Main Article Content

Protective effect of syringaresinol on rats with diabetic nephropathy via regulation of Nrf2/HO-1 and TGF- β1/Smads pathways


Lei Ji
Xue Zhong
Xingxing Xia
Wei Yu
Yuping Qin

Abstract





Purpose: To investigate the protective role of syringaresinol in a rat model of diabetic nephropathy (DN).


Methods: Streptozotocin was injected intraperitoneally into rats to establish the diabetic model. Streptozotocin-induced rats were orally administered syringaresinol, and pathological changes in kidneys were assessed using hematoxylin and eosin staining. Enzyme-linked immunosorbent assay (ELISA) was used to determine kidney injury indicators, 24-h urine proteins, blood urea nitrogen (BUN), and serum creatinine (SCR). Blood glucose was measured using a blood glucose meter, while levels of malonaldehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) in kidney were also measured using ELISA.


Results: Pathological changes in the kidneys were observed in rats post-streptozotocin treatment. Administration of syringaresinol reduced the lesion degree, with improved pathological morphology in kidney. Syringaresinol administration significantly attenuated streptozotocin-increased levels of BUN, SCR, 24-h urine protein, and blood glucose (p < 0.01). Streptozotocin-induced oxidative stress, shown by enhanced MDA level and reduced levels of SOD, CAT, and GSH-PX, was reversed in rat kidneys following syringaresinol administration. However, the expression levels of nuclear factor erythropoietin- 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) proteins decreased, while transforming growth factor-beta 1 (TGF-β1) and signal transducer and transcriptional modulator (Smad) 2/3/7 proteins increased in rats post-streptozotocin treatment. Syringaresinol administration reversed the effects of streptozotocin on protein expression of Nrf2, HO-1, TGF-β1, and Smad 2/3/7.


Conclusion: Syringaresinol exerted a protective effect against DN through activation of Nrf2 and inactivation of TGF-β1/Smad pathways. Thus, the compound can potentially be developed for management of diabetic nephropathy.






Journal Identifiers


eISSN: 1596-9827
print ISSN: 1596-5996
 
empty cookie