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Abstract 

Malaria remains a major public health problem worldwide and it affects the livelihood of 

people particularly children under 5 years and pregnant women. This study formulates and 

analyzes a mathematical model that incorporates children under five years, pregnant women 

and influence of temperature on the transmission dynamics of malaria. The next generation 

matrix method is applied to compute the basic reproduction number 𝑅0. Analysis shows that 

malaria-free equilibrium point exists and it is globally asymptotically stable when 𝑅0 < 1. 

Numerical simulations show that the rate of infections in both human and mosquito 

populations increases as temperature increases. Higher temperatures generally increase the rate 

of infection in both human and mosquito populations, with distinct impacts on children under 

five years and pregnant women. 

Keywords: Basic reproduction number, malaria-free equilibrium, model simulation, model 

analysis, and temperature variations. 

 

Introduction 

Malaria is an infectious disease caused by a 

protozoan parasite from the genus 

plasmodium and spread through a bite from a 

female anopheles mosquito (WHO 2022). 

Malaria remains one of the major public 

health problems worldwide, with sub-Saharan 

Africa continuing to have the highest 

malaria-related mortality rates (Olaniyi and 

Obabiyi 2013). In 2022 the number of 

malaria cases worldwide were 245 million 

and 625,000 malaria-related deaths, with 232 

million cases and 599,000 deaths from sub-

Saharan Africa and 7.6 million cases and 

25,464 malaria induced deaths from Tanzania 

(WHO 2022). In 2021, there were an 

estimated 247 million cases of malaria and 

619,000 malaria-related deaths globally. Sub-

Saharan Africa was the most affected region, 

with approximately 95% of the global cases, 

which translates to around 234 million cases, 

and 593,000 deaths. Within this region, 

Tanzania reported about 8 million malaria 

cases and 25,787 deaths due to malaria 

(WHO 2022). These figures indicate that 

malaria remains a significant global health 

issue, with sub-Saharan Africa experiencing 

the highest prevalence. Although there has 

been a slight decrease in the number of cases 

and deaths from 2021 to 2022, the disease 

continues to pose a critical challenge, 

highlighting the ongoing need for effective 

control measures.   

The people that are most at risk for 

contracting malaria are pregnant women and 

children under five years (WHO 2022). Due 

to the loss of maternal immunity and the lack 

of specialized infection-specific immunity, 

children under five years are more 

susceptible to malaria than adults 

(Schumacher and Spinelli 2012). 

Additionally, pregnant women are more 

likely to get malaria due to the typical 

immunological decline that happens during 
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pregnancy, which is brought on by lack of 

cell-mediated immune response necessary to 

maintain the placenta (Sharma and Shukla 

2017). Malaria causes severe infection in 

children under five years while pregnant 

women are at risk of getting maternal anemia 

(WHO 2022). 

The trend of malaria transmission is 

affected by temperature variation. Statistics 

demonstrate that the burden of malaria in 

sub-Saharan Africa rises proportionately with 

temperature in the range of 16°C to 28°C 

(Agusto et al. 2015). When the temperature 

varies between 22.61°C and 28.58°C in West 

Africa, 16.68°C to 27.92°C in Central Africa, 

19.04°C to 26.75°C in East Africa, and 16°C 

to 25°C in South Africa, malaria infection 

rates rise (Agusto et al. 2015 and Agusto, 

2020). As the temperature rises, the malaria 

vector feeds more often because more blood 

is being digested, which causes the biting rate 

to increase (Agusto et al. 2015). Thus, it is 

essential to have a complete understanding of 

malaria transmission patterns in order to 

establish effective malaria management 

strategies, especially for children under five 

years and pregnant women.  

Numerous mathematical models have been 

developed, examined, and used to study the 

dynamics of malaria infection. These include 

Forouzannia and Gumel 2014; Addawe and 

Pajimola 2016; Otieno et al. 2016, Azu-

Tungmah et al. 2019, Kalula et al. 2021 and 

Agusto 2020). 

Addawe and Pajimola 2016 explored how 

climate change affects malaria dynamics in a 

model that divides the human population into 

juveniles and adults. Their simulations 

showed that climate change influences 

malaria transmission patterns and highlighted 

a stable, long-term solution to the model. 

Forouzannia and Gumel 2014 developed a 

similar age-structured model, also separating 

the population into juveniles and adults. Their 

findings revealed that increased mosquito 

lifespan and higher mosquito birth rates lead 

to more new infections and higher disease-

related mortality. 

Otieno et al. (2016) created a model 

focused on malaria transmission and control 

in Kenya. Their model considered vulnerable 

groups such as pregnant women and young 

children but did not include temperature 

effects on malaria transmission. 

Azu-Tungmah et al. (2019) extended the 

age-structured model by incorporating four 

human compartments: susceptible 

individuals, infectious children under five, 

infectious individuals over five, and 

infectious pregnant women. They also 

divided mosquitoes into susceptible and 

infectious categories, providing a detailed 

view of malaria transmission dynamics. 

Kalula et al. 2021 introduced a model that 

addressed malaria transmission among 

immigrants and asymptomatic carriers. This 

model separated the population into children 

under five years and adults. Building on this 

work, Kalula et al. 2023 added an analysis of 

optimal control strategies and temperature 

variations, although it did not include the role 

of children under five years and pregnant 

women in malaria dynamics. 

In this study, a mathematical model for 

malaria transmission dynamics is formulated 

by modifying the model by Azu-Tungmah et 

al. (2019). The model of this study 

incorporates children under five years, 

pregnant women, non-pregnant humans 

(males and non-pregnant women aged above 

five years) and the influence of temperature 

as it affects the biting behavior of 

mosquitoes. 

 

 

Materials and Methods 

Model formulation 

The model divides the human population into six compartments: susceptible non-pregnant 

humans 𝑆𝑛, susceptible pregnant women 𝑆𝑝, susceptible children under five years 𝑆𝑐, infectious 

non-pregnant humans 𝐼𝑛, infectious pregnant women 𝐼𝑝, and infectious children under five 

years 𝐼𝑐. Thus, the total human population is given as  

𝑁ℎ(𝑡) = 𝑆𝑛(𝑡) + 𝑆𝑝(𝑡) + 𝑆𝑐(𝑡) + 𝐼𝑛(𝑡) + 𝐼𝑝(𝑡) + 𝐼𝑐(𝑡).  (1) 
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The mosquito population is divided into two compartments, which are susceptible mosquitoes 

𝑆𝑚 and infectious mosquitoes 𝐼𝑚. Therefore, the total mosquito population is given as 

𝑁𝑚(𝑡) = 𝑆𝑚(𝑡) + 𝐼𝑚(𝑡).  (2) 

Susceptible children under five years are considered to be recruited through birth at per capita 

rate Λℎ. However, they decrease as they develop immune system to become susceptible non-

pregnant humans at a rate 𝜎 and when they contract malaria infection at a rate  

𝜆𝑐 =
𝑎𝑚𝑐𝑏(𝑇)𝐼𝑚

𝑁ℎ
 , (3) 

 

where 𝑎𝑚𝑐  is the transmission probability of 

malaria from infectious mosquito to a 

susceptible child per single bite and 𝑏(𝑇) is 

the mosquito temperature dependent biting 

rate (Kalula et al. 2023) defined by  

    𝑏(𝑇) = −0.00014𝑇2 + 0.027𝑇 − 0.322. 

 (4) 

 Infectious children under five years increase 

following malaria infection of susceptible 

children under five years at a rate 𝜆𝑐 and 

decrease when they suffer malaria induced 

mortality at the rate 𝜋𝑐. 
 Susceptible pregnant women increase when 

women from the susceptible non-pregnant 

humans get pregnancy at a rate α. The class 

decreases when they deliver and when they 

contract malaria infection at rates 𝛽 and 

𝜆𝑝 =
𝑎𝑚𝑝𝑏(𝑇)𝐼𝑚

𝑁ℎ
 (5) 

respectively, where 𝑎𝑚𝑝  is the transmission 

probability of malaria from infectious 

mosquito to a susceptible pregnant woman 

per single bite. The infectious pregnant 

women increase when susceptible pregnant 

women acquire malaria infection and when 

infectious non-pregnant humans get 

pregnancy at rates 𝜆𝑝 and 𝛼 respectively. 

They suffer disease-induced mortality at a 

rate 𝜋𝑝. Susceptible non-pregnant humans 

replenish when children under five years 

develop strong immune system and when 

susceptible pregnant women deliver at rates 𝜎 

and 𝛽 respectively. They diminish when they 

contract malaria infections at a rate  

𝜆𝑛 =
𝑎𝑚𝑛𝑏(𝑇)𝐼𝑚

𝑁ℎ
  (6) 

where 𝑎𝑚𝑛 is the the transmission probability 

of malaria from infectious mosquito to a 

susceptible non-pregnant human per single 

bite. The infectious non-pregnant humans 

grow in number following malaria infection 

of susceptible non-pregnant humans at a rate 

𝜆𝑛 and suffer malaria-induced mortality at the 

rate 𝜋𝑛. All human classes suffer natural 

mortality at a rate 𝜇ℎ. 

Susceptible mosquitoes are considered to 

increase through birth at a rate Λ𝑚 and 

diminish when they contract malaria infection 

after biting infectious humans at a rate  

𝜆𝑚 =
𝑎𝑛𝑚𝑏(𝑇)𝐼𝑛

𝑁ℎ
+

𝑎𝑝𝑚𝑏(𝑇)𝐼𝑝

𝑁ℎ
+

𝑎𝑐𝑚𝑏(𝑇)𝐼𝑐

𝑁ℎ
 , 

 (7) 

where 𝑎𝑛𝑚 is the transmission probability of 

malaria from infectious non-pregnant human 

to a susceptible mosquito, 𝑎𝑝𝑚 is the 

transmission probability of malaria from 

infectious pregnant women to a susceptible 

mosquito and 𝑎𝑐𝑚 is the transmission 

probability of malaria from infectious child 

under five years to a susceptible mosquito. 

Infectious mosquitoes grow in number when 

susceptible mosquitoes contract malaria at a 

rate 𝜆𝑚. Both mosquito classes suffer natural-

induced mortality at a rate 𝜇𝑚. 

 

Model Assumptions 

In formulating the model for malaria 

transmission in children under five years, 

pregnant women and the influence of 

temperature, we assume the following:  most 

infectious pregnant women receive 

therapeutic treatment before giving birth and 

thus, they cannot join the infectious non-

pregnant humans (Azu-Tungmah et al. 2019); 

humans and mosquitoes are born susceptible 

to malaria infection; pregnant women, 

children under 5 years, and non-pregnant 

humans acquire malaria infection at different 

rates because of their immunological 

differences; there is no disease-induced death 

for mosquito due to their short life span; the 

recruitment rates for both human and 

mosquito populations are population 

dependent; and all parameters are assumed to 

be positive.  
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The interactions of human and mosquito 

populations in the presence of malaria 

infection are shown in Figure1. 

 

 

  
Figure 1: Compartmental diagram for the transmission dynamics of malaria  

 

Model Equations 

The dynamics of malaria transmission in children under five years and pregnant women is 

described by the following system of ordinary differential equations. 
𝑑𝑆𝑛

𝑑𝑡
= 𝜎𝑆𝑐 + 𝛽𝑆𝑝 − (𝛼 + 𝜆𝑛 + 𝜇ℎ)𝑆𝑛

𝑑𝐼𝑛

𝑑𝑡
= 𝜆𝑛𝑆𝑛 − (𝛼 + 𝜇ℎ + 𝜋𝑛)𝐼𝑛             

𝑑𝑆𝑝

𝑑𝑡
= 𝛼𝑆𝑛 − (𝛽 + 𝜇ℎ + 𝜆𝑝)𝑆𝑝             

𝑑𝐼𝑝

𝑑𝑡
= 𝜆𝑝𝑆𝑝 + 𝛼𝐼𝑛 − (𝜇ℎ + 𝜋𝑝)𝐼𝑝         

𝑑𝑆𝑐

𝑑𝑡
= Λℎ𝑁ℎ − (𝜎 + 𝜇ℎ + 𝜆𝑐)𝑆𝑐           

𝑑𝐼𝑐

𝑑𝑡
= 𝜆𝑐𝑆𝑐 − (𝜇ℎ + 𝜋𝑐)𝐼𝑐                       

𝑑𝑆𝑚

𝑑𝑡
= Λ𝑚𝑁𝑚 − (𝜇ℎ + 𝜆𝑚)𝑆𝑚             

𝑑𝐼𝑚

𝑑𝑡
= 𝜆𝑚𝑆𝑚 − 𝜇𝑚𝐼𝑚                             }

 
 
 
 
 
 

 
 
 
 
 
 

 (8) 

With initial conditions:𝑆𝑛(0) > 0; (0) ≥ 0; 𝑆𝑝(0) > 0; 𝐼𝑝(0) ≥ 0; 𝑆𝑐(0) > 0; 𝐼𝑐(0) ≥ 0; 

𝑆𝑚(0) > 0;  and 𝐼𝑛(0) ≥ 0, where 𝜆𝑛, 𝜆𝑝, 𝜆𝑐  and 𝜆𝑚 are given in equations (6), (5), (3) and 

(7) respectively. 

 

Model Analysis  

To analyze malaria model, we normalize each class by dividing it by entire population as in 

Kalula et al. 2021. Let 𝑠𝑛 =
𝑆𝑛

𝑁ℎ
, 𝑠𝑝 =

𝑆𝑝

𝑁ℎ
, 𝑠𝑐 =

𝑆𝑐

𝑁ℎ
, 𝑠𝑚 =

𝑆𝑚

𝑁𝑚
,  𝑖𝑛 =

𝐼𝑛

𝑁ℎ
 ,  𝑖𝑝 =

𝐼𝑝

𝑁ℎ
  . Taking time 

derivative for each variable we have   
𝑑𝑠𝑛

𝑑𝑡
=

1

𝑁ℎ
(
𝑑𝑆𝑛

𝑑𝑡
− 𝑠𝑛

𝑑𝑁ℎ

𝑑𝑡
), 

𝑑𝑠𝑝

𝑑𝑡
=

1

𝑁ℎ
(
𝑑𝑆𝑝

𝑑𝑡
− 𝑠𝑝

𝑑𝑁ℎ

𝑑𝑡
) and so on for the rest of equations. 

Solving for derivatives of normalized variables we have the following system of differential 

equations: 
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𝑑𝑠𝑛

𝑑𝑡
= 𝜎𝑠𝑐 + 𝛽𝑠𝑝 + (𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐)𝑠𝑛 − (𝛼 + Λℎ + 𝐾𝑎𝑚𝑛𝑏(𝑇)𝑖𝑚)𝑠𝑛

 
𝑑𝑖𝑛

𝑑𝑡
= 𝐾𝑎𝑚𝑛𝑏(𝑇)𝑖𝑚𝑠𝑛 + (𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐)𝑖𝑛 , −(𝛼 + Λℎ + 𝜋𝑛)𝑖𝑛             

𝑑𝑠𝑝

𝑑𝑡
= 𝛼𝑠𝑛 + (𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐)𝑠𝑝 − (𝛽 + Λℎ + 𝐾𝑎𝑚𝑝𝑏(𝑇)𝑖𝑚)𝑠𝑝            

𝑑𝑖𝑝

𝑑𝑡
= 𝐾𝑎𝑚𝑝𝑏(𝑇)𝑖𝑚𝑠𝑝 + 𝛼𝑖𝑛 + (𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐)𝑖𝑝 − (Λℎ + 𝜋𝑝)𝑖𝑝     

𝑑𝑠𝑐

𝑑𝑡
= Λℎ + (𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐)𝑠𝑐 − (𝜎 + Λℎ + 𝐾𝑎𝑚𝑐𝑏(𝑇)𝑖𝑚)𝑠𝑐             

𝑑𝑖𝑐

𝑑𝑡
= 𝐾𝑎𝑚𝑐𝑏(𝑇)𝑖𝑚𝑠𝑐 + (𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐)𝑖𝑐 − (Λℎ + 𝜋𝑐)𝑖𝑐                  

𝑑𝑠𝑚

𝑑𝑡
= Λ𝑚(1 − 𝑠𝑚) − 𝑏(𝑇)(𝑎𝑛𝑚𝑖𝑛 + 𝑎𝑝𝑚𝑖𝑝 + 𝑎𝑐𝑚𝑖𝑐)𝑠𝑚                                

 
𝑑𝑖𝑚

𝑑𝑡
= 𝑏(𝑇)(𝑎𝑛𝑚𝑖𝑛 + 𝑎𝑝𝑚𝑖𝑝 + 𝑎𝑐𝑚𝑖𝑐)𝑠𝑚 − Λ𝑚𝑖𝑚.                                           }

 
 
 
 
 
 

 
 
 
 
 
 

 (9) 

where 𝐾 is the mosquito to human ratio. 

 

Positivity of Model Solutions 

In this section, we study the model properties to determine whether it is mathematically well 

posed and biologically meaningful. If the model’s solutions are both positive and bounded, 

then the model is said to be mathematically well posed and biologically meaningful. To show 

that solutions of the model system are positive, we state and prove Lemma 1. 

Lemma 1. Let the initial conditions be 

𝑠𝑛(0) > 0; 𝑖𝑛(0) ≥ 0; 𝑠𝑝(0) > 0; 𝑖𝑝(0) ≥ 0; 𝑠𝑐(0) > 0; 𝑖𝑐(0) ≥; 𝑠𝑚(0) > 0;  and 𝑖𝑚(0) ≥ 0, 

then the solutions 𝑠𝑛(𝑡), 𝑠𝑝(𝑡), 𝑠𝑐(𝑡), 𝑠𝑚(𝑡), 𝑖𝑛(𝑡), 𝑖𝑝(𝑡), 𝑖𝑐(𝑡), 𝑖𝑚(𝑡) of the normalized model 

system are positive for all 𝑡 ≥ 0. 
Proof. Proving that the model solutions are positive for all 𝑡 ≥ 0, the first equation for 

susceptible non-pregnant humans in the model system is written as  
𝑑𝑠𝑛

𝑑𝑡
= 𝜎𝑠𝑐 + 𝛽𝑠𝑝 + (𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐)𝑠𝑛 − (𝛼 + Λℎ + 𝐾𝑎𝑚𝑛𝑏(𝑇)𝑖𝑚)𝑠𝑛 ≥ −(𝛼 + Λℎ +

𝐾𝑎𝑚𝑛𝑏(𝑇)𝑖𝑚)𝑠𝑛 . 

After integration by separation of variables, we have 

𝑠𝑛(𝑡) ≥ 𝑠𝑛(0)𝑒𝑥𝑝 (−∫ (𝛼 + Λℎ + 𝐾𝑎𝑚𝑛𝑏(𝑇)𝑖𝑚)𝑑𝑥
𝑡

0
) ≥ 0 for all 𝑡 ≥ 0. 

Applying the same approach for the rest of equations, it can be shown that 

𝑖𝑛(𝑡) ≥ 0, 𝑠𝑝(𝑡) ≥ 0 ,  𝑖𝑝(𝑡) ≥ 0, 𝑠𝑐(𝑡) ≥ 0 ,  𝑖𝑐(𝑡) ≥ 0, 𝑠𝑚(𝑡) ≥ 0 , 𝑖𝑚(𝑡) ≥ 0. 

As a result, every solution of the model system is positive for all 𝑡 ≥ 0. 
 

Boundedness of the model solutions 

The model system is well posed if its solutions are bounded. We establish the boundedness of 

the model solution in this section by stating and proving Lemma 2. 

Lemma 2. The solutions of the model system are bounded in the region 

Ω = Ωℎ × Ω𝑚 where, Ωℎ = {(𝑠𝑛 , 𝑠𝑝 , 𝑠𝑐 , 𝑖𝑛, 𝑖𝑝 , 𝑖𝑐) ∈ ℝ+
6 : 𝑁ℎ ≤ 1} and Ω𝑚 = {(𝑠𝑚 , 𝑖𝑚) ∈

ℝ+
2 : 𝑁𝑚 ≤ 1}. 

Proof. Let  𝑠𝑛(0) > 0;𝑖𝑛(0) ≥ 0; 𝑠𝑝(0) > 0; 𝑖𝑝(0) ≥ 0; 𝑠𝑐(0) > 0; 𝑖𝑐(0) ≥; 𝑠𝑚(0) > 0;  

and 𝑖𝑚(0) ≥ 0 be the initial conditions for the model system , and 

{(𝑠𝑛(𝑡), 𝑠𝑝(𝑡), 𝑠𝑐(𝑡), 𝑖𝑛(𝑡), 𝑖𝑝(𝑡), 𝑖𝑐(𝑡)) ∈ ℝ+
6 } and {(𝑠𝑚(𝑡), 𝑖𝑚(𝑡)) ∈ ℝ+

2 } be solutions. 

From the total human population in equation (1), we have 
𝑑𝑁ℎ(𝑡)

𝑑𝑡
= Λℎ − Λℎ𝑁ℎ − (1 − Nℎ)(𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐), 

which implies that 
𝑑𝑁ℎ(𝑡)

𝑑𝑡
+ Λℎ𝑁ℎ ≤ Λℎ .   (10) 
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Since equation (10) is a linear differential inequality, we solve the inequality by integration 

factor and applying the limit as 𝑡 → ∞ to obtain 

0 ≤ 𝑁ℎ(𝑡) ≤ 1, ∀𝑡 > 0.  
Applying the same procedures for total mosquito population in equation (2) we obtain 

0 ≤ 𝑁𝑚(𝑡) = 1, ∀𝑡 > 0.  
Thus, all solutions of the model system are positive invariant in the region: 

Ω = Ωℎ × Ω𝑚 where, Ωℎ = {(𝑠𝑛 , 𝑠𝑝 , 𝑠𝑐 , 𝑖𝑛, 𝑖𝑝 , 𝑖𝑐) ∈ ℝ+
6 : 𝑁ℎ ≤ 1} and Ω𝑚 = {(𝑠𝑚 , 𝑖𝑚) ∈

ℝ+
2 : 𝑁𝑚 ≤ 1}. Therefore, the system of differential equations is mathematically well-posed in 

the domain Ω and we can consider the model for analysis. 

 

Malaria Free Equilibrium point and Basic Reproduction Number 𝑹𝟎 

Malaria Free Equilibrium Point 

When malaria does not exist in human and mosquito populations, the derivative in equation 

(9) are equated to zero and solving the simultaneous equations to obtain the malaria free 

equilibrium 𝑃0 as 

𝑃0 = (
σ(𝛽 + Λℎ)

(𝜎 + Λℎ)(𝛼 + 𝛽 + Λℎ)
, 0,

𝛼σ

(𝜎 + Λℎ)(𝛼 + 𝛽 + Λℎ)
, 0,

Λℎ
(𝜎 + Λℎ)

, 0,1, 0 ).          (11)         

 

The Basis Reproduction Number  𝑅0 

The Basic reproduction number is the expected number 𝑅0 of secondary infections caused by 

a single infectious individual in a completely susceptible population (Kalula et al. 2021). To 

compute the basic reproduction number 𝑅0, we use the next generation matrix method as used 

by Van de Driessche and Watmough 2002. The next generation matrix method uses new 

infections and transfer terms from infected classes. Let 𝐷𝑖  be the vector of new infection and 𝐵𝑖  
be the vector of transfer terms of individual from the infected compartment 𝑖𝑛 , 𝑖𝑝, 𝑖𝑐 and 𝑖𝑚. 

Then the basic reproduction number 𝑅0 is defined as the spectral radius of the next-generation 

matrix, which is denoted by  

𝑅0 = 𝜌(𝐷𝐵−1)        (12) 

where D and B are the matrices defined by  

𝐷 =
𝜕𝐷𝑖

𝜕𝜑𝑗
(𝑃0) ,   𝐵 =

𝜕𝐵𝑖

𝜕𝜑𝑗
(𝑃0)  .  (13)  

From the system of differential equation (9), the vectors for new infection 𝐷𝑖  and transfer terms  

𝐵𝑖  are  𝐷𝑖 =

(

 
 

𝐾𝑎𝑚𝑛𝑏(𝑇)𝑖𝑚𝑠𝑛
𝐾𝑎𝑚𝑝𝑏(𝑇)𝑖𝑚𝑠𝑝
𝐾𝑎𝑚𝑐𝑏(𝑇)𝑖𝑚𝑠𝑐

𝑏(𝑇)(𝑎𝑛𝑚𝑖𝑚 + 𝑎𝑝𝑚𝑖𝑝 + 𝑎𝑐𝑚𝑖𝑐))

 
 

 and  

𝐵𝑖 =

(

 
 

(𝛼 + Λℎ + 𝜋𝑛)𝑖𝑛 − (𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐)𝑖𝑛

(Λℎ + 𝜋𝑝)𝑖𝑝 − 𝛼𝐼𝑛 − (𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐)𝑖𝑝
(Λℎ + 𝜋𝑐)𝑖𝑐 − (𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐)𝑖𝑐

Λ𝑚𝑖𝑚 )

 
 

   

Using equation (11), the basic reproduction number 𝑅0 is given by: 

𝑅0 = √𝑅𝑛 + 𝑅𝑝 + 𝑅𝑐      (14) 

where 𝑅𝑝 =
𝛼𝜎((𝛽+Λℎ)𝐾𝑎𝑚𝑛𝑏(𝑇)+(𝛼+𝜋𝑛+Λℎ)𝐾𝑎𝑚𝑝𝑏(𝑇))𝑎𝑝𝑚𝑏(𝑇)

Λ𝑚(𝜎+Λℎ)(𝛼+𝛽+Λℎ)(𝛼+𝜋𝑛+Λℎ)(𝜋𝑝+Λℎ)
 

𝑅𝑛 =
𝜎(𝛽+Λℎ)𝐾𝑎𝑚𝑛𝑏(𝑇)𝑎𝑛𝑚𝑏(𝑇)

Λ𝑚(𝜎+Λℎ)(𝛼+𝛽+Λℎ)(𝛼+𝜋𝑛+Λℎ)
 , and  𝑅𝑐 =

Λℎ𝐾𝑎𝑚𝑐𝑏(𝑇)𝑎𝑐𝑚𝑏(𝑇)

Λ𝑚(𝜎+Λℎ)(𝜋𝑐+Λℎ)
. 

𝑅𝑛 is the number of secondary infections as result of interaction between susceptible non-

pregnant humans and infectious mosquitoes, 𝑅𝑝 is the number of secondary infections as a 

result of interactions between pregnant women and infectious mosquitoes and 𝑅𝑐 is the number 
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of secondary infections in children under five years caused by infected mosquitoes in the 

susceptible population. 

 

Global stability of malaria free equilibrium   

We employ the method as used in Castillo-Chavez et al. (2004) to analyze the global stability 

of malaria free equilibrium point of the model. Using this approach, the model system is 

written as, 

{

𝑑𝑄𝑛

𝑑𝑡
= 𝑍(𝑄𝑛 − 𝑄0) + 𝑍1𝑄𝑖

𝑑𝑄𝑖

𝑑𝑡
= 𝑍2𝑄𝑖                           

 (15) 

where 𝑄𝑛 presents the non-transmitting classes; 𝑄𝑖  represents the transmitting classes; 𝑄0 

represents the value of non-transmitting variables at malaria free equilibrium and Z, 𝑍1and 𝑍2 

are the matrices to be obtained.  The malaria free equilibrium point of the model is said to be 

globally asymptotically stable when the eigenvalue of the matrix Z are negative and 𝑍2 is a 

Metzler matrix (Irunde et al. 2016). From equation (8) and (10) we have  

𝑄𝑛 = (𝑠𝑛 , 𝑠𝑝 , 𝑠𝑐 , 𝑠𝑚)
𝑇
,    𝑄𝑖 = (𝑖𝑛 , 𝑖𝑝, 𝑖𝑐 , 𝑖𝑚)

𝑇
, and   

𝑄0 = (
σ(𝛽+𝜇ℎ)

(𝜎+Λℎ)(𝛼+𝛽+Λℎ)
,

𝛼σ

(𝜎+Λℎ)(𝛼+𝛽+Λℎ)
,

Λℎ

(𝜎+Λℎ)
, 1)

𝑇

 (16) 

From equation (14) we have  

𝑄𝑛 − 𝑄0 =

(

 
 
 

𝑠𝑛 −
σ(𝛽+𝜇ℎ)

(𝜎+Λℎ)(𝛼+𝛽+Λℎ)

𝑠𝑝 −
𝛼σ

(𝜎+Λℎ)(𝛼+𝛽+Λℎ)

𝑠𝑐 −
Λℎ

(𝜎+Λℎ)

𝑠𝑚 −  1 )

 
 
 

 (17) 

Using equation (15) and (16) we have  

(

 
 

𝜎𝑠𝑐 + 𝛽𝑠𝑝 + (𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐)𝑠𝑛 − (𝛼 + Λℎ + 𝐾𝑎𝑚𝑛𝑏(𝑇)𝑖𝑚)𝑠𝑛
𝛼𝑠𝑛 + (𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐)𝑠𝑝 − (𝛽 + Λℎ + 𝐾𝑎𝑚𝑝𝑏(𝑇)𝑖𝑚)𝑠𝑝
Λℎ + (𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐)𝑠𝑐 − (𝜎 + Λℎ + 𝐾𝑎𝑚𝑐𝑏(𝑇)𝑖𝑚)𝑠𝑐

Λ𝑚(1 − 𝑠𝑚) − 𝑏(𝑇)(𝑎𝑛𝑚𝑖𝑛 + 𝑎𝑝𝑚𝑖𝑝 + 𝑎𝑐𝑚𝑖𝑐)𝑠𝑚, )

 
 
=

𝑍

(

 
 
 

𝑠𝑛 −
σ(𝛽+𝜇ℎ)

(𝜎+Λℎ)(𝛼+𝛽+Λℎ)

𝑠𝑝 −
𝛼σ

(𝜎+Λℎ)(𝛼+𝛽+Λℎ)

𝑠𝑐 −
Λℎ

(𝜎+Λℎ)

𝑠𝑚 −  1 )

 
 
 
+ 𝑍1(

𝑖𝑛
𝑖𝑝
𝑖𝑐
𝑖𝑚

)     

and  

(

 
 

𝐾𝑎𝑚𝑛𝑏(𝑇)𝑖𝑚𝑠𝑛 + (𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐)𝑖𝑛, −(𝛼 + Λℎ + 𝜋𝑛)𝑖𝑛
𝐾𝑎𝑚𝑝𝑏(𝑇)𝑖𝑚𝑠𝑝 + 𝛼𝑖𝑛 + (𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐)𝑖𝑝 − (Λℎ + 𝜋𝑝)𝑖𝑝

𝐾𝑎𝑚𝑐𝑏(𝑇)𝑖𝑚𝑠𝑐 + (𝜋𝑛𝑖𝑛 + 𝜋𝑝𝑖𝑝 + 𝜋𝑐𝑖𝑐)𝑖𝑐 − (Λℎ + 𝜋𝑐)𝑖𝑐,

𝑏(𝑇)(𝑎𝑛𝑚𝑖𝑛 + 𝑎𝑝𝑚𝑖𝑝 + 𝑎𝑐𝑚𝑖𝑐)𝑠𝑚 − Λ𝑚𝑖𝑚. )

 
 
= 𝑍1(

𝑖𝑛
𝑖𝑝
𝑖𝑐
𝑖𝑚

). 

The matrices Z and  𝑍2 are defined by: 𝑍 =
𝑑𝑄𝑛

𝑑𝑋𝑛
   and 𝑍2  =

𝑑𝑄𝑖

𝑑𝑋𝑖
 

where  𝑋𝑛 and 𝑋𝑖 are non-infectious and infectious compartments respectively.  

From the definitions of Z and  𝑍2 we have 

𝑍 = (

−(𝛼 + Λℎ)
𝛼
0
0

    

0
−(Λℎ + 𝛽)

0
0

   

0
0

−(Λℎ + 𝜎)
0

   

0
0
0

−Λ𝑚

) and  
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𝑍2 =

(

 

−(𝛼 + Λℎ + 𝜋𝑛)
0
0

𝑎𝑛𝑚𝑏(𝑇)𝑠𝑚

    

0
−(Λℎ + 𝜋𝑝)

0
𝑎𝑝𝑚𝑏(𝑇)𝑠𝑚

   

0
0

−(Λℎ + 𝜋𝑐)

𝑎𝑐𝑚𝑏(𝑇)𝑠𝑚

   

𝐾𝑎𝑚𝑛𝑏(𝑇)𝑠𝑛
𝐾𝑎𝑚𝑝𝑏(𝑇)𝑠𝑝
𝐾𝑎𝑚𝑐𝑏(𝑇)𝑠𝑐

−Λ𝑚 )

 .  

 

The eigenvalues of matrix Z are −(𝛼 + 𝛽 +
Λℎ),−(Λℎ + 𝜎), −Λ𝑚 and −Λℎ. Since all 

eigenvalues of matrix Z are negative and all 

off diagonal elements of matrix 𝑍2 are non-

negative, then the disease free equilibrium 

point is globally asymptotically stable when 

the basic reproduction number is less than 

one. 

 

Existence of malaria Equilibrium point 

Let 𝐸∗ = (𝑠𝑛
∗, 𝑖𝑛

∗, 𝑠𝑝
∗, 𝑖𝑝

∗, 𝑠𝑐
∗, 𝑖𝑐

∗, 𝑠𝑚
∗, 𝑖𝑚

∗)  

be the endemic equilibrium point, then 𝐸∗ is a 

steady state solution where the disease 

continues to exist. It is obtained by setting 

each equation in normalized system equals to 

zero. To show the existence of malaria 

equilibrium point we use the approach by 

Tumwiine et al. 2007 and Stephano et al. 

2022. Using this approach the sum of human 

compartments at malaria equilibrium point 

gives 

 Λℎ + (𝜋𝑛𝑖𝑛
∗ + 𝜋𝑛𝑖𝑝

∗ + 𝜋𝑛𝑖𝑐
∗)𝑛ℎ = Λℎ +

(𝜋𝑛𝑖𝑛
∗ + 𝜋𝑛𝑖𝑝

∗ + 𝜋𝑛𝑖𝑐
∗). 

Since Λℎ > 0 and 𝜋𝑗 > 0, 𝑗 = 𝑛, 𝑝, 𝑐 

then s𝑛 > 0, i𝑛 ≥ 0, s𝑝 > 0 , i𝑝 ≥ 0,  s𝑐 > 0 

and , i𝑐 ≥ 0. Using the same procedures, the 

mosquito population gives, s𝑚 > 0 and i𝑚 ≥
0. 

 Since s𝑛 > 0,i𝑛 ≥ 0, s𝑝 > 0, i𝑝 ≥ 0,  s𝑐 > 0 

, i𝑐 ≥ 0, s𝑚 > 0 and i𝑚 ≥ 0, thus the malaria 

equilibrium exists. 

 

Results and Discussion 

To understand well the transmission 

dynamics of malaria in children under five 

years, pregnant women and non-pregnant 

women, we carry out numerical simulations 

of the normalized system 

using proportions of initial conditions 

𝑠𝑛(0) = 0.46 , 𝑖𝑛(0) = 0.10 , 𝑠𝑝 = 0.16, 

𝑖𝑝(0) = 0.01, 𝑠𝑐(0) = 0.25, 𝑖𝑐(0) = 0.02, 

𝑠𝑚(0) = 0.90  and 𝑖𝑚(0) = 0.1 and the 

parameter values in Table 1. 

Table 1: Parameter Values (Unit: month-1) 

Parameter Value Source Parameter Value Source 

𝜎 0.59999  Assumed 𝑎𝑚𝑐  0.02798  
Azu-Tungmah et al. 

2019 

𝛼 0.001395 
Azu-Tungmah et al. 

2019 
𝑎𝑚𝑛 0.07249  

Azu-Tungmah et al. 

2019 

𝛽 0.0014  Assumed 𝑎𝑚𝑝 0.10587  Assumed 

Λℎ 0.002716  
Addawe and Lope 

2012  
𝑎𝑐𝑚 0.09994  Assumed 

Λ𝑚 0.56  
Addawe and Lope 

2012 
𝑎𝑛𝑚 0.09864  Assumed 

𝜋𝑐 0.001717  
Azu-Tungmah et al. 

2019 
𝑎𝑝𝑚 0.00454  

Azu-Tungmah et al. 

2019 

𝜋𝑛 0.015928  
Azu-Tungmah et al. 

2019 
𝑏(𝑇) 28.0 Agusto et al. 2015 

𝜋𝑝 0.020507  Assumed 𝐾 1.2 
Addawe and Pajimola 

2016  

Figure 2(a) shows the dynamics of malaria 

in children under five years. The graph 

indicates that the proportion of susceptible 

children under five years get infections and 

decrease exponentially while the proportion 

of infected children under five years increase 

exponentially. This shows that malaria 

persists in the population. In Figure 2(b), the 

dynamics of malaria in pregnant women is 

shown. The proportion of infected pregnant 
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women grows with time until when it reaches 

its equilibrium condition. This results into 

decreasing of the proportion of susceptible 

pregnant women for 2.5 months when it 

reaches its equilibrium state.  From Figure 

2(c) it is observed that the proportion of 

infected non-pregnant humans initially 

increases to its highest point in the first three 

months until when it attains the stable state. 

Figure 2(d) shows the disease prevalence in 

mosquito population. It can be seen that as 

time increases, the fraction of infected 

mosquitoes’ increases, which means that 

malaria becomes endemic in the population 

as the proportion of susceptible mosquitoes 

decreases to the steady state after the third 

month. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2: Dynamics of malaria transmission in the human and mosquito population. 

 

Figures 3 (a), (b), (c) and (d) demonstrate 

how the number of infectious non-pregnant 

humans, pregnant women, children under five 

years and mosquitoes vary with respect to 

temperature dependent biting rate b(T ). The 

figures show that increasing temperature 

dependent biting rate b(T ) increases the 

number of infectious non-pregnant humans, 

pregnant women, children under five years 

and mosquitoes. As the temperature 

dependent mosquito’s biting rate increases 

from 28 to 43 per month the rate of infections 

increase proportionally. 
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(a) 

 
(b) 

(c) 
(d) 

Figure 3: Variation of infectious classes with temperature dependent mosquito 

biting rate b(T ) 

 

Conclusion 

The basic model of malaria transmission 

dynamics with humans and mosquito 

population has been formulated and analyzed. 

The main objective of this study was to 

understand malaria transmission dynamics in 

children under five years and pregnant 

women. The basic reproduction number 𝑅0 

has been computed using the next generation 

matrix method. Analysis of the model shows 

that malaria-free equilibrium point exists and 

it is globally asymptotically stable when 

𝑅0 < 1. Numerical simulations show that the 

malaria prevalence increases with time due to 

the absence of control interventions in the 

community. Similarly, increasing temperature 

dependent biting rate b(T ) increases the 

number of infectious non-pregnant humans, 

pregnant women, children under five years 

and mosquitoes. Therefore, to eradicate the 

malaria different control measures should be 

used.  
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