Main Article Content

Hypoxia-induced gene expression pattern in doxorubicin resistant MCF7 cells


Hana M. Hammad
Tuqa M. Abu Thiab
Malek A. Zihlif

Abstract

Purpose: To investigate hypoxia-induced gene expression pattern in doxorubicin-resistant human breast cancer cells (MCF7).


Methods: Human breast cancer cells (MCF7) were exposed to 60 episodes of 8 h hypoxia thrice a week for three months. Chemo-resistance to doxorubicin was assessed using 3-(4,5-dimethylthiazol-2- yl)-2, 5-diphenyl tetrazolium bromide (MTT) cell proliferation assay. Real-time quantitative polymerase chain reaction (qRT-PCR) assay was performed to assess gene expression pattern in doxorubicinresistant cells on exposure to hypoxia.


Results: Hypoxia significantly increased the resistance of MCF7 cells to doxorubicin, with a maximum of 16.42-fold enhancement after 25 episodes of 8-h hypoxia, while the resistance thereafter significantly decreased with prolonged episodes of hypoxia (p < 0.05). Gene expression analysis revealed significant changes in 42 genes. The expressions of 10 of these genes were significantly upregulated, while those of 32 genes were significantly down-regulated (p < 0.05). Cytochrome P450 family 1, subfamily A, member1 (CYP1A1) was the most conspicuous upregulated gene (13.32-fold), while breast cancer gene 1 (BRCA1) was the most down-regulated (8.23-fold). Gene expression analysis after 60 episodes of 8-h hypoxia revealed the upregulation of CYP1A1 (5.77-fold). Similarly, 27 genes were significantly down-regulated, with BRCA2 as the most down-regulated gene (8.11-fold). Topoisomerase (DNA) II alpha (TOP2A) was the most down-regulated among genes involved in drug metabolism and resistance (6.37-fold), while cyclin-dependent kinase 2 (CDK2) was the most profoundly downregulated among genes involved in cell cycle regulation (3.56-fold).


Conclusion: These results indicate that development of resistance to doxorubicin by MCF7 cells after short-term hypoxia results from the upregulation of genes responsible for the metabolism of doxorubicin and for shifting the cells to alternative pathway driven principally by EGF and ESR2. The observed down-regulation is an adaptation of the MCF7 cells to survive under long-term hypoxia.


Journal Identifiers


eISSN: 1596-9827
print ISSN: 1596-5996
 
empty cookie