and 𝑆2 therefore by theorem 4, 

the disease-free equilibrium point 𝜑0 is globally asymptotic stable when 𝑅𝑒 < 1. 

 

Stability of Endemic Equilibrium Point 

The study analyses the stability of the 

endemic equilibrium point by using the 

Lyapunov theorem. The theorem provides the 

necessary and sufficient conditions for the 

global stability of the endemic equilibrium 

point (Syafruddin and Noorani 2013, Yan et 

al. 2014, Agarana and Bishop 2015, Barro et 
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al. 2018, Bezabih et al. 2020, Chuma and 

Mussa 2021, Liana and Chuma 2023). That is, 

the endemic equilibrium point is said to be 

globally asymptotic stable if there exists a 

function 𝑆 called the Lyapunov function such 

that: 

i)   𝑆 is positive definite. 

ii)  �̇�(𝑋) < 0 ∀𝑋 ≠
0, �̇�(0) = 0. 

And, 𝑋 = (𝑆ℎ , 𝐻ℎ , 𝑉ℎ, 𝐸ℎ , 𝐼ℎ , 𝑅ℎ, 𝑆𝑟 , 𝐼𝑟). 

 

Theorem 5. The endemic equilibrium point is said to be globally asymptotic stable if and only 

if 𝑅e > 1. 

Proof. Required to show that 𝜑1 = (𝑆ℎ
∗, 𝐻ℎ

∗ , 𝑉ℎ
∗, 𝐸ℎ

∗ , 𝐼ℎ
∗ , 𝑅ℎ

∗ , 𝑆𝑟
∗, 𝐼𝑟

∗) satisfy the Lyapunov 

necessary and sufficient conditions. Consider the Lyapunov function of the Goh Volterra type 

given by 

 

𝑆 =(𝐻ℎ − 𝐻ℎ
∗ − 𝐻ℎ

∗ ln
𝐻ℎ

𝐻ℎ
∗) + (𝑆ℎ − 𝑆ℎ

∗ − 𝑆ℎ
∗ ln

𝑆ℎ

𝑆ℎ
∗) + (𝑉ℎ − 𝑉ℎ

∗ − 𝑉ℎ
∗ ln

𝑉ℎ

𝑉ℎ
∗)

+𝐴 (𝐼ℎ − 𝐼ℎ
∗ − 𝐼ℎ

∗ ln
𝐼ℎ
𝐼ℎ
∗)+ (𝑆𝑟 − 𝑆𝑟

∗ − 𝑆𝑟
∗ ln

𝑆𝑟

𝑆𝑟
∗
) + (𝐼𝑟 − 𝐼𝑟

∗ − 𝐼𝑟
∗ ln

𝐼𝑟
𝐼𝑟
∗
) + (𝑅ℎ − 𝑅ℎ

∗ − 𝑅ℎ
∗ ln

𝑅ℎ

𝑅ℎ
∗)      (41)

 

From equation (41) 𝑆 is positive definite hence Lyapunov's first condition satisfies. 

 

Differentiating function (41) and substituting �̇�ℎ, �̇�ℎ , �̇�ℎ , �̇�ℎ , 𝐼ℎ , �̇�𝑟 , 𝐼ℎ and �̇�𝑟  from system (3) 

into function (41) at disease free equilibrium point, with simplifications, leads to: 

�̇� ≤ (𝜇 + 𝜌)𝐻ℎ
∗ (2 −

𝐻ℎ

𝐻ℎ
∗ −

𝐻ℎ
∗

𝐻ℎ

) + (Φ + 𝜂)𝑆𝑟
∗ (2 −

𝑆𝑟

𝑆𝑟
∗
−

𝑆𝑟
∗

𝑆𝑟

) +
𝜓𝐼𝑟

∗𝑆𝑟
∗

𝑁𝑟

(2 −
𝑆𝑟

∗

𝑆𝑟

−
𝑆𝑟

𝑆𝑟
∗
)         (42)

 

      

From equation (42),  �̇�(𝑋) < 0    ∀𝑋 ≠ 0 and �̇�(0) = 0 if and only if 𝐻ℎ = 𝐻ℎ
∗ , 𝑆ℎ = 𝑆ℎ

∗, 𝐸ℎ =
𝐸ℎ

∗ , 𝐼ℎ = 𝐼ℎ
∗, 𝑆𝑟 = 𝑆𝑟

∗, 𝑅ℎ = 𝑅ℎ
∗ , and 𝑉ℎ = 𝑉ℎ

∗. Also, as t → ∞,𝐻ℎ → 𝐻ℎ
∗, 𝑆ℎ → 𝑆ℎ

∗, 𝐸ℎ → 𝐸ℎ
∗, 𝐼ℎ →

𝐼ℎ
∗ , 𝑆𝑟 → 𝑆𝑟

∗, 𝑅ℎ → 𝑅ℎ
∗  and 𝑉ℎ → 𝑉ℎ

∗. According to LaSalle (1976) and Olaniyi and Chuma (2023) 

�̇� = 0 is a singleton therefore an endemic equilibrium point 𝜑1 is globally asymptotic stable 

whenever 𝑅e > 1. 

 

Sensitivity Analysis of the Model 

In epidemiological models, sensitivity 

analysis refers to the analysis of state variables 

about the change of model parameters (Gumel 

2012, Olaniyi et al. 2016, Masoumnezhad et 

al. 2020, Somma and Akinwande 2020, 

Alshomrani et al. 2021, Rangasamy et al. 

2022, Sudarmaji et al. 2022). Sensitivity 

analysis helps to determine the influence of 

each parameter in spreading infectious 

diseases. Since the effective reproduction 

number 𝑅𝑒 provides the threshold condition 

for disease persistence, this section examines 

the effects of change of parameters in 𝑅eℎ. 

This is done by using the normalized forward 

sensitivity index method which is defined as 

the partial derivative of 𝑅eℎ with respect to the 

model parameter times the parameter divided 

by 𝑅𝑒ℎ (Olaniyi et al. 2016, Somma and 

Akinwande 2020, Alshomrani et al. 2021, 

Alshomrani et al. 2023, McCollum et al 2023, 

Olaniyi and Chuma 2023). Suppose 𝑝 is any 

parameter in 𝑅eℎ and 𝒩 is the sensitivity 

index of 𝑅eℎ with respect to 𝑝, then 

𝒩𝑝
𝑅eℎ = (

∂𝑅eℎ

∂𝑝
)

𝑝

𝑅eℎ
 (43) 

Using the definition (43), the sensitivity 

indices of 𝑅𝑒ℎ with respect to each parameter 

are as follows 
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𝒩𝛽
𝑅𝑒ℎ  =

∂𝑅𝑒ℎ

∂𝛽
×

𝛽

𝑅𝑒ℎ
= 1

𝒩𝜌
𝑅𝑒ℎ  =

∂𝑅eℎ

∂𝜌
×

𝜌

𝑅𝑒ℎ
= 0.003257

𝒩𝜇
𝑅𝑒ℎ  =

∂𝑅𝑒ℎ

∂𝜇
×

𝜇

𝑅eℎ
= −0.778038

𝒩𝜀
𝑅eℎ  = −

∂𝑅eℎ

∂𝜀
×

𝜀

𝑅eℎ
= −0.057535

𝒩𝜔
𝑅eℎ  =

∂𝑅eℎ

∂𝜔
×

𝜔

𝑅eℎ
= −0.010029

𝒩𝜈
𝑅eℎ  =

∂𝑅eℎ

∂𝜈
×

𝜈

𝑅eℎ
= −0.799041

𝒩𝜙
𝑅0ℎ  =

∂𝑅eℎ

∂𝜙
×

𝜙

𝑅eℎ
= −0.026492

𝒩Λ
𝑅eℎ  =

∂𝑅eℎ

∂Λ
×

Λ

𝑅eℎ
= 8.650414 × 10−10

(44) 

Similarly, by applying the procedure in 

equation (43) the sensitivity index of 𝑅𝑒ℎ with 

respect to 𝛾 can be computed. The results 

obtained in equation (44) show that some 

sensitivity indices have positive results while 

others have negative results. The positive sign 

of the result indicates that an increase or 

decrease of the parameter is directly 

proportional to the increase or decrease of 𝑅eℎ. 

While the negative sign indicates that an 

increase or decrease of the parameter is 

inversely proportional to the increase or 

decrease of 𝑅eℎ. 

 

T

able 1: Description of Model Parameters 

 

Parameter Parameter Description Values 

(Year−1) 

Source 

Λ Humans’ recruitment rate 0.029 Leandry (2022) 

µ Humans’ natural death rate 0.094 Assumed 

Ω Humans’ disease-induced death rate 0.2 Peter et al. (2021) 

Β Human-to-human transmission coefficient 0.00006 Peter et al. (2021) 

Σ Human-to-rodent transmission coefficient 0.00025 Peter et al. (2021) 

Γ Humans’ progression rate 0.2 Peter et al. (2021) 

Ε Hygienic practices rate of humans 0.3 Assumed 

Ν Vaccination rate of susceptible humans 0.1 Leandry (2022) 

Φ Treatment rate of infected humans 0.83 Leandry (2022) 

Ρ Loss of protection of hygienic humans 0.003 Assumed 

Δ Loss of immunity of recovered humans 0.00023 Assumed 

Τ Loss of immunity of vaccinated humans 0.003 Leandry (2022) 

Π Rodents’ recruitment rate 0.2 Leandry (2022) 

Ψ Rodent-to-rodent transmission coefficient 0.027 Peter et al. (2021) 

Φ Rodents’ natural death rate 0.002 Peter et al. (2021 

Α Rodents’ disease-induced death rate 0.5 Leandry (2022) 
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Η Culling rate of the rodents 0.3 Assumed 

 

Numerical Results and Discussion 

This section presents numerical simulations 

to investigate the transmission dynamics of the 

Mpox model and the effects of control 

strategies against the transmission dynamics 

of Mpox in the human population. This is 

performed by the use of parameter values 

given in Table 1 and the following initial 

values: 𝐻ℎ(0) = 200, 𝑆ℎ(0) =
1000, 𝑉ℎ(0) = 300, 𝐸ℎ(0) = 150, 𝐼ℎ(0) =
50, 𝑅ℎ(0) = 80, 𝑆𝑟(0) = 200, and 𝐼𝑟(0) =
50. MATLAB R2013b with Ode45 solver 

codes was applied to perform the numerical 

and graphical solutions. 

 

Numerical Simulations of the Basic Mpox 

Model 

Figure 1 shows that the trajectories of 

hygienic, susceptible, exposed, and infected 

humans decrease exponentially from initial 

values and then converge to zero at different 

times. Likewise, the trajectories of the 

vaccinated and recovered humans start to 

increase and reach a certain maximum value 

before converging to zero. This implies that 

the transmission dynamics of Mpox in the 

human population can be eliminated by the 

application of personal hygiene, vaccination, 

treatment, and culling of rodents’ control 

measures. 

 

 
Figure 2: Transmission Dynamics of the Mpox in the Human Population. 

 

Also, Figure 3 indicates the transmission 

dynamics of Mpox in the rodent population. 

The figure shows that the trajectories of 

susceptible and infected rodents converge at 

different times whereby the trajectory of the 

susceptible rodents converges faster than that 

of infected rodents. This also implies that the 

transmission dynamics of Mpox in the rodent 

population can be eliminated by the 

application of personal hygiene, vaccination, 

treatment, and culling of rodent control 

measures. 
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Figure 3: Transmission Dynamics of the Mpox in the Rodent Population. 

 

According to, Figures 2 and 3 the number of 

infected humans and rodents converges faster 

after incorporating two control measures, such 

as practicing personal hygiene and culling 

rodents than just applying vaccination and 

treatment control measures, as in the work of 

Usman and Adamu (2017). 

Numerical Simulation of 𝑅𝑒ℎ 

This section performs the numerical 

simulation of 𝑅eℎ versus the model parameters 

𝛽, 𝜀 and 𝜈. These parameters and their 

respective sensitivity indices are: 𝛽 = 1, 𝜀 =
−0.057535 and 𝜈 = −0.79904. 

Figure 4 shows that the magnitude of 𝑅eℎ 

increases as the parameter value of 𝛽 

increases. This implies that the parameter has 

more influence on increasing the value of 𝑅𝑒ℎ. 

Therefore, the appropriate control measures 

should be applied to reduce its value. 

 

 
Figure 4: Trajectories of 𝑅𝑒ℎ versus 𝛽. 

 

On the other hand, Figure 5 shows that 𝑅eℎ 

decreases as the parameter values of 𝜀 and 𝜈 

increase.  This implies that the parameters 𝜀 

and 𝜈 have more influence on decreasing the 

value of 𝑅eℎ. Therefore, the rate of practicing 

personal hygiene 𝜀 and vaccination of humans 

𝜈 should be increased to lower the value of 

𝑅eℎ. This is contrary to the study of Usman 
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and Adamu (2017) who incorporated only 

vaccination as a preventive measure. 

 

 
Figure 5: Trajectories of 𝑅eℎ versus Model Parameters: 𝜈 and 𝜀. 

 

Effects of Control Strategies during the 

Outbreak 

This section presents numerical simulations 

to show the effect of each control strategy by 

varying its parameter value during the Mpox 

outbreak. Other studies such as Usman and 

Adamu (2017), Somma et al. (2019), and Peter 

et al. (2021) did not perform the role of effect 

of each control measure by varying parameter 

values. 

Effects of Vaccination on the Susceptible 

Humans 

Figure 6 shows trajectories of susceptible 

humans by varying the rate of vaccination (𝜈). 

The figure shows that the trajectory converges 

fast when the rate of vaccination increases. 

This implies that to reduce the large number of 

humans who are at risk of being infected by 

the Mpox virus, the rate of vaccination should 

be increased.  

 

 

 
Figure 6: Effects of Vaccination on the Susceptible Humans. 
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Effects of Treatment on the Human Population. 

 
Figure 7: Effects of Treatment on the Infected Humans. 

 

Figure 7 shows the trajectories of the 

infected humans as the treatment rate (𝜑) 

varies. The figure shows that the trajectory 

converges fast as the rate of treatment 

increases. This means that to control the 

population free from disease in a short period 

the rate of treatment of infected humans 

should be increased. 

 

 
Figure 8: Effects of Treatment on the Recovered Humans. 

 

Furthermore, Figure 8 shows the trajectories 

of the recovered humans by varying the rate of 

treatment (𝜑) of the infected humans. The 

figure shows that the trajectory of the number 

of recovered humans increases fast as the rate 

of treatment increases. This implies that to 

increase the large number of recovered 

humans in a short period the rate of treatment 

of infected humans should be increased. 

 

Effects of Personal Hygiene on Susceptible 

Humans 
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Figure 9 shows the trajectories of the number 

of susceptible humans by varying rates of 

practicing personal hygiene (𝜀). The 

trajectory converges fast as the rates of 

personal hygiene increase. This implies that to 

protect the large number of humans from the 

Mpox virus the rate of practicing personal 

hygiene should be increased. 

 

 
Figure 9: Effects of Personal Hygiene on the Susceptible Humans. 

 

Effects of Culling on Infected Rodents 

Figure 10 shows the trajectories of the infected rodents by varying rates of culling rodents. The 

figure shows that the trajectory converges fast as the rate of culling rodents (𝜂) increases.  

 
Figure 10: Effects of Culling on the Infected Rodents. 

 

This implies that an increase in the rate of 

culling rodents reduces the number of infected 

rodents quickly, reducing the rodent-human 

contact rate.  

 

Conclusion 

The current study aimed to develop and 

analyze a mathematical model of the 
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transmission dynamics of Mpox with control 

strategies. This model was designed to 

represent the transmission dynamics of Mpox 

in human and rodent populations and 

incorporated four control strategies: personal 

hygiene, vaccination, treatment, and culling. 

The fundamental properties of the model were 

examined to ensure it is mathematically and 

biologically sound. The effective reproduction 

number was calculated using the Next-

Generation Matrix method. Stability analysis 

of the disease-free equilibrium point was 

performed using the method by Castillo-

Chávez (2002), while the stability of the 

endemic equilibrium point was analyzed using 

the Lyapunov function. The results indicated 

that, under the specified conditions, the 

disease-free equilibrium point is stable when 

 𝑅e < 1  and unstable when 𝑅e < 1. 

 

Furthermore, the study performed numerical 

simulations to explore the basic Mpox model 

and the effects of control measures on the 

spread of Mpox in the human population. The 

results showed that each control measure: 

personal hygiene, vaccination of susceptible 

humans, treatment of infected individuals, and 

culling of rodents can eliminate the 

transmission dynamics of Mpox in humans. 

Moreover, this study recommends that future 

research delve deeper into the transmission 

dynamics of Mpox disease, particularly by 

investigating the effects of media and the cost-

effectiveness of implemented control 

measures. 
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