Main Article Content

Spatholobus suberectus extract suppresses proliferation and EMT, and promotes apoptosis in palmitic acid induced vascular endothelial cells by inhibiting LncRNA MALAT1 via VEGF signaling pathway


Kebo Gu
Lili He

Abstract

Purpose: In type 2 diabetes, palmitic acid could damage vessels and induce insulin resistance. This present in vitro study evaluates the possible role of Spatholobus suberectus (FSS) extract in diabetes.
Methods: Human HUVECc cells were treated with palmitic acid, palmitic acid and Spatholobus suberectus extract. MALAT1 overexpression plasmid (pcDNA-MALAT1) and blank vector were transfected into the cells using lipofectamine 2000. RT-qPCR assay was used to evaluated the expression changes of lncRNA, VEGFR2 and VEGFA in the cells as well as Epithelial-Mesenchymal Transition (EMT) biomarkers and apoptosis. CCK-8 was used to detect cell viabilities of HUVECs. Expressions of proteins in VEGF signaling pathway were analyzed using Western Blot.
Results: LncRNA MALAT1 had high expression in diabetes-like cells and suppressed proliferation and EMT but promoted apoptosis. The SS extract promoted proliferation and EMT and repressed apoptosis in diabetes-like HUVECs cells. The promotion of apoptosis by LncRNA MALAT1, inhibition of apoptosis and regulated functions of diabetes-like HUVECs cells by SS extract occurred via the VEGF signaling pathway
Conclusion: SS extract might contribute to survival of cells by inhibiting MALAT1 via VEGF signaling pathway in vitro, suggesting FSF might be a potential therapeutic agent in the treatment of diabetes.


Keywords: flavone of Spatholobus suberectus, diabetes, vascular endothelial cell, LncRNA MALAT1


Journal Identifiers


eISSN: 1596-9827
print ISSN: 1596-5996