Main Article Content
Anticonvulsant Activity of Carissa carandas Linn. Root Extract in Experimental Mice
Abstract
Purpose: The aim of the present study was to investigate anticonvulsant effect of the ethanolic extract of the roots of Carissa carandas (ERCC) on electrically and chemically induced seizures.
Methods: The ethanolic extract of the roots of C. carandas (100, 200 and 400 mg/kg, i.p.) was studied for its anticonvulsant effect on maximal electroshock-induced seizures and pentylenetetrazole-, picrotoxin-, bicuculline- and N-methyl-dl-aspartic acid-induced seizures in
mice. The latency of tonic convulsions and the number of animals protected from tonic convulsions were noted.
Results: ERCC (100-400 mg/kg) significantly reduced the duration of seizures induced by maximal electroshock (MES). However, only 200 and 400mg/kg of the extract conferred protection (25 and 50%, respectively) on the mice. The same doses also protected animals from pentylenetetrazole-induced tonic seizures and significantly delayed the onset of tonic seizures produced by picrotoxin and N-methyl-dl-aspartic acid. The extract had no effect on bicuculline-induced seizures.
Conclusion: The data suggest that the ethanolic root extract of C. carandas may produce its anticonvulsant effects via non-specific mechanisms since it reduced the duration of seizures produced by maximal electroshock as well as delayed the latency of seizures produced by pentylenetetrazole and picrotoxin.
Methods: The ethanolic extract of the roots of C. carandas (100, 200 and 400 mg/kg, i.p.) was studied for its anticonvulsant effect on maximal electroshock-induced seizures and pentylenetetrazole-, picrotoxin-, bicuculline- and N-methyl-dl-aspartic acid-induced seizures in
mice. The latency of tonic convulsions and the number of animals protected from tonic convulsions were noted.
Results: ERCC (100-400 mg/kg) significantly reduced the duration of seizures induced by maximal electroshock (MES). However, only 200 and 400mg/kg of the extract conferred protection (25 and 50%, respectively) on the mice. The same doses also protected animals from pentylenetetrazole-induced tonic seizures and significantly delayed the onset of tonic seizures produced by picrotoxin and N-methyl-dl-aspartic acid. The extract had no effect on bicuculline-induced seizures.
Conclusion: The data suggest that the ethanolic root extract of C. carandas may produce its anticonvulsant effects via non-specific mechanisms since it reduced the duration of seizures produced by maximal electroshock as well as delayed the latency of seizures produced by pentylenetetrazole and picrotoxin.