Main Article Content

Eriodictyol attenuates spinal cord injury by activating Nrf2/HO-1 pathway and inhibiting NF-κB pathway


Xiaojie Mao
Zhiyang Jiang
Chaohong Shi
Junjun Lu
Gaofeng Rao

Abstract

Purpose: To investigate the effect of eriodictyol on spinal cord injury (SCI) and its underlying mechanism of action.
Methods: Thirty Sprague-Dawley rats were assigned to sham, SCI, and eriodictyol-treated groups (SCI + Eri; 10, 20, and 50 mg/kg). Moderate spinal cord contusion injury was induced to model SCI. Locomotor recovery was assessed based on Basso, Beattie, and Bresnahan (BBB) score. Pain was
evaluated by paw withdrawal threshold (PWT) and latency (PWL), and spinal cord water content was measured. Tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) expression were determined by enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Immunoassay was used to determine malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-PX) levels while Western blotting was employed to evaluate nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor-kappa B (NF-κB), and phosphorylated NF-κB (p-NF-κB) levels.
Results: Eriodictyol elevated BBB score, PWT, and PWL in SCI rats but reduced spinal cord water content (p < 0.05). Eriodictyol treatment down-regulated TNF-α, IL-1β, IL-6, and MDA, whereas SOD, GSH, and GSH-PX levels were elevated (p < 0.05). Eriodictyol administration increased Nrf2 and HO-1 levels but reduced p-NF-κB/NF-κB.
Conclusion: This study provides a potential therapy to promote long-term functional recovery following SCI.


Keywords: Spinal cord injury, Eriodictyol, Nrf2/HO-1 pathway, NF-κB signaling pathway, Polymerase chain reaction, Basso, Beattie and Bresnahan score


Journal Identifiers


eISSN: 1596-9827
print ISSN: 1596-5996
 
empty cookie