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Abstract 

Image reconstruction is one of the important tasks in the application of electrical capacitance 

tomography (ECT) systems. Though numerous algorithms have been implemented, it is often 

challenging to obtain satisfactory images in all imaging regions by the use of a single algorithm 

due to the soft-field nature of ECT systems. The preferred iterative reconstruction algorithms are 

highly computationally inefficient. A new iterative reconstruction algorithm is proposed which 

combine iterative Linear Back Projection and Logistic Regression. In this method, the solution 

to the ECT forward problem is implemented using logistic regression, whereas the ECT inverse 

problem is solved using the algebraic reconstruction technique. By doing so, it is possible to 

obtain high quality images at relatively efficient computational cost. The simulated experimental 

results shows that the proposed algorithm outperforms the Projected Landweber and Iterative 

Linear Back Projection in terms of spatial similarity accuracy, quality of reconstruction images, 

and computational efficiency. There are improvements of 29 % spatial similarity accuracy and 

58 % computational cost relative to Iterative Linear Back Projection algorithm. This is 

significant improvement toward using ECT system for online industrial operations. 

Keywords: Electrical Capacitance Tomography; Inverse Problem; Image Reconstruction; 

Logistic Regression. 

 

Introduction 

Tomography imaging is a technique used 

to construct cross-sectional images from data 

obtained using tomography systems (Dimas et 

al. 2024). The fundamental principle of these 

systems is to determine the component 

distributions of materials by using data 

obtained from sensors strategically placed 

around the process under observation (Rajan 

and Jose 2022). Among various tomographic 

imaging, Electrical capacitance tomography 

(ECT) has gained a considerable attention as a 

powerful imaging tool in industrial 

applications because it offers a number of 

advantages such as a simplified structure, a 

wide range of applications, lower cost, non-

destructive and non-invasive nature, and 

guaranteed safety (Chowdhury et al. 2022, Li 

et al. 2023). However, the use of ECT for 

online industrial process monitoring is 

challenging due to its “soft field” nature, 

whereby the sensing field is highly a non-

linear function of the permittivity distribution 

of the material under investigation (Deabes 

and Jamil Khayyat 2021, Wang and Yang 

2021). This non-linearity challenges the 

establishment of analytical and explicit 

relationship between measured capacitance 

data and permittivity distribution. 

Therefore, the process of obtaining images 

from the process under observation using ECT 

systems is often accomplished using either 
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single step or iterative methods. Iterative 

methods are more predominant because they 

generate images of higher quality from 

compared to singe step methods but at a higher 

computational cost (Zheng and Peng 2020). 

The fundamental principle of iterative 

methods is based on optimizing a set of 

objective functions until a stable solution is 

attained. In most ECT iterative techniques, the 

sensitivity model is used to find an update of 

the reconstructed image. The sensitivity model 

is based on dividing the sensing domain into 

small pixels, and the capacitance data are 

obtained as a linear sum of different 

perturbations composing the overall 

permittivity distribution. Using this model, 

forward and inverse solutions are respectively 

obtained through a linear forward projection 

(LFP) and linear backward projection (LBP) 

of the image vector and the capacitance 

measurement onto the sensitivity matrix 

(Wajman 2021, Yang et al. 2023). The 

advantages of sensitivity model are simple 

implementation and minimum computational 

cost. However, it provides a relatively poor 

accurate solution for the non-linear ECT 

problem, which results into an increased error 

as the degree of permittivity difference 

between phases being imaged increases. 

Therefore, nonlinear iterative solutions are 

necessary to overcome the limitations. 

This work presents a new iterative 

approach for solving the non-linear 

forward/inverse problem in soft-field ECT 

environment using non-linear forward solver. 

The method uses a nonlinear update of the 

image vector for the reconstruction process by 

implementing a logistic regression forward 

solver and iterative linear back projection 

technique. The new updating technique 

eliminates the instability problem usually 

encountered in linear iterative methods. 

Experimental results suggest a greater 

improvement in reconstruction performance 

of non-linear update when compared with 

state-of-the-art techniques, such as projected 

Landweber (Wajman 2021, Yang et al. 2023) 

and iterative linear back projection. 

Advantages of combining logistics forward 

solver and iterative linear back projection 

techniques to solve both the forward and 

inverse problems include a better 

approximation to the forward and inverse non-

linear ECT solutions, and an increase in 

computational speed. 

 

Materials and Methods 

ECT Basic Equations 

ECT system consists of an array of 𝑛 

electrodes surrounding a pipe or a container. 

The total number of independent capacitance 

measurements is given by 
𝑛(𝑛−1)

2
, which is 

equal to the number independent electrode 

pairs. The measured capacitances are used to 

reconstruct the permittivity distribution inside 

the pipe or container which in turn give an 

image of the cross-section of the process under 

observation.  

This process of reconstructing images 

involves solving two major computational 

problems: forward and inverse problems 

(Hong et al. 2021, Wang and Yang 2021). The 

forward problem calculates potential 

distribution from a known permittivity, and 

hence determines capacitance measurements. 

The inverse problem calculates permittivity 

distribution from the measured capacitance 

data. Results from the inverse problem are 

normally presented as a visual image, and 

hence the process is called image 

reconstruction. The electric potential depends 

on the permittivity distribution according to 

the Poisson equation as 

 

∇[ε(𝑥, 𝑦)∇ϕ(𝑥, 𝑦)] = −ρ(𝑥, 𝑦) (1) 

 

where ε(𝑥, 𝑦), ϕ(𝑥, 𝑦) and ρ(𝑥, 𝑦) are 

respectively, permittivity distribution, electric 

potential and charge distributions. Equation 

(1) is a linear partial differential equation in 

terms of ϕ(𝑥, 𝑦), the non-linearity in ECT 

refers to the nonlinear dependency of ϕ(𝑥, 𝑦) 

on ε(𝑥, 𝑦). The capacitance between 

electrode pair, 𝑖𝑗, is obtained by 

 

𝐶𝑖𝑗 =
𝑄𝑗

∆𝑉𝑖𝑗
, (2) 

where 𝐶𝑖𝑗 is the mutual capacitance between 

electrode pair 𝑖𝑗, ∆𝑉𝑖𝑗 is the potential 

difference, and 𝑄𝑗  is the charge on the sensing 

electrode, obtained from Gauss law using 
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𝑄𝑗 = ∮ ε(𝑥, 𝑦)∇ϕ(𝑥, 𝑦)
τ𝑗

⋅ �̂�𝑑𝑙, (3) 

where τ𝑗 is a closed path enclosing the sensing 

electrode and �̂� is the unit vector normal to τ𝑗. 

The image reconstruction equation is given by 

 

𝐶𝑖𝑗 =
1

𝑉
∬ ε(𝑥, 𝑦)∇ϕ(𝑥, 𝑦)𝑑τ

τ
, (4) 

and called the ECT model, is normally 

approximated in matrix form as 

 

𝐶 ≅ 𝑆𝐺, (5) 

 

where 𝐶 is the normalized capacitance vector, 

𝑆 is the sensitivity matrix of normalized 

capacitance with respect to permittivity 

distribution, and 𝐺 is a grey level vector.  

There are three main challenges in ECT 

imaging: (1) nonlinear relationship between 

permittivity distribution, capacitance, and 

distortion of the electric field by the enclosed 

material —the so called soft-field effect; (2) 

fewer number of independent measurements 

compared with pixels needed to reconstruct an 

image; and (3) ill-posed and ill-conditioned 

nature of the inverse problem (Deabes and 

Jamil Khayyat 2021, Wang and Yang 2021). 

The obtained solution is often sensitive to 

measurement errors and noise, and therefore 

unstable.  To obtain meaningful reconstruction 

results, some prior information or constraints 

need to be added on the unknown variables. 

Various methods have been proposed to solve 

the ECT inverse problem within the last three 

decades. In general, they can be categorized 

into two groups, single step and iterative 

methods (Hussain et al. 2023, Wang and Yang 

2021). Single step methods use a single 

mathematical step to calculate the permittivity 

distribution from the measured capacitance 

and the sensitivity matrix while iterative 

methods optimize a set of objective functions 

iteratively until steady conditions are attained.  

 

Iterative Image Reconstruction in ECT 

ECT image reconstruction involves 

finding the permittivity distribution from a set 

of measured capacitance values. Due to the 

non-linear relationship between measured 

capacitance and permittivity distribution, 

iterative reconstruction methods are often 

used to obtain better image reconstruction 

results. For using iterative methods to be 

suitable in image reconstruction, fast forward 

solver functionals are needed. This is because, 

in iterative methods, the reconstructed image 

is updated by minimizing the error between 

the measured capacitance data and the forward 

solution for a given permittivity distribution. 

This process is repeated iteratively until a pre-

defined criterion is met; hence a number of 

forward solutions is needed. 

Iterative image reconstruction methods are 

classified into two basic categories (Deabes 

and Jamil Khayyat 2021): (1) algebraic 

reconstruction methods, in which the image is 

updated to minimize the error between 

measured capacitance and the forward 

solution for a reconstructed image; and (2) 

optimization methods, in which a set of 

objective functions are optimized to meet 

certain image constraints.  In both cases, the 

minimization of the error based on the 

measured capacitance depends on the gradient 

of the forward solution. The update equation is 

expressed as 

𝐺𝑘+1 = 𝐺𝑘 − β𝐹(𝐺𝑘), (6) 

 

where 𝐺𝑘+1 is the image vector at (𝑘 + 1)𝑡ℎ 

iteration, β is a relaxation factor, and 𝐹(𝐺𝑘) is 

the gradient of the error between forward 

solution for the image vector at the 𝑘𝑡ℎ 

iteration and the measured capacitance vector. 

Techniques for addressing the forward 

problem, can be grouped into two main 

categories, namely numerical and 

linearization techniques. Numerical 

techniques include finite elements, boundary 

elements, and finite differences (Hasanoğlu 

and Romanov 2017, Nachaoui et al. 2021). 

These methods are more accurate; however, 

they are time-consuming, and hence 

linearization techniques are preferred for 

online applications. The most common 

linearization method is called linear forward 

projection (LFP), based on the sensitivity 

model. The sensitivity model is based on the 

superposition of individual pixel and the 

forward solution is obtained as a linear sum of 

capacitance values obtained from small 

perturbations in permittivity distribution. 
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Based on this model, the update equation (4) 

is approximated as 

𝐺𝑘+1 = 𝐺𝑘 − β𝑆𝑇(𝐶 − 𝑆𝐺𝑘), (7) 

 

where 𝐶 is the measured capacitance vector, 

and 𝑆 is the sensitivity matrix. Because of the 

non-linear nature of ECT, linearization 

techniques generate images with poor spatial 

resolutions. An improvement in the iterative 

reconstruction process can be achieved by 

integrating a non-linear forward solver, such 

that  

𝐺𝑘+1 = 𝐺𝑘 − β𝑆𝑇(𝐶 − 𝑦(𝐺𝑘)), (8) 

where 𝑦(𝐺𝑘) is the non-linear forward 

solution of the image vector,  𝐺𝑘. The 

reconstruction technique in this case is 

referred to as an iterative semi-linear back 

projection (Yang et al. 2023). Due to the ill-

posedness nature of the ECT inverse problem, 

optimization techniques are more superior 

over algebraic reconstruction. This adds a 

challenge to the reconstruction problem when 

computational and experimental noise are 

present. In this case, finding the solution based 

solely on minimization of the forward error 

function (algebraic reconstruction) does not 

guarantee an optimum solution. However, the 

hybrid model which combine algebraic 

reconstruction for inverse problem and 

logistic forward solver for forward problem 

may provide better reconstruction results. In 

this work, the logistic regression forward 

solver is integrated into the iterative linear 

back projection technique, and the 

combination is called Iterative Linear Back 

Projection and Logistic Forward Solver 

(ILBP-LFS) 

 

Logistic Forward Solver  

In this work, a new forward solver for the 

ECT problem has been introduced, and 

integrated with iterative linear back projection 

reconstruction technique to address the ECT 

inverse problem. The forward solver is based 

on logistic optimization by regulating 

sensitivity variations between measured and 

calculated capacitance data. The logic solver 

employs the logistic regression functional 

which is normally used to predict a categorical 

variable from a set of predictor variables. With 

a categorical dependent variable, discriminant 

function analysis is usually employed if all of 

the predictors are continuous and nicely 

distributed; logistic analysis is normally 

applied if all of the predictors are categorical; 

and logistic regression is often chosen if the 

predictor variables are a mixture of continuous 

and categorical variables and/or if they are not 

nicely distributed —it makes no assumptions 

about the distributions of the predictor 

variables (Rymarczyk et al. 2019, 2020, 2021). 

The predicted dependent variable is a function 

of the probability that a particular subject will 

be in one of the categories (for example, the 

probability that multiphase flow contains 

either gas or oil or both, given its set of scores 

on the predictor variables). The fundamental 

mathematical concept underpinning logistic 

regression is the logit defined by  

loge (
𝑝(𝐺𝑘;𝜃)

1−𝑝(𝐺𝑘;𝜃)
) = θ𝐺𝑘 . (9) 

Equation (9) can be rearranged to give 
𝑝(𝐺𝑘;𝜃)

1−𝑝(𝐺𝑘;𝜃)
= 𝑒𝑥𝑝(𝜃𝐺𝑘). (10) 

This can be simplified to 

𝑝(𝐺𝑘; θ) =
1

1+exp(−θ𝐺𝑘)
,  (11) 

where 𝑝(𝐺𝑘; θ) represents probability of 

occurrence of a grey value, 𝐺𝑘, given 

optimization parameter, θ, which represents 

permittivity variation. The challenge is to find 

the value of θ which provides an optimal value 

of 𝐺𝑘. 

 

 

Parameters Estimation 

Because logistic regression predicts probabilities, rather than just classes, it can be 

approximated using likelihood (Brown 2014, Hosmer Jr et al. 2013). For each training data-

point, there is a vector of features, 𝐺𝑘, and an observed class, 𝑦𝑘 . The probability of the observed 

class is either 𝑝 (for oil) if 𝑦𝑘 = 1, or (1 −  𝑝) (for gas) if 𝑦𝑘 = 0. The likelihood is then 

𝐿(θ) = ∏ 𝑝(𝐺𝑘)𝑦𝑘(1 − 𝑝(𝐺𝑘))
1−𝑦𝑘𝑛

𝑘=1 , (12) 

where θ  represents permittivity variation parameter. The maximum likelihood estimates the 

values for 𝜃 that maximizes the likelihood function in equation (15). Critical points (maxima and 
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minima) occur when the first derivative equals zero. If the second derivative evaluated at that 

point is less than zero then the critical point is maximum. Thus, finding the maximum likelihood 

estimates requires computing the first and second derivative of the likelihood function. Taking 

the derivative of equation (15) with respect to θ is a difficult task due to the complexity of the 

multiplicative terms in equation (15). The log-likelihood function for the logistic regression 

model is given by: 

l(θ) = ∑ (𝑦𝑘 log 𝑝 (𝐺𝑘) + (1 − 𝑦𝑘) log(1 − 𝑝(𝐺𝑘)))𝑛
𝑘=1 . (13) 

Rearranging this equation we have 

l(θ) = ∑ log(1 − 𝑝(𝐺𝑘))𝑛
𝑘=1 + ∑ 𝑦𝑘 log (

𝑝(𝐺𝑘)

1−𝑝(𝐺𝑘)
) .𝑛

𝑘=1  (14) 

by substituting equations (10) and (11) into this rearranged equation, we get: 

l(θ) = − ∑ log(1 + exp(−θ𝐺𝑘))𝑛
𝑘=1 + ∑ 𝑦𝑘(θ𝐺𝑘)𝑛

𝑘=1 . (15) 

To find maximum likelihood estimate, we differentiate this log-likelihood function with respect 

to θ , set the derivatives equal to zero, and solve: 
∂l

∂θ𝑗
= − ∑

𝐺𝑘𝑗 exp(−θ𝐺𝑘)

1+exp(−θ𝐺𝑘)
𝑛
𝑘=1 + ∑ 𝑦𝑘

𝑛
𝑘=1 𝐺𝑘𝑗 (16) 

Using the Newton-Raphson method for numerical optimization, this derivative is solved 

iteratively by: 

θ(𝑛+1) = θ(𝑛) −
𝑓′(θ(𝑛))

𝑓′′(θ(𝑛))
.  (17) 

Once the optimization parameters have been obtained, the forward solver 𝑦(𝐺𝑘) = 𝐶𝑖
𝑐𝑎𝑙𝑐  given 

in equation (8) is updated by the non-linear forward logistic solver using 

𝐶𝑖
𝑐𝑎𝑙𝑐 =

∑ 𝑆𝑖𝑗
𝑁
𝐽=1 𝐺𝑗

1+exp(−θ ∑ 𝑆𝑖𝑗
𝑁
𝐽=1 𝐺𝑗)

,  i=1,2,3…,M, (18) 

where  𝑀 and 𝑁 are respectively total numbers of measurements and pixels. Hence the new grey 

values are calculated iteratively using 

𝐺𝑘+1 = 𝐺𝑘 − β𝑆𝑇(𝐶𝑚𝑒𝑎𝑠 − 𝐶𝑐𝑎𝑙𝑐), (22) 

where β is a relaxation factor, and 𝑘 represents 𝑘𝑡ℎ iteration, 𝐶𝑚𝑒𝑎𝑠 and 𝐶𝑐𝑎𝑙𝑐  are respectively 

measured and calculated capacitances. The flow of execution of the proposed algorithm is given 

in Figure 1. 
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Figure 1: Flowchart for Iterative Linear Back Projection and Logistic Forward Solver 
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Experimental Setup and Evaluation 

Criteria 

In order to evaluate the efficacy of the 

proposed method, experiments were carried 

out using an 8-electrode circular sensor ECT 

system (excitation waveform: 10Vpp, 300-

500kHz), with sensing domain divided into 

900 pixels with  32 × 32  grid (Figure 2). 

Static experiments were conducted using 

annular and stratified perspex beads 

positioned at different locations in the sensing 

domain. Simulated capacitance data were used 

to analyse performance of the proposed 

method over full component fraction range. 

All reconstruction methods were implemented 

using MATLAB on a computer with Intel Core 

i7-4510U CPU, @ 2 GHz, 2GHz, and 8.00GB 

memory. 

 

 

 
Figure 2: An 8-electrode sensor ECT system at the University of Dar es Salaam. 

 

Qualitative and quantitative evaluations 

were made between the new method (ILBP-

LFS), ILBP and PLAND methods. ILBP and 

PLAND have been used in evaluation of the 

proposed method because they generate better 

images and have higher spatial metric 

performance than other methods. In addition, 

these are the widely used methods for 

commercial and research applications. 

Qualitatively, visual results of the 

reconstructed images generated by different 

methods were subjectively compared. To 

quantify the results, distribution error (DE), 

relative image error (RIE) and correlation 

coefficient (CC) metrics, were used to 

compare the spatial resolution between the 

reference and the reconstructed images. Lower 

DE and RIE and higher CC values signal 

better results; for reservoir management in oil 

industries, for example, the desired DE should 

be less or equal to 10%. 

 

Results and Discussions  

Figure 3 presents qualitative visual 

inspection results from image generated using 

ILBP, PLAND and ILBP-LFS reconstruction 

methods. Results show that the proposed 

ILBP-LFS method generates sharper and 

detailed image compared with PLAND and 

ILBP. The proposed algorithm is accurate 

relative to its counterpart methods. However, 

the proposed algorithm also fails to resolve 

bubble flow, unless thresholding is applied.  
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 Reference Image ILBP PLAND ILBP-LFS 

Annular flow 

    

Annular flow 

    
Bubble flow 

    
Stratified 

flow 

    

Stratified 

flow 

    

Figure 3: Images reconstructed using simulated experimental data 

 

The evaluation was extended to cover the 

full component fraction range for annular and 

stratified flows. Figure 4 presents quantitative 

results based on distribution error (DE) 

similarity quality metric for ILBP, PLAND 

and ILBP-LFS methods over full component 

fraction range for annular flow. It is noted that 

ILBP-LFS is significantly more accurate 

compared with other methods. Its average DE 

over full component fraction range is below 

10% suggesting that ILBP-LFS can be used 

for commercial application in oil industries. 
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Figure 4: DE for annular flow over full component fraction range 

 

In Figure 4, the DE performance results for 

ILBP, PLAND, and ILBP-LFS methods for 

stratified flows over full component fraction 

range are presented. Again, ILBP-LFS 

performs better than ILBP and PLAND over 

full component fraction range, giving an 

average DE of less than 10%. At lower and 

higher gas concentration, ILBP-LFS performs 

better with lower DE values. This is caused by 

lower permittivity variations in the sensing 

domain. When reference gas fraction is 

approximately 50%, the performance of ILBP-

LFS decreases because of high change in 

permittivity variation, but the overall DE is 

less than 10% over full component fraction 

range.  

 

 



Mwambela and Nombo - Image Reconstruction Method Based on Iterative Linear Back … 

356 

 
Figure 5: DE for stratified flow over full component fraction range 

 

Table 1 presents average numerical results for ILBP-LFS, PLAND, and ILBP methods for 

annular and stratified flows (Figures 4 and 5). ILBP-LFS has lower values of DE, and higher 

value of CC compared with PLAND and ILBP. This observation signals better accuracy 

performance of the ILBP-LFS method. These numerical results agree with the visual analysis, 

suggesting that the ILBP-LFS method has better accuracy performance compared with PLAND 

and ILBP. To compare the execution speed, reconstruction time was also recorded for each 

method using single frame image data. From Table 1, it can be seen that ILBP-LFS is 

computationally efficient compared with PLAND and ILBP methods. 

 

 

Table 1: Quantitative evaluation using RIE, DE and CC 

 

Method 

DE (%) CC  

Time 

(sec) 
Annular Stratified Annular Stratified 

ILBP 27.42 15.75 0.662 0.845 0.068 

PLAND 24.18 12.14 0.745 0.895 1.98 

LFS-LFS 17.98 7.249 0.766 0.894 0.028 

 

The experiment performance evaluation 

the proposed algorithm showed that the 

algorithm significantly improve accuracy 

relative to its established counterpart 

algorithms. This observed performance has 

been consistent for both qualitative visual 

inspection and quantitative evaluation using 

similarity quality metrics. The accuracy 

performance of less than 10 % is desirable in 

some of industrial applications for operation 

purposes. 

A desirable reconstruction algorithm 

performance should be flow-regime 

independent and consistent over full 

component fraction range. The evaluation of 

different flow regimes, bubble, annular and 

stratified flows over full components 

demonstrated the consistent accuracy 
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performance of the proposed algorithm. In this 

case it constitutes robustness of the algorithm 

which is superior over its counterparts 

evaluated in this work. 

The computation inefficiency of the 

iterative reconstruction algorithm is one of the 

challenges of interest to researchers. 

Improving it has been the objective of new 

proposed algorithms. In this study, it was 

demonstrated that the ILBP-LFP 

implementation improved the computation 

efficiency relative to its counterpart’s 

algorithms. The algorithm has improved the 

speed of reconstruction to 59 % of the basic 

ILBP reconstruction algorithm. 

 

Conclusion 

In this paper, a new forward solver for the 

ECT problem has been introduced, and 

integrated with iterative linear back projection 

reconstruction technique to address the ECT 

inverse problem. The forward solver is based 

on logistic optimization by regulating 

sensitivity variations between measured and 

calculated capacitance data. The image update 

is performed by minimizing the error of the 

predicted capacitance based on grey value 

fitting of the logistic solver. The new image 

update technique overcomes instability 

problems usually faced in implementing 

sensitivity models for image reconstruction. 

An improvement in reconstructed images is 

also verified using the non-linear update when 

compared to linear techniques such as 

projected Landweber and iterative linear back 

projection. The proposed technique is fast and 

can be easily integrated into any iterative 

reconstruction method. 
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