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Abstract 

Electrical Capacitance Tomography (ECT) is a non-invasive, non-intrusive, radiation-free, 

robust, and cost-efficient measurement system that generates cross-sectional images of 

industrial operations by measuring differences in dielectric properties within a container. 

Despite its advantages, the poor quality of reconstructed images limits its applicability. 

Researchers have explored both non-iterative and iterative methods to address this issue, yet 

the resulting image quality remains insufficient for high-stakes applications where accurate 

decision-making is critical. This study proposes a novel algorithm that integrates the ECT 

model with a diffusion-steered image denoising functional, enhancing the quality of ECT 

reconstructed images beyond existing methods. Empirical comparisons show that the proposed 

algorithm outperforms state-of-the-art techniques such as Linear Back Projection and Projected 

Landweber, with Distribution Error (DE) and Correlation Coefficient (CC) improvements of 

62% and 19%, respectively. Qualitative assessments further indicate the superior performance 

of the proposed algorithm in reconstructing high-quality images. 

Keywords: Electrical Capacitance Tomography; Inverse Problem; Image Reconstruction; 

Diffusion-Steered; Perona-Malik. 

 

Introduction 

Tomography is a non-invasive imaging 

technique that generates a cross-sectional 

image of an object under observation. It is 

widely used in industrial process monitoring 

and medical imaging applications (Murphy et 

al. 2022). It is can be categorized into two 

groups, namely hard-field and soft-field 

tomography. In hard field tomography, the 

direction of travel of energy waves from the 

power source is constant, regardless of the 

type of material or medium. Examples of 

hard field tomography are X-ray, magnetic 

resonance imaging, and positron emission 

(Kure et al. 2021). In soft field tomography, 

the direction of energy waves is determined 

through the physical properties of the 

material being imaged (Sack 2022). 

Examples of soft field tomography are 

electrical resistance, electrical capacitance, 

and electrical impedance (Chowdhury et al. 

2022). The choice of using a specific 

tomography technique in industrial 

applications depends on the nature of the 

process being monitored, the desired 

information from the process, the size of the 

vessel/pipe, and the environment surrounding 

the process operation (Khan et al. 2022). 

Because of the complex nature of industrial 

processes, measurement and control 

techniques are essential to improve product 

quality, simplify processes, and increase 

efficiency. In the past four decades, 

tomography measurement systems have 

played a better role in estimating the process 

state for better process control (Withers et al. 

2021). The implementation of industrial 

tomography systems can be achieved through 
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various techniques. However, many 

techniques are based on measuring electrical 

properties through the use of capacitive, 

conductive, and inductive materials under 

investigation (Zhu et al. 2020). Variation in 

the electrical properties of different flow 

components provides process measurement 

and imaging capabilities using electrical 

tomography systems (Nombo et al. 2021) The 

increased interest in electrical tomography 

techniques for process applications has been 

motivated by their low construction cost, high 

speed, safety, and suitability for various sizes 

of vessels (Rodgers et al. 2021). However, 

the relatively low resolution of reconstructed 

images, nonlinearity, and ill posedness of 

system equations pose a major challenge 

when dealing with electrical tomography 

systems (Brazey et al. 2022).  

Among the members of the electrical 

tomography family, Electrical Capacitance 

Tomography is the most popular in industrial 

applications. It is a non-invasive and non-

destructive imaging technique used in 

industrial process monitoring and evaluation. 

ECT technology is highly effective in 

viewing the cross-sectional material 

distribution of industrial processes under 

observation. Compared to other computed 

tomography techniques, ECT is safer and 

presents several advantages, such as 

portability, non-invasiveness, rapid data 

acquisition, and cost-effectiveness in image 

reconstruction (Jing et al. 2022). 

Many reconstruction methods have been 

developed to address the above-mentioned 

problems. The two most popular categories of 

algorithms are Iterative methods and non-

iterative methods or back projection 

techniques (BP) (Tao et al. 2023). The BP 

approach produces images of the lowest 

quality at a minimum computational cost 

compared to iterative methods (Hussain et al. 

2023), which produce images of remarkable 

quality but the computational cost is very 

high, which makes both methods not suitable 

for real-time monitoring of industrial 

processes. Within these two categories, 

numerous methods have been proposed by 

researcher in the last four decades to address 

the above-mentioned challenges. These 

methods include Linear back projection, 

Singular value decomposition, Tikhonov 

regularization, Landweber iterations, 

simulated annealing, compressed sensing 

principle, population entropy, adaptive 

differential evolution, least-squares methods, 

support vector machines, self-adaptive 

particle swarm optimization, fuzzy 

mathematical modelling, generic algorithms, 

artificial neural networks, generalized vector 

sampled pattern matching, total variation 

regularization, and regularized total least 

squares (Zhang et al. 2021).  

Among these methods Linear back 

projection was the first method to be applied 

in ECT, it has a high reconstruction speed but 

introduces large errors in the generated image 

(Li et al. 2023). The standard Tikhonov 

regularization is excellent in solving the ill-

posed problem, but generate a smooth 

approximation solution which leads to the 

loss of detailed information and results in a 

low image spatial resolution (He and Hu 

2023). Landweber iteration has good image 

reconstruction quality. However, it has the 

semi convergence characteristics and is hence 

not suitable for online imaging environments 

(Liu and Wang 2022). Optimization methods 

based on artificial neural networks and 

genetic algorithms have also been 

investigated, in these methods the ECT 

inverse solution is computed by optimizing a 

set of objective functions to get an estimated 

solution. The implementation of these 

methods needs a large set of training data and 

sometimes they prematurely converge to the 

solution (Fu et al. 2022). 

This work proposes a new image 

reconstruction method which integrates a 

diffusion-steered functional that uses the 

modified Perona-Malik model (Ally et al. 

2021) within the sensitivity matrix of the 

ECT model to address the nonlinearity and 

ill-posedness challenges. The modified 

Perona-Malik functional acts as a regularizer 

and also, provide an anisotropic diffusion 

mechanism. Empirical comparisons show that 

the proposed algorithm outperforms state-of-

the-art techniques such as Linear Back 

Projection and Projected Landweber, with 

Distribution Error (DE) and Correlation 
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Coefficient (CC) improvements of 62% and 

19%, respectively. Qualitative assessments 

further indicate the superior performance of 

the proposed algorithm in reconstructing 

high-quality images. 

 

The ECT system 

Electrical Capacitance Tomography 

(ECT) is a technique that is used to determine 

the distribution of the constituents of a 

container or closed pipeline by tracking the 

differences in the dielectric properties of the 

material inside the container. This technique 

is considered to be harmless because it is 

non-invasive, easily movable, has fast data 

collection and has low implementation cost 

as compared to other technologies like X-rays 

(Qureshi et al. 2021). The ECT system 

consists of main three components: a multi-

electrode sensor, the sensing electronics 

circuit for data acquisition and a computer 

system for image reconstruction, data storage, 

interpretation and display (Figure 1). 

 

 

 
Figure 1: A block diagram of ECT measurement system  

 

The ECT sensor consists of several 

electrodes, which are mounted around the 

process being monitored. A sensor with 

𝑛 electrodes contains 𝑛(𝑛 − 1)/2 possible 

combinations of electrode pairs and, 

therefore, 𝑛(𝑛 − 1)/2 independent 

measurements of capacitance (Korek et al. 

2024). The sensor electronics provide an 

electronic interface between the ECT sensor 

head and the image reconstruction unit, thus 

enabling the ECT sensor to interrogate the 

target process. The image reconstruction unit 

is a computer that controls the system and 

implements the associated methods. 

 

ECT image reconstruction techniques 

There are three fundamental 

computational methods for image 

reconstruction. This includes analytic 

methods which are considered to be fast, 

based on exact mathematical answers to the 

equation in the image (Kaur et al. 2021). 

However, there is no clear equation that 

connects the measured capacitances to the 

permittivity distribution of different 

components this implies that analytical 

approaches cannot be used to perform image 

reconstruction in ECT (Fabijańska and 

Banasiak 2021). Direct numerical are other 

methods that use one-step computation, 

image creation takes a short time but there is 

an issue with accuracy.  

Regularly, these methods are combined with 

other iterative methods for better image 

reconstruction. Sometimes, they are used as 

the initial version of other methods. The 

iterative methods utilize multiple stages of 

iteration to address the issue of better-quality 

images for ECT. It involves solving the 

forward and inverse problems. The main 

function or task of the ECT forward problem 

is to utilize a specific mathematical model to 

determine the boundary conditions (Hampel 

et al. 2022) which are applicable in light of 

the permittivity of the medium that is 

measured either a container/pipeline or the 
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parameter of the ECT equipment. The value 

of capacitance between the electrode pairs in 

the ECT system is finally attained by 

calculating a sensitivity map matrix. Among 

the steps of solving the forward problem is to 

recalculate new capacitance values based on 

the permittivity values of the present image 

vector. Besides, recalculating the sensitivity 

matrix is a compulsory step in each iteration 

of the nonlinear technique (Deabes and Amin 

2020). 

The inverse problem involves the 

computation of the sensitivity distribution or 

grey-level values from the calculated 

capacitance values (Yang et al. 2023). When 

this inverse problem is solved, it implies that 

the reconstruction process is performed and is 

called image reconstruction. 

There are two fundamental computational 

challenges for the ECT image reconstruction, 

namely the forward problem and the inverse 

problem. With a predefined permittivity 

distribution, the potential distribution is 

calculated by the forward problem so that 

capacitance measurements can be obtained. 

The available measured capacitance values 

obtained can then be used to compute 

permittivity, and this is achieved by solving 

the inverse problem. Therefore, the process is 

named image reconstruction because the final 

result of the inverse problem is an image in 

grey-level format. Equation (1) shows a 

relationship between capacitance and 

permittivity distribution. 

𝐶 =  −
1

𝑉
∬

𝜏

 
𝜀(𝑥, 𝑦)𝛻∅(𝑥, 𝑦)𝑑𝜏, (1) 

Where τ is the electrode surface, 𝜀(𝑥, 𝑦) 

and 𝜙(𝑥, 𝑦) are respectively, permittivity and 

potential distribution, and 𝑉 is the potential 

difference between electrode pair forming 

capacitance.  

 

ECT Diffusion-Steered Method 

The Perona-Malik (PM) algorithm 

(equation (2)) was thoroughly investigated 

prior to designing the diffusion-steered 

functional. The PM algorithm aims to remove 

noise from an image while preserving 

significant edges, which are crucial for image 

interpretation. This method uses image 

content to control the diffusion process, 

preventing diffusion at edges and thereby 

preserving them. The PM diffusion 

coefficient, which is high in areas without 

edges and low at edges, serves as the 

foundation for the diffusion-steered 

functional. 

𝜕𝑢

𝜕𝑡
=   𝑑𝑖𝑣 (

1

1+(
|𝛻𝑢|

𝐾
)

2  𝛻𝑢) − 𝜆(𝑢 − 𝑓)

 (2) 

Where K is the tuning constant which is 

sensitive to edges, u is the most recent 

cleaned image intensity after n iteration while 

f is an image intensity in an (n-1) iteration,  𝜆 

is a fidelity parameter that controls a tradeoff 

between u and f, t is the time (iteration step), 

𝛻𝑢  is an image gradient Designing of The 

Diffusion-Steered Functional was done by 

considering the exponential combinations of 

m and n in equation (3) which provides a 

high-quality image with preserved edge 

content.  

 

𝜕𝑢

𝜕𝑥
  = 𝑑𝑖𝑣 (

1

1+ (
(|𝛻𝑢|)𝑚

(𝑢∈)𝑛 )
 𝛻𝑢) - 𝜆 (

𝑢−𝑓

𝑢∈

1
∝

)

 (3) 

Where 𝜆 defines the regularization parameter. 

Through a series of tests conducted on 

reconstructed textured and natural images, it 

was discovered that 𝑚 =  6 and 𝑛 =  3 yield 

better outcomes. Various combinations of m 

and n values were tested, ranging from low to 

high, followed by visual assessments. The 

combination of (6, 3) was chosen because it 

consistently produced higher quality indices 

across the different evaluated images. 

Equation (4) was derived by inserting 

(𝑚, 𝑛)  =  (6, 3) into theoretical equation (3). 

𝜕𝑢

𝜕𝑥
  = 𝑑𝑖𝑣 (

1

1+ (
(|𝛻𝑢|)6

(𝑢∈)3 )
 𝛻𝑢) - 𝜆 (

𝑢−𝑓

𝑢∈

1
∝

)

 (4) 

which can also be rewritten as 

𝜕𝑢

𝜕𝑥
 = 𝑑𝑖𝑣 (

1

1+ (
|𝛻𝑢|2

𝑢∈
)

3  𝛻𝑢) - 𝜆 (
𝑢−𝑓

𝑢∈

1
∝

).

 (5) 

Equation (5) provides the suggested 

model's desired performance—higher PSNR, 

MSSIM, and aesthetically pleasing images. 

The evolving image in this equation, 

represented by (𝑢), approaches the initial 
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(clean) image as time (t) gets closer to 

infinity. Deriving 𝜆 from equation (6), we can 

deduce the regularization parameter as 

follows; 

 

𝜆= 
1

|Ω|𝑣2 ∫  
 

Ω
(1 −

𝑓

𝑢
) 

[𝑑𝑖𝑣 (
1

1+ (
|𝛻𝑢|2

𝑢∈
)

3  𝛻𝑢)] (6) 

The developed diffusion functional based 

on the Perona-Malik (PM) diffusion 

coefficient, a diffusion-steered functional, 

was incorporated into the ECT reconstruction 

model as presented in the following steps. 

Firstly, the ECT algorithm was modified 

with a series of experiments to come up with 

a new regularization parameter that enhanced 

the spatial resolution of the reconstructed 

ECT images. The least-square form of the 

ECT model given in Equation (7); was used 

to come up with an equation for G. In this 

equation C is the normalized capacitance 

vector, S is the sensitivity matrix of 

normalized capacitance concerning 

permittivity distribution, and G is the grey-

level vector. 

𝐺 = (𝑆𝑇𝑆)−1𝑆𝑇𝐶 (7) 

From equation (7), G can be calculated as; 

𝐺 = (𝑆𝑇𝑆)−1𝑆𝑇𝐶 (8) 

From the equation (8), 𝑆𝑇𝑆 is a non-invertible 

matrix, and when a regularization parameter 

is introduced, it becomes; 

𝐺 = (𝑆𝑇𝑆 + 𝜇𝐼)−1𝑆𝑇𝐶 (9) 

where I is the identity matrix and µ is the 

regularization parameter. The value of the 

regularization parameter greatly affects how 

well the reconstructed images turn out. A 

moderate value of the regularization 

parameter yields a good estimate of the 

permittivity distribution, still, the solution is 

significantly impacted by the capacitance 

measurement’s inaccuracy. Furthermore, the 

capacitance error increases but the 

approximation error decreases with a high 

value of the regularization parameter. By 

combining the modified PM equation (6) and 

the ECT equation (9), we developed a new 

model, resulting in equation (10). 

 

𝐺 = (𝑆𝑇𝑆 + (
1

|Ω|𝑣2  ∫  
 

Ω
(1 −

𝑓

𝑢
) [𝑑𝑖𝑣 (

1

1+ (
|𝛻𝑢|2

𝑢∈
)

3  𝛻𝑢)]) 𝐼)

−1

𝑆𝑇𝐶 (10) 

 

The benefit of the proposed model lies in 

its ability to generate high-quality images, 

which offer several advantages. These images 

will enable accurate monitoring, providing 

operators with precise data for effective 

control and monitoring of industrial 

processes. High quality images also, will 

facilitate efficient parameter optimization 

during industrial process operations. 

Additionally, the ability to detect 

abnormalities early will allow timely 

interventions to prevent hazards or accidents 

and minimize equipment downtime. This 

improvement in operational efficiency will 

reduce the need for extensive maintenance, 

hence enhancing overall reliability. 

Moreover, from a research perspective, the 

reconstructed images will support advanced 

activities in industrial process control and 

monitoring. 

 

Experimental Setup and Evaluation Criteria 

To validate the efficacy of the ECT 

diffusion steered-based algorithm 

experiments were carried out using an 8-

electrode circular sensor ECT system 

(excitation waveform: 10Vpp, 300-500kHz), 

with a sensing domain divided into 900 pixels 

with 32 ×32 grid. Static experiments were 

conducted using annular and stratified 

perspex beads positioned at different 

locations in the sensing domain. Simulated 

capacitance data were used to analyze the 

performance of the proposed method over the 

full component fraction range. All 

reconstruction methods were implemented 

using MATLAB on a computer with Intel 

Core i7-4510U CPU, @ 2 GHz, 2GHz, and 

8.00GB memory. These methods include 

Landweber iteration (LAND), projected 

Landweber iteration (PLAND) and Linear 

back projection (LBP). 

Both qualitative and quantitative 

evaluations of denoised images were 
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performed using both existing and proposed 

algorithms. Visual evaluation was used to 

assess qualitatively how well the algorithms 

preserved the texture and edges of the maps 

during image reconstruction. DE and CC are 

the metrics used in evaluating and validating 

the efficacy of the algorithm against the state-

of-the-art methods.  

Distribution Error (DE): is obtained by 

computing a total sum of the average of 

absolute difference in grey lever values 

between the reference image and 

reconstructed. Equation (11) is a formula that 

shows how the Distribution Error DE is 

calculated.   

 

𝐷𝐸 =
1

𝑛
∑   

𝑖=1 |𝐺𝑖−
𝛾𝑒𝐶

𝐺𝑖
𝑟𝑒𝑓

| (11) 

Where n is the total number of grey levels. 

𝐺𝑖 
𝛾𝑒𝐶

 

Correlation Coefficient (CC): Between the 

reference image and the reconstructed image  

The calculation formula of the correlation 

coefficient (CC) is as shown in Equation 

(12). 

 

𝐶𝐶 =
∑  𝑀

𝑒=1 (𝐺𝑖
𝑟𝑒𝑐− 𝐺𝑖

𝑟𝑒𝑐)(𝐺𝑖
𝑟𝑒𝑓

− 𝐺𝑖
𝑟𝑒𝑓

)

√∑  𝑀
𝑒=1 (𝐺𝑖

𝑟𝑒𝑐− 𝐺𝑖
𝑟𝑒𝑐)

2
∑  𝑀

𝑒=1 (𝐺
𝑖
𝑟𝑒𝑓

− 𝐺
𝑖
𝑟𝑒𝑓

)
2

 (12) 

where 𝐺𝑖
𝑟𝑒𝑐  𝑎𝑛𝑑  𝐺𝑖

𝑟𝑒𝑓
are, respectively, 

reconstructed and reference image vectors. 

The best results from the system should have 

lower values of RIE and DE, and a higher 

CC. 

 

Results and Discussion 

Figure 2 presents a qualitative evaluation 

of the proposed method compared to Linear 

back Projection (LBP) and Projected 

Landweber (PLAND) methods. The 

reconstructions are based on actual 

capacitance measurements of dielectric 

objects located at different positions of the 

sensing domain. Each row contains a 

reference image, and reconstructions using 

LBP, Projected Landweber and the Proposed 

Method. Results show an improvement in the 

quality of images generated using the 

proposed method compared with those of 

LBP and PLAND for all seven test objects. 

However, the proposed method fails to 

reconstruct bubble flows, unless thresholding 

is applied. The evaluation was extended to 

assess the qualitative performance for annular 

and stratified flows. 

Figure 3 presents the Distribution Error 

(DE) results which are used to assess how 

accurately reconstructed images match their 

reference image counterparts across different 

methods: The DE values for Linear Back 

Projection (LBP), PLAND, and the Proposed 

Method are presented graphically as 

percentage, highlight the effectiveness of 

each method in minimizing errors between 

reconstructed and original images. 

 

 Reference 

Image 

LPB PLAND Proposed 

Method 

Annular 1 

    

Annular 2 

    

Annular 3 

    



Tanz. J. Sci. Vol. 50(2) 2024 

393 

Bubble 1 

    

Bubble 2 

    

Stratified 1 

    

Stratified 2 

    
Figure 2: Image reconstructed from experiment data 

 

For different types of flows, such as 

Annular, Bubble, and Stratified, the Proposed 

Method consistently exhibits notable 

reductions in DE compared to LBP and 

PLAND. For instance, in Annular images, 

DE reductions of 2.04%, 6.59%, and 3.92% 

for Annular 1, Annular 2, and Annular 3, 

respectively, underscore the Proposed 

Method's ability to produce images closer to 

reference images than its counterparts. 

Similarly, in Bubble images, reductions like 

13.67% for Bubble 1 and 17.01% for Bubble 

2 demonstrate substantial improvements over 

LBP and PLAND. 

 

 
Figure 3: Distribution error (%) for Selected Reconstructed Images 
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Figure 3 shows Correlation Coefficient 

(CC) results, which measures the degree of 

similarity between reconstructed images and 

reference images. Higher CC values indicate 

stronger correlations and better fidelity to the 

original images. The results in Figure 3 

reveal that the Proposed Method consistently 

achieves higher CC values compared to LBP 

and PLAND across all types of reconstructed 

images. This suggests that not only does the 

Proposed Method reduce Distribution Error 

(DE), but it also maintains a high level of 

similarity (CC) with the reference images, 

indicating superior image quality and fidelity. 

 

 
Figure 4: Correlation Coefficient for Selected Reconstructed Images 

 

In general, Figures 3 and 4 collectively 

demonstrate that the Proposed Method 

outperforms LBP and PLAND in both 

reducing Distribution Error (Figure 3) and 

maintaining high Correlation Coefficients 

(Figure 4). These findings validate the 

effectiveness of the Proposed Method in 

enhancing the visual quality and accuracy of 

reconstructed images in various practical 

applications, including industrial monitoring 

and research activities in materials fabrication 

and process monitoring. 

 

Conclusion 

In conclusion, the proposed algorithm 

demonstrates substantial improvements in 

image reconstruction quality. By combining 

the ECT model with the modified Perona-

Malik functional, the algorithm effectively 

addresses the challenges of nonlinearity and 

ill-posedness, yielding superior image quality 

compared to traditional methods such as 

Linear Back Projection (LBP) and Projected 

Landweber (PLAND). Experimental results 

indicate significant improvements in both 

Distribution Error and Correlation 

Coefficient, confirming the superior 

performance of the proposed method. These 

advancements hold considerable promise for 

improved industrial process monitoring and 

more accurate decision-making in high-stakes 

applications. 
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