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Abstract 

Nonlinear matrix equations of the form  𝑋 − 𝐴∗𝑋𝛼𝐴 = 𝑃, where 𝑋  represents an unknown 

matrix, and  𝐴   and 𝑃  are given square matrices, are encountered in various fields. 

Understanding the characteristics and behaviour of these equations is essential for developing 

efficient computational methods and obtaining reliable solutions. This paper explores the use 

of partially ordered sets within fixed point schemes to solve the targeted equations. 

Furthermore, it derives perturbation estimates of the solutions and evaluates them 

computationally. Finally, the numerical simulations are provided to validate our theoretical 

claims and affirm the effectiveness of the proposed fixed-point scheme. 

Keywords: Fixed point, partially ordered sets, Nonlinear matrix equation, Positive definite 

solution, Perturbation 

 

Introduction  

In this paper, we investigate the nonlinear 

matrix equation: 

𝑋 − 𝐴∗𝑋𝛼𝐴 = 𝑃,  (1) 

where 𝑃 and 𝐴 are square positive definite 

matrices, and 𝛼 𝜖 (0,1).  Over the past 

decades, extensive research has been 

conducted on matrix equations similar to (1) 

(see Engwerda et al. 1993, El-Sayed and 

Ramadan 2001, Ran and Reurings 2002, 

Ramadhan and El-Shazly 2006, Gao and 

Yang 2008, Duan and Liao 2009 and the 

references therein). These equations are 

critically important across multiple scientific 

and engineering fields, including control 

theory, optimization, and signal processing 

(Chacha and Kim 2019; Chacha 2021a, 

2021b). Understanding the behaviour and 

properties of nonlinear matrix equations is 

crucial for developing effective 

computational methods and obtaining reliable 

solutions. Notably, the sensitivity of these 

equations to perturbations in their input 

parameters has received considerable 

attention (Chacha 2022a, Chacha 2022b). 

In this paper, we investigate the intriguing 

realm of partially ordered sets (POS) within 

the context of fixed-point schemes for 

nonlinear matrix equations. Partially ordered 

sets provide a mathematical framework for 

characterizing relationships and dependencies 

among elements in a set. By incorporating 

POS concepts into fixed point schemes, we 

aim to enhance our understanding of the 

underlying dynamics and intricacies of 

nonlinear matrix equations (Ran and 

Reurings 2004). 

Our primary objective is to explore the 

sensitivity of a specific family of nonlinear 

matrix equations using the framework of 

partially ordered sets. Sensitivity analysis 

plays a crucial role in assessing the stability 

and robustness of mathematical models, 

enabling us to evaluate the impact of 

parameter variations on the system's overall 

behaviour. By incorporating partially ordered 

sets into the sensitivity analysis, we aim to 
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unveil the interplay between order structures 

and the sensitivity of nonlinear matrix 

equations. 

To achieve this goal, we adopt a 

comprehensive approach that combines 

theoretical analysis, numerical simulations, 

and illustrative examples. Through rigorous 

investigation, we seek to uncover new 

insights into the behaviour and properties of 

nonlinear matrix equations, shedding light on 

the role of partially ordered sets in their 

fixed-point schemes. 

Furthermore, previous studies have 

examined perturbation estimates of matrix 

equations similar to equation (1). For 

example, Hasanov and Ivanov 2004 

conducted research on the solution and 

perturbation estimates for the matrix equation 

𝑋 ± 𝐴∗𝑋−𝑛𝐴 = 𝑄 , as studied by Hasanov 

2010. Additionally, El-Shazly 2016 

investigated the perturbation estimates of the 

maximal solution of the matrix equation  𝑋 +

𝐴𝑇√𝑋−1𝐴 = 𝑃.  

To the best of our knowledge, equation (1) 

for the case 𝛼 𝜖 (0,1)  and positive definite 

matrix 𝐴 has not been done using the concept 

of fixed points in partially ordered sets.  

The following notations will be used 

throughout this paper: 𝑀𝑛 stands for a set of 

positive definite matrices; 𝑁 > 0 means 𝑁 is 

a positive definite matrix; 𝑁 ≥ 0 means 𝑁 is 

a positive semi-definite matrix. If 𝑁, 𝑀 ∈ 𝑀𝑛 

such that 𝑁 ≤ 𝑀,  then  [ 𝑁, 𝑀]  represents a 

set of all matrices  𝑅 ∈ 𝑀𝑛  such that 𝑁 ≤
𝑅 ≤ 𝑀; 𝐴𝑇  is the transpose of matrix 𝐴; 𝐴∗ 

stands for transpose if 𝐴  is real and complex   

conjugate transpose of 𝐴   in the complex 

case; 𝜌(𝐴) stands for spectral radius o matrix 

𝐴; ‖∎‖  is spectral norm, where ‖𝐴‖2 =
𝜆max(𝐴∗𝐴 ) and 𝜆max(𝐴∗𝐴 ) stands for 

maximum eigenvalue of  𝐴∗𝐴. 
The remainder of this paper is organized as 

follows: The next section, titled 

Preliminaries, provides a brief overview of 

the foundational concepts and theoretical 

background related to nonlinear matrix 

equations, partially ordered sets, and fixed-

point schemes. Following the preliminaries, 

we present our methodology for 

incorporating partially ordered sets into the 

sensitivity analysis of the considered family 

of equations. This is followed by a section 

presenting the results of our numerical 

simulations and discussing the insights 

gained from the analysis. The final section 

concludes the paper by summarizing our 

findings. 

 

Preliminaries 

In this section, we provide some lemmas that we will be applied in the next sections. 

Lemma 1: (Bhatia 1997) If 0 < 𝜃 ≤ 1, and 𝑃 and  𝑄  are positive definite matrices of the same 

order with 𝑃, 𝑄 ≥ 𝑏𝐼 > 0,  then 

‖𝑃𝜃 − 𝑄𝜃‖ ≤ 𝜃𝑏𝜃−1‖𝑃 − 𝑄‖,  

 and 

 ‖𝑃−𝜃 − 𝑄−𝜃‖ ≤ 𝜃𝑏−(𝜃+1)‖𝑃 − 𝑄‖.  

Lemma 2: (Horn and Johnson 2012) If 𝐴 ≥ 𝐵 > 0 (𝐴 > 𝐵 > 0), then 𝐴𝛼 ≥ 𝐵𝛼 > 0 (or 𝐴𝛼 >
𝐵𝛼) for all 𝛼 ∈ (0,1], and 𝐵𝛼 ≥ 𝐴𝛼 > 0 (or 𝐵𝛼 > 𝐴𝛼) for all 𝛼 ∈ [−1, 0). 
Lemma 3:  Let 𝑆 be a partially ordered set such that every pair 𝑥, 𝑦 ∈ 𝑆 has a lower bound and 

an upper bound. Furthermore, let 𝑑  be a metric on 𝑆 such that (𝑆, 𝑑) is a complete metric 

space. If F is a continuous monotone (that is either order preserving or order reserving) map 

from 𝑆 into  𝑆   such that there exists 

(1) 𝑐 ∈ (0,1):  𝑑(𝐹(𝑥), 𝐹(𝑦)) ≤ 𝑐𝑑(𝑥, 𝑦) 𝑥 ≥ 𝑦, and 

(2)  𝑥0 ∈ 𝑆 ∶  𝑥0 ≤ 𝐹(𝑥0)  or 𝑥0 ≥ 𝐹(𝑥0),  then 𝐹  has a unique fixed point 𝑥∗   in 𝑆 . 

Moreover, for every 𝑥 𝜖 𝑆, 

   
𝑙𝑖𝑚

𝑛→∞
𝐹𝑛 = 𝑥∗. 

Proof: The proof is the same as in Ran and Reurings 2004. So, it is omitted here. 
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Methodology 

In this section, we will employ Lemma 3, 

along with the concept of partially ordered 

sets, to demonstrate the existence of a fixed 

point that serves as a solution to equation (1). 

By employing these techniques, we are able 

to establish a rigorous framework for finding 

a solution to equation (1), thereby enhancing 

our understanding of its properties and 

implications. From equation (1), we have  

𝐹(𝑋) = 𝑋 − 𝐴∗𝑋𝛼𝐴 − 𝑃. (2) 

Then, from (2), we define a map ℱ(𝑋) =
𝑃 + 𝐴∗𝑋𝛼A. 

We make the assumption that both ℱ and  𝑋𝛼  

are well-defined in 𝑀𝑛   and exhibit order-

preserving properties. Since 𝑃  is a positive 

definite matrix, it follows that ℱ(𝑋) ≥ 𝑃 for 

all 𝑋(𝑘) ∈ 𝑀𝑛 , 𝑘 =0, 1, 2, ⋯ . Notably, the 

matrix sequence {ℱ𝑘(𝑃)} ∞
𝑘=0

  is observed to 

be increasing, as ℱ(𝑃) ≥ 𝑃. 

Thus, we ascertain that condition 2 of 

Lemma 3 is satisfied. However, to guarantee 

the existence of a unique fixed point, we must 

establish an additional condition on ℱ , 

specifically pertaining to condition 1 of 

Lemma 3. This condition will play a crucial 

role in our analysis, enabling us to determine 

the presence of a solitary fixed point that 

fulfils the desired criteria. 

Theorem 1:  Suppose there exists an initial 

guess 𝑋(0) such that ℱ(𝑋(0)) ≤ 𝑋(0).Then, 

  ℱ  maps the set 𝑆 = [𝑃, 𝑋(0)] into itself, the 

limit 𝑋− = 𝑙𝑖𝑚𝑘→∞ ℱ𝑘(𝑃) exists and it is the 

minimal solution of equation (1). Moreover, 

the sequence  {ℱ𝑘(𝑋(0))} ∞
𝑘=0

  decreases to a 

solution  𝑋+ which is the maximal solution in 

𝑆. 

Proof: From the assumption that 

ℱ(𝑋(0)) ≤ 𝑋(0) , we have inequality 𝑃 ≤
ℱ(𝑋(0) ≤ 𝑋(0) . A recursive application of 

the map ℱ, the matrix sequence {ℱ𝑘(𝑃)} ∞
𝑘=0

 

increases and it is bounded above by 

ℱ𝑚(𝑋(0)) for any 𝑚. Moreover, the matrix 

sequence {ℱ𝑘(𝑋(0))} ∞
𝑘=0

    is decreasing and 

bounded below by 𝑃 . Therefore, both 

sequences converge. 

Now, let    𝑋sol.  be the solution of equation 

(1). Then, 𝑃 ≤  𝑋sol. = ℱ(𝑋sol.),  and a 

recursive application of  ℱ  yield 𝑋− ≤ 𝑋sol . 

If  𝑋 ∈ 𝑆, that is if 𝑋sol. ≤ 𝑋(0), we see also 

that a recursive application of the map ℱ , 

yield 𝑋sol. ≤ 𝑋+. 

The Fixed Point Algorithm 

The following steps are employed in this algorithm: 

(1) Choose 𝑋0 ≥ 𝑃; 

(2) 𝑋(𝑘 + 1) =  ℱ(𝑋(𝑘))   ∀𝑘 = 0, 1, 2, ⋯; 

(3) Check if ‖𝐹(𝑋𝑘)‖F ≤ 𝑛. eps, then stop, otherwise go step 2; 

(4) Display the solution 𝑋. 

Theorem 2: Unique Fixed Point Existence in Partially Ordered Sets 

Let  𝑃 ∈ 𝑆 ⊂ 𝑀𝑛, where 𝑆 represents a subset of  𝑀𝑛. Suppose there exists a positive number 

 𝜔 = 𝑎𝑏𝑎−1‖𝐴‖2 satisfying    0 < 𝜔 < 1, such that 𝑋 ≤ 𝑌 for any  𝑋, 𝑌 ∈ 𝑆. 

Under these conditions, we assert that equation (1) possesses a solitary fixed point within the 

set S, and that this fixed point is unique in  𝑀𝑛. 

This theorem establishes a significant result 

regarding the existence and uniqueness of a 

fixed point in a given partially ordered set. 

The condition involving 𝜔 provides a crucial 

constraint that guarantees the presence of a 

single solution to equation (1). Moreover, the 

ordered relationship between elements in the 

set 𝑆  further strengthens the theorem's 

assertion by ensuring the uniqueness of this 

fixed point across the entire matrix space 𝑀𝑛. 

Here follows the proof. 

Proof: Let   𝑋, 𝑌 ∈ 𝑆, ℱ(𝑋) = 𝑃 + 𝐴∗𝑋𝛼𝐴  and  ℱ(𝑌) = 𝑃 + 𝐴∗𝑌𝛼𝐴. Then, 
‖ℱ(𝑌) − ℱ(𝑋)‖ = ‖𝐴∗𝑌𝛼𝐴 − 𝐴∗𝑌𝛼𝐴‖ 

                                                                         = ‖𝐴∗𝑌𝛼𝐴 − 𝐴∗𝑌𝛼𝐴‖ 

                                                                        ≤ ‖𝐴2‖‖𝑌𝛼 − 𝑋𝛼‖ 

                                                                    ≤ 𝑎𝑏𝛼−1‖𝐴2‖‖𝑌 − 𝑋‖. 
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Therefore, condition 1 of Lemma 3 is 

satisfied and  ℱ has a fixed point in 𝑆. 
Given that 𝛼𝑏𝛼−1‖𝐴‖2 = 𝜔 ∈ (0,1) 

belongs to the interval (0, 1), we can 

conclude that condition 1 of Lemma 3 is 

indeed satisfied. As a result, we can assert 

that the function ℱ has a fixed point within 

the subset 𝑆 = [𝑃, 𝑋(0)] ⊂ 𝑀𝑛. 
This statement highlights the significance 

of 𝜔  falling within the range (0,1)  as it 

establishes the fulfilment of condition 1 of 

Lemma 3, which is crucial for guaranteeing 

the existence of a fixed point. By defining the 

subset 𝑆  as [𝑃, 𝑋(0)],  we effectively narrow 

down the search space for the fixed point 

within the matrix space  𝑀𝑛 . Consequently, 

we can confidently conclude that ℱ possesses 

a unique fixed point within this specified 

subset. 

Now, let's consider a sequence of matrices: 

𝑋(0) = 𝑃, 
𝑋(𝑘 + 1) = 𝑃 + 𝐴∗𝑋(𝑘)𝛼𝐴,  for all 𝑘 =
 0, 1, 2, ⋯. 

By iterating this sequence, we obtain a 

series of matrices where each term is 

obtained by applying a specific formula 

involving the previous term. This formulation 

allows us to explore the evolution of the 

matrix sequence and study its properties. 
‖𝑋(𝑘 + 1) − 𝑋sol.‖

= ‖𝑃 + 𝐴∗𝑋(𝑘)𝛼𝐴 − (𝑃
+ 𝐴∗𝑋sol.

𝛼𝐴)‖, 
= ‖𝐴∗𝑋(𝑘)𝛼𝐴 − 𝐴∗𝑋sol.

𝛼𝐴‖, 
≤ 𝛼𝑏𝛼−1‖𝐴2‖‖𝑋(𝑘) − 𝑋sol.‖. 

Thus, as 𝑘  approaches infinity, the matrix 

sequence 𝑋(𝑘 + 1)  converges linearly to a 

unique fixed point, denoted as 𝑋sol.  . This 

fixed point represents the solution of equation 

(1), signifying the equilibrium state of the 

iterative process. The convergence of the 

sequence implies that as the number of 

iterations increase, the values of 𝑋( k ) 

gradually approach and stabilize at 𝑋sol. , 

providing valuable insights into the behavior 

and properties of the system described by 

equation (1). 

Perturbation Estimates of the Solution for 

the Nonlinear Matrix Equation  𝑿 −
𝑨∗𝑿𝜶𝑨 = 𝑷 

In this section, our focus shifts towards 

examining perturbation estimates associated 

with the matrix equation (1). By analysing 

the effects of perturbations on the equation, 

we gain valuable insights into the stability 

and robustness of the maximal solution. 

Through this investigation, we aim to 

quantify the extent to which small variations 

or disturbances in the system parameters 

impact the solution. These perturbation 

estimates shed light on the sensitivity and 

reliability of the solution in practical 

scenarios, enabling a deeper understanding of 

the equation's behaviour and its implications. 

Lemma 4: Suppose 𝐴  is a non-singular 

matrix. Let  𝜆max(𝐴∗𝐴)  denote the largest 

eigenvalue of 𝐴∗𝐴 , 𝑋sol.  be the maximal 

positive definite solution of the matrix 

equation (1), and 𝑃  be a given matrix 

satisfying 𝜆max(𝐴∗𝐴)𝑋𝛼 < 𝑃 . Under these 

conditions, the following conclusions hold: 

(i) 𝑃 ≤ 𝑋sol. < 2𝑃 , that is the maximal 

solution 𝑋sol.  lies within the interval 

[𝑃, 2𝑃). In other words, 𝑋𝑠𝑜𝑙. is bounded 

above by 2𝑃 and is greater than or equal 

to  𝑃. 

(ii) 𝜌(𝐴) < √
‖𝑃‖

‖𝑋𝛼‖
, meaning that the 

spectral radius of  𝐴, denoted as 𝜌(𝐴), 

satisfies the inequality 𝜌(𝐴) < √
‖𝑃‖

‖𝑋𝛼‖
. 

Hence, the largest absolute value of any 

eigenvalue of 𝐴 is strictly less than the 

square root of the ratio between the 

norms of 𝑃 and  𝑋𝛼. 

By establishing these relationships, Lemma 

4 provides important insights into the 

properties and bounds of the maximal 

positive definite solution 𝑋sol.  in relation to 

the given matrix equation (1) and its 

parameters. 

Proof: From equation(1), we have 

𝑋(𝑘) = 𝑃 + 𝐴∗𝑋𝛼(𝑘)𝐴, 
𝑋sol. = 𝑃 + 𝐴∗𝑋sol.

𝛼 𝐴, 

𝑋sol. ≤ 𝑃 + 𝜆max(𝐴∗𝐴)𝑋sol.
𝛼

< 2𝑃. 
It is easy to see that 𝑃 ≤ 𝑋sol.. Also, from the 

assumption that 𝜆max(𝐴∗𝐴)𝑋𝛼 < 𝑃 , and the 

fact that 𝜌(𝐴) = 𝜆max(𝐴) , for Hermitian 

positive definite matrix 𝐴 ,we get  𝜌(𝐴) =

‖𝐴‖ < √
‖𝑃‖

‖𝑋𝛼‖
. 
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This concludes the proof.  

Theorem 2: Suppose that ‖𝐴‖ < √
‖𝑃‖

‖𝑋𝛼‖
,  

‖𝑃‖

‖𝑋sol.‖
≤ 1,  and 𝑋sol.   is the maximal solution of 

equation (1) . Then,  
‖∆𝑋sol.‖

‖𝑋sol.‖
≤

1

𝛽
(

‖∆𝑃‖

‖𝑃‖
+

2‖Δ𝐴‖

‖𝐴‖
). 

Proof:  Let  Δ𝐴 = �̃� − 𝐴,    ∆𝑋sol. = 𝑋sol.
̃ − 𝑋sol. , and ∆𝑃 = �̃� − 𝑃.  

Then, 

                 △ 𝑃 = �̃� − 𝑃 

 =𝑋sol.
̃ − 𝐴∗̃𝑋sol.

̃ 𝛼
 �̃� − (𝑋sol. − 𝐴∗𝑋sol.

𝛼 𝐴) 

  =∆𝑋𝑠𝑜𝑙. − (𝐴 + ∆𝐴)∗𝑋sol.
̃ 𝛼

(𝐴 + ∆𝐴) + 𝐴∗𝑋sol.
𝛼 𝐴 

=∆𝑋sol. − 𝐴∗𝑋sol.
̃ 𝛼

𝐴 − 𝐴∗𝑋sol.
̃ 𝛼

∆𝐴 − ∆𝐴∗𝑋sol.
̃ 𝛼

𝐴 − ∆𝐴∗𝑋sol.
̃ 𝛼

∆𝐴 + 𝐴∗𝑋sol.
𝛼 𝐴 

=∆𝑋sol. − 𝐴∗(𝑋sol.
̃ 𝛼

− 𝑋sol.
𝛼 )𝐴 − 𝐴∗𝑋sol.

̃ 𝛼
∆𝐴 −△ 𝐴∗𝑋sol.

̃ 𝛼
 𝐴.                       (3)  

Because both ∆𝐴∗ → 0 and ∆𝐴 → 0 in equation (3), the term ∆𝐴∗𝑋sol.
̃ 𝛼

∆𝐴  is neglected. 

Now, for convenience, let 𝑁 = 𝐴∗(𝑋sol.
̃ 𝛼

− 𝑋sol.
𝛼 )𝐴  and  𝐻 = 𝐴∗𝑋sol.

̃ 𝛼
∆𝐴 −△ 𝐴∗𝑋sol.

̃ 𝛼
𝐴 , we 

have, 

                                        ‖△ 𝑃 + 𝑁 + 𝐻‖ = ‖∆𝑋sol.‖.                                                 (4) 

Now, from equation (4), we have 

‖∆𝑃‖ ≥ ‖∆𝑋sol.‖ − ‖𝐴‖2𝛼𝑏𝛼−1‖∆𝑋sol.‖ − 2‖𝐴‖‖∆𝐴‖‖𝑋sol.
̃ 𝛼

‖,    

          =‖∆𝑋𝑠ol.‖(1 − ‖𝐴‖2𝛼𝑏𝛼−1) − 2‖𝐴‖‖∆𝐴‖‖𝑋sol.
̃ 𝛼

‖.      

‖∆𝑋𝑠ol.‖ ≤
1

(1−‖𝐴‖2𝛼𝑏𝛼−1)
(‖∆𝑃‖ + 2‖𝐴‖‖∆𝐴‖‖𝑋sol.

̃ 𝛼
‖.  

‖∆𝑋sol.‖

‖𝑋sol.‖
≤ 1

1−‖𝐴‖2𝛼𝑏𝛼−1 (
‖∆𝑃‖

‖𝑃‖
 

‖𝑃‖

‖𝑋sol.‖
+

2‖∆𝐴‖‖𝑋sol.̃ 𝛼
‖ 

‖𝐴‖
 

‖𝐴‖2

‖𝑋sol.‖
).  

Recall that 𝜌(𝐴) = ‖𝐴‖ < √
‖𝑃‖

‖𝑋𝛼‖
   and 

‖𝑃‖

‖𝑋sol.‖
≤ 1. So, we have 

                   ‖𝐴‖2 < 
‖𝑃‖

‖𝑋sol.̃ 𝛼
‖

. 

Then,                        
‖∆𝑋sol.‖

‖𝑋sol.‖
≤

1

𝛽
(

‖∆𝑃‖

‖𝑃‖
+

2‖∆𝐴‖

‖𝐴‖
),  

where  𝛽 = 1 − ‖𝐴‖2𝛼𝑏𝛼−1 > 0. 
This completes the proof. 

 

Numerical Experiments 

In this section, we present two illustrative 

examples to assess the properties and 

performance of our proposed methodology. 

The experiments conducted aim to shed light 

on the convergence behaviour of the matrix 

sequence and evaluate the perturbation 

estimates derived from our theoretical 

analysis. The numerical experiments were 

carried out using MATLAB R2015a, 

employing a stopping condition defined as tol 

= 𝑛 × eps, where 𝑛 represents the size of the 

matrix 𝐴, and eps = 2.2204× 10−16  denotes 

the machine epsilon. 

In Example 1, we explore the convergence 

of the matrix sequence for two different 

initial solutions. By comparing these cases, 

we gain insights into the influence of initial 

conditions on the convergence behaviour. 

The analysis provides valuable observations 

regarding the stability and robustness of the 

iterative process. In Example 2, we focus on 

assessing the perturbation estimates derived 

from our theoretical derivations. By 

introducing controlled perturbations in the 

system, we evaluate the accuracy and 

reliability of the obtained estimates. This 

evaluation enables a deeper understanding of 

the sensitivity and practical applicability of 

the theoretical results. 

Through these numerical experiments, we 

aim to validate the theoretical findings, assess 

the algorithm's performance, and provide 

practical insights into the behaviour and 

properties of the matrix equation. 

Example 1 
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Case I: To illustrate the convergence of our 

fixed-point algorithm, we consider a 

symmetric matrix 𝐴 and specific parameter 

values. Here are the details of the case:  

Matrix  A=[
0.1500 0.1750 0.1550
0.1750 0.2500 0.1750
0.1550 0.1750 0.4000

] ,

matrix  𝑃 =

[
1 0 0
0 1 0
0 0 1

] , exponent  𝛼 = 1
2⁄  and 

initial solution matrix 𝑋 (0)  = 𝑃.  

In this case, our fixed-point algorithm 

requires 20 iterations for the matrix sequence 

to converge to a unique fixed point 𝑋sol. , 

denoted as 𝑋(20).  The algorithm aims to 

minimize the error between successive 

iterations, ultimately reaching a stable 

solution. 

By considering this specific case, we can 

observe the behaviour of the algorithm and 

evaluate the convergence properties. The 

resulting fixed point 𝑋sol. represents the final 

solution of the iterative process, indicating 

the equilibrium state of the system under 

consideration with the error 

‖𝑋(20) − 𝐴∗𝑋(20)1 2⁄ 𝐴 − 𝑃‖ =

7.97𝑥10−17. 

Table 1: Convergence of Fixed Point Algorithm for 𝑿(𝟎) = 𝑷 

𝑋𝑖𝑗 𝑋11 𝑋12 𝑋13 𝑋21 𝑋22 𝑋23 𝑋31 𝑋32 𝑋33 

𝑋(1) 1.0772 0.0971 0.1159 0.0971 1.1238 0.1409 0.1159 0.1409 1.2147 

𝑋(2) 1.0904 0.1136 0.1377 0.1136 1.1442 0.1679 0.1377 0.1679 1.2511 

𝑋(3) 1.0925 0.1163 0.1412 0.1163 1.1476 0.1723 0.1412 0.1723 1.2570 

𝑋(4) 1.0929 0.1167 0.1418 0.1167 1.1481 0.1731 0.1418 0.1731 1.2580 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝑋(20) 1.0929 0.1168 0.1419 0.1168 1.1482 0.1732 0.1419 0.1732 1.2581 

 

Case II: Building upon Example 1, we investigate a scenario where the initial solution exceeds 

the value of  𝑃. The following parameters are considered: Initial solution 𝑋(0) = 2𝑃, A and 𝛼 

are as defined in Example 1. In this case, our Fixed Point Algorithm requires 19 iterations to 

converge to a unique solution  𝑋sol., denoted as 𝑋(19) with the residual  

 ‖𝑋(19) − 𝐴∗𝑋(19)1 2 ⁄ 𝐴 − 𝑃‖ = 5.49 × 10−16. 

The nature of convergence is shown in Table 2. 

Table 2: Convergence of Fixed Point Algorithm for 𝑿(𝟎) = 𝟐𝑷 

𝑋𝑖𝑗 𝑋11 𝑋12 𝑋13 𝑋21 𝑋22 𝑋23 𝑋31 𝑋32 𝑋33 

𝑋(1) 1.1091 0.1374 0.1639 0.1374 1.1750 0.1992 0.1639 0.1992 1.3036 

𝑋(2) 1.0953 0.1197 0.1458 0.1197 1.1519 0.1780 0.1458 0.1780 1.2646 

𝑋(3) 1.0933 0.1172 0.1425 0.1172 1.1488 0.1740 0.1425 0.1740 1.2592 

𝑋(4) 1.0930 0.1168 0.1420 0.1168 1.1483 0.1733 0.1420 0.1733 1.2583 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝑋(19) 1.0929 0.1168 0.1419 0.1168 1.1482 0.1732 0.1419 0.1732 1.2581 

 

Note that 𝑋𝑖𝑗 denotes the elements of matrix 𝑋(𝑘), and the indices i, j = 1:3 and k stand for an 

iteration number. 

Remarks: As we can see in Table 1, the matrix sequence 

𝑃 = 𝑋(0) ≤ 𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋sol. = 𝑋(20), 
is increasing and converges to the maximal solution  𝑋sol. . On the other hand, the matrix 

sequence in Table 2, 

2𝑃 = 𝑋(0) > 𝑋(1) ≥ 𝑋(2) ≥ ⋯ ≥ 𝑋sol. = 𝑋(19), 
decreases to the maximal solution of equation (1). 
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This means that 𝑃 ≤ 𝑋sol. = 𝑋(19) < 𝑋(0) = 2𝑃, as evident from the observations, all of our 

theoretical assumptions align with our expectations. 

 

Example 2 

Consider equations  𝑋 − 𝐴∗𝑋𝛼𝐴 = 𝑃 and �̃� − �̃�∗�̃�1 2⁄ �̃� = �̃� . Suppose that 

𝑃 =eye(3) = 𝑋(0), 𝛼 = 1 2,   𝐴⁄  is the same as in Example 1, where 

𝛽 = 1 − ‖𝐴‖2𝛼𝑏𝛼−1 = 0.7245, 𝑏 = 0.5, ∆𝑃 = �̃� − 𝑃 = 0.44 𝛾𝐼. 

using the proposed Fixed Point Algorithm, we obtain 𝑋sol. = [
1.0929 0.1168 0.1419
0.1168 1.1482 0.1732
0.1419 0.1732 1.2581

], 

∆𝑋sol. = 10−07 × [
0.1792 0.1969 0.1996
0.1969 0.2366 0.2196
0.1996 0.2196 0.3298

] and  

‖𝐴‖ = 0.6245 < √
‖𝑃‖

‖𝑋𝛼‖
 = 0.9076. All assumptions are satisfied. Now, let 

𝐶1 =
‖∆𝑋sol.‖

‖𝑋sol.‖
     and    𝐶2 =

1

𝛽
(

‖∆𝑃‖

‖𝑃‖
+

2‖∆𝐴‖

‖𝐴‖
). 

Table 3: Computed values of  𝑪𝟏, 𝑪𝟐,  ‖∆𝑷‖  and   ‖∆𝑨‖ for different    𝜸   values 

𝛾 𝐶1 𝐶2 ‖∆𝑃‖ ‖∆𝐴‖ 

2.0000 × 10−8 4.5307 × 10−8 1.0059 × 10−7 8.8000 × 10−9 2.0000 × 10−8 

4.0000 × 10−8 9.0614 × 10−8 2.0118 × 10−7 1.7600 × 10−8 4.0000 × 10−8 

6.0000 × 10−8 1.3592 × 10−7 3.0177 × 10−7 2.6400 × 10−8 6.0000 × 10−8 

8.0000 × 10−8 1.8123 × 10−7 4.0237 × 10−7 3.5200 × 10−8 8.0000 × 10−8 

1.0000 × 10−7 2.2653 × 10−7 5.0296 × 10−7 4.4000 × 10−8 1.0000 × 10−7 

 

The data in Table 3 consistently reveals that 𝐶1 is always less than or equal to 𝐶2  for all 

values of  γ. Consequently, 𝐶2 serves as the upper bound for 𝐶1. 

 

Conclusion 

This paper applied the concept of fixed 

points in partially ordered sets to solve 

equation (1). Perturbation estimates of the 

solution were also derived and 

experimentally verified. The results strongly 

validate our theoretical assertions and 

confirm the effectiveness of the proposed 

iterative method. The findings not only offer 

a robust solution to the equation but also 

demonstrate the practical applicability and 

efficiency of the approach. Consequently, this 

research significantly enhances our 

understanding of partially ordered sets in the 

context of solving nonlinear matrix equations 

and establishes a reliable framework for 

addressing similar challenges in various 

scientific and engineering fields. 
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