Main Article Content
Leflunomide inhibits inflammation and apoptosis of H9c2 cells induced by hydrogen peroxide
Abstract
Purpose: To investigate the effects of leflunomide (Lef) on inflammatory response and apoptosis after myocardial infarction, and to explore its molecular mechanisms of action.
Methods: H2O2 and H9c2 cells were used to establish myocardial cell injury model in vitro. H9c2 cells were divided into 3 groups: control group, H2O2 group, H2O2 + Lef group. The CCK-8 assay was used to determine the optimal concentration of H2O2 and Lef, while the expressions of TNF-α, IL-6, IL-1β, Bcl-2, Bax, Bad, TLR4, IκB-α, P65 and p-P65 were evaluated by Western blot. PCI was utilized to detect the expression of TNF-α, IL-6, IL-1β, Bcl-2, Bax and Bad mRNA. The levels of TNF-α, IL-6 and IL-1β in supernatant were assessed by ELISA, while apoptosis of the three groups was evaluated by TUNEL staining and flow cytometry.
Results: Compared with H2O2 group, TNF-α, IL-6, IL-1β, Bax and Bad expressions in H2O2+Lef group were significantly reduced (p < 0.05), but Bcl-2 expression significantly increased. The levels of TNF-α and IL-6 and IL-1β in supernatant of H2O2 + Lef group were also decreased compared to those in the H2O2 group (p < 0.05). In addition, TUNEL-positive cells and apoptotic rates were significantly reduced after treatment with Lef. Moreover, Lef inhibited expression of TLR4 and p-P65, but activated expression of IκB-α, indicating that Lef inhibited TLR4/NF-κB pathway (p < 0.05).
Conclusion: The results show that Lef inhibits H2O2-induced H9c2 cell apoptosis and inflammatory responses by inhibiting TLR4/NF-κB pathway. These findings may provide new targets for the treatment of myocardial infarction.